Applied mathematics in nuclear science and engineering

S. V. G. Menon

Theoretical Physics Division

Bhabha Atomic Research Centre

Theoretical and computational modeling

- Research in Nuclear Science- main mandate of BARC
 - Basic science
 - Design of new reactors and systems
 - Applications of nuclear energy in other fields
- Tasks of theoretical physicists
 - Theoretical research in the physical processes
 - Develop mathematical models and computing methods
 - Implement & apply to design, analysis and operation
- Research in new methods for simulations
 - Simulations of more details of systems
 - Simulations involving multi-physics models
 - Develop new methods for parallel computing systems

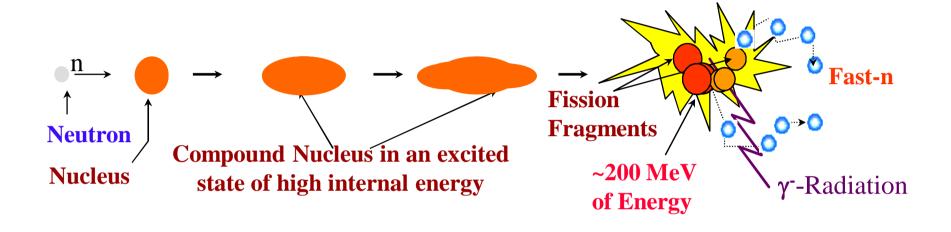
Topics for today

Modeling neutron distributions in fission reactors

Radiation—hydrodynamics of high-temperature plasmas

Two-fluid description of plasmas in fusion reactors

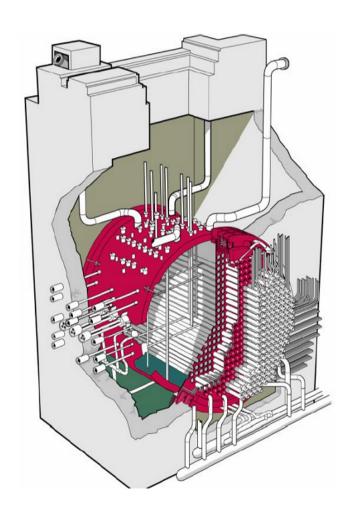
Nuclear fission



$$_{92}U^{235} + _{0}n^{1} \rightarrow _{36}Kr^{92} + _{56}Ba^{141} + 3(_{0}n^{1}) + Energy (200 MeV)$$

$$_{92}U^{235} + _{0}n^{1} \rightarrow _{42}Mo^{95} + _{57}La^{139} + 2(_{0}n^{1}) + Energy (200 MeV)$$

Pressurized heavy water reactor core



- Pressurized heavy water reactor core
- Total of 306 fuel channels, which contain 12 fuel assemblies per channel, each with 19 fuel pins
- Coolant flows between the elements and removes energy

Neutron distribution in reactors

- Neutrons and the nuclei form a binary mixture.
 - Density of nuclei ~ 10²² / C.C.
 - Density of neutrons ~ 10⁹ / C.C.
 - Neutron-neutron collisions are negligible
- Boltzmann transport equation for neutron flux:

$$\frac{1}{v}\frac{\partial}{\partial t}\psi + \vec{\Omega} \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E, t) + N(\vec{r}, t) \,\sigma(\vec{r}, E) \,\psi(\vec{r}, \vec{\Omega}, E, t) =$$

$$\int \int N(\vec{r}, t) \,\sigma(\vec{r}, E' \to E, \vec{\Omega} \cdot \vec{\Omega}') \,\psi(\vec{r}, \vec{\Omega}', E', t) \,dE' \,d\vec{\Omega}' + S(\vec{r}, \vec{\Omega}, E, t)$$

- Equation in seven variables
- All nuclear cross-sections are either measured or computed from nuclear models

Discrete ordinates method

- The time derivative is approximated using the Euler backward scheme, to ensure stability
- Energy variable ($0 \le E \le 20 \text{ MeV}$) is divided into a large number (~ few hundred) of groups:
- The continuous variable Ω is replaced by a discrete set:

$$\int \psi(\Omega) d\Omega = \sum_{m} \omega_{m} \psi_{m}$$

■ These approximations converts the transport equation into a PDE:

$$\Omega_m \bullet \nabla \psi_m + \sigma \psi = \sum_m \omega_m \psi_m + S_m$$

■ The standard approach is then to solve this equation in a cell or mesh using a FD or FEM approximation

The diffusion approximation

Transport equation is reduced to the diffusion equation, when the angular distribution is nearly isotropic:

$$\varphi(\vec{r}, E, t) = \int \psi(\vec{r}, \Omega, E, t) d\Omega$$

 To use the diffusion equation, it is necessary to smear out the heterogeneities – a sort of coarse graining

$$\frac{1}{v} \frac{\partial}{\partial t} \phi + \nabla \cdot D(\vec{r}, E, t) \nabla \phi(\vec{r}, E, t) + N(\vec{r}, t) \sigma(\vec{r}, E) \phi(\vec{r}, E, t) =$$

$$\int N(\vec{r}, t) \sigma(\vec{r}, E' \to E) \phi(\vec{r}, E', t) dE' + S(\vec{r}, E, t)$$

 Numerical schemes for diffusion equation are used in simulations (FDM, FEM, Nodal methods, etc)

Nature of problems

- Uncontrollable errors introduced in coarse graining
- Solution needed in multi-dimensional geometries
- Stability of numerical schemes
 - Time differencing
 - Stiff equations
- Generalized eigenvalue problems steady state

$$A \vec{\phi}_n = \frac{1}{\lambda_n} F \vec{\phi}_n$$

- \blacksquare A \rightarrow Diffusion matrix
- \blacksquare F \rightarrow Fission matrix
- λ_n → Eigenvalues
- λ_1 = Multiplication factor

Sparse Matrix Methods

Simulation problems

- Time dependent problems
 - Need to control errors and stability
 - Incorporating feedback temperature effects, fuel depletion, etc
- Steady state solutions
 - Large sparse systems
 - Iterative solution methods
 - Acceleration of convergence
- Coupling of neutron diffusion to thermal hydraulics
 - Heat transfer
 - Postulated accidental scenarios

An inverse problem

- Xe¹³⁵ and Sm¹⁴⁹ induced power oscillations occur in large pressurized heavy water reactors
- Using measured neutron flux at several locations, the reactor power has to be kept steady.
- This leads to an inverse problem
 - The spatial distribution of neutron absorbers is determined from measured flux
 - This has to be done on-line for uninterrupted reactor operation

More recent algorithms

Conjugate gradient and related Krylov-space methods

$$\{\vec{r}_0, A\vec{r}_0, A^2\vec{r}_0, A^3\vec{r}_0, \dots A^{i-1}\vec{r}_0\}, \vec{r}_0 = b - A\vec{x}_0$$

- Use of pre-conditioners
- Needs only vector-matrix products
- Efficient parallel algorithms

Conjugate gradient

Bi-conjugate gradient

Generalized minimum residual

Jacobian-free Newton-Krylov methods

$$\begin{split} F(u) &= 0 \\ J_k \ \delta u_k &= -F(u_{k-1}) \ , \ u_k = u_{k-1} + \delta u_k \\ J_k \ v \ \approx \frac{1}{\varepsilon} \left[F(u_{k-1} + \varepsilon \ v) - F(u \) \ \right] \end{split}$$

Krylov space methods for linear system

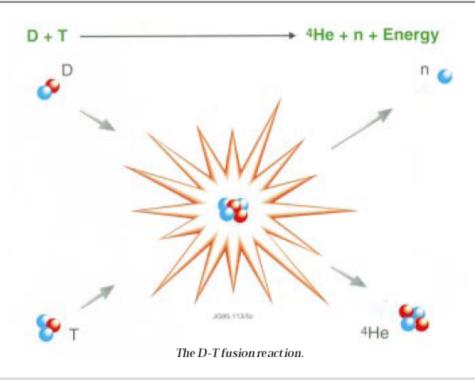
Transport equations

- Atoms
- Neutral Particles
- Charged Particles
- Brownian Particles
- Thermal-Photons
- Electrons & Ions in a Plasma

- Rarified Gas Flow
- Neutrons & Gamma
- Coulomb Interaction
- Aerosol Physics
- Radiative Transfer
- Self-consistent Fields

Fusion reactors

Nuclear fusion process



$$D + T \rightarrow He (3.5 MeV) + n (14.1 MeV)$$

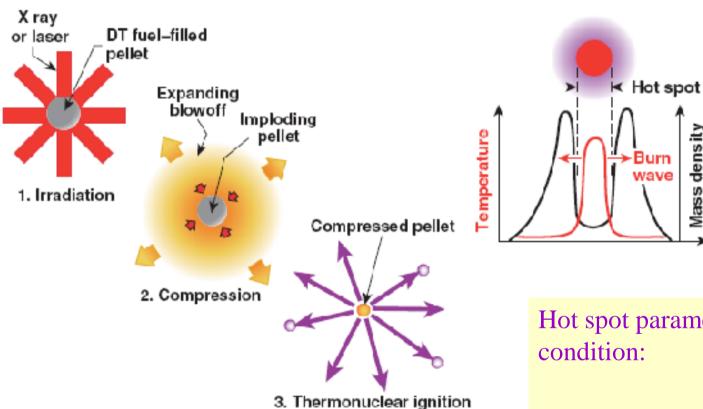
Fusion of 50:50 mixture of D & T \approx 80.4 x 10¹² calories /kg Complete fission of U²³⁵ generates \approx 17.6 x 10¹² calories /kg

Realizing fusion energy

- Inertial confinement fusion
 - Lasers
 - Ion beams
 - Electron beams

- Magnetic confinement fusion
 - Toroidal systems
 - Open ended systems

Inertial confinement fusion



Time-history of laser pulse is tailored so that a series of multiple shocks generate nearly isentropic compression

Hot spot parameters for ignition condition:

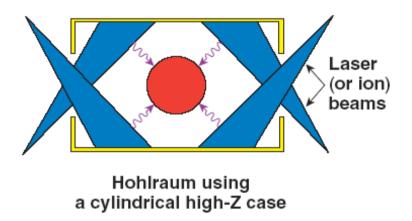
Temperature ~ 10 keV Ariel density ~ 0.3 g /cm2

 $1 \text{ keV} = 1.16 \times 10^{7} \text{ K}$

Indirectly driven fusion

Lasers or ion beams generate x-rays in a hohlraum:

X-ray-drive target



- Laser beams generate X-rays on striking the wall
- X-rays re-distribute inside the gold cylinder
- Capsule is imploded by the uniform X-rays (200 eV)

Several disciplines are involved in simulations

Material ablation due to x-rays Radiation transport Formation of shock waves Hydrodynamics Implosion leads to fusion Fusion physics (n, γ , α) transport transport theory **EOS** Database **Cross-section Radiation Opacity Material Libraries Models** Need for different **Radiation** databases (n, γ, α) Transport **Hydrodynamics** (**Transport HE-Database & Burn Models**

A radiation transfer model

■ Radiation diffuses through the medium via multiple absorption and emission - $E_v(r,t)$ is its energy density

$$\frac{\partial}{\partial t} E_{v}(\vec{r}, t) = \nabla \cdot \left[\frac{c}{3 \kappa_{v}} \nabla E_{v}(\vec{r}, t) \right] + c \kappa_{v} \left[B_{v}(T) - E_{v} \right]$$

$$\frac{\partial}{\partial t} C_V T(\vec{r}, t) = c \int_0^\infty \kappa_V [E_V - B_V(T)] dV$$

- Second equation models changes in the temperature of the medium
- lacktriangle Cross-section for absorption $\kappa_{\scriptscriptstyle
 m V}(T)$ depends on temperature

Radiation transfer is generally also coupled to hydrodynamics

Radiation hydrodynamics

RH is the minimal mathematical model for simulating ICF

$$\begin{split} \frac{\partial}{\partial t} \rho + \nabla \cdot (\vec{u} \ \rho) &= 0 \\ \frac{\partial}{\partial t} \left[\rho \ \vec{u} \right] + \nabla \cdot \left[\vec{u} \ \vec{u} \ \rho \right] + \nabla p &= 0 \\ C_e \frac{\partial T_e}{\partial t} &= - \left[B_e + p_e \right] \frac{\partial V}{\partial t} + \nabla \cdot \left[D_e \nabla T_e \right] + \rho \, C_e \omega_{ie} (T_i - T_e) + \\ &+ c \int\limits_0^\infty \kappa_v \left[E_v - B_v (T) \right] dv + S_{Fe} + S_L \\ C_i \frac{\partial T_i}{\partial t} &= \left[B_i + P_i \right] \frac{\partial V}{\partial t} + \nabla \cdot \left[D_i \nabla T_i \right] - \rho \, C_i \omega_{ie} (T_i - T_e) + S_{Fi} \\ \rho \frac{\partial}{\partial t} \left[E_v (\vec{r}, t) / \rho \right] &= \nabla \cdot \left[\frac{c}{3 \kappa_v} \, E_v (\vec{r}, t) \right] + c \, \rho \, \kappa_v \left[B_v (T) - E_v \right] + S_v (\vec{r}, t) \end{split}$$

Slowing down of charged particles

Fusion reactions invariably produce charged particles

$$D + T \rightarrow \alpha (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$$

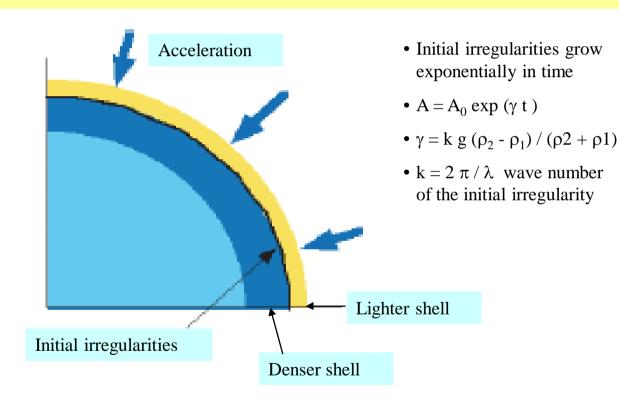
- Energy deposited by charge particles in the plasma
- Transport equation for α -particles

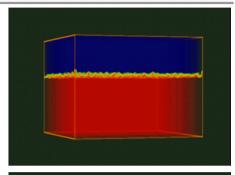
$$\frac{\partial N}{\partial t} + \vec{v} \cdot \nabla_r N + \vec{a} \cdot \nabla_v N = S_\alpha - N \nabla_v \cdot \vec{a}$$

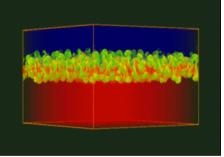
- Effective acceleration accounts for Coulomb energy loss
- ICF simulations are essentially multi-physics
 - Hydrodynamics
 - Neutron transport
 - Radiation transport
 - Charge particle transport

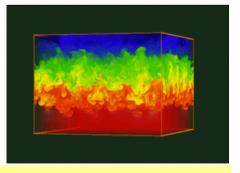
Rayleigh-Taylor instability

Rayleigh-Taylor instability arises when a light fluid accelerates into a dense fluid



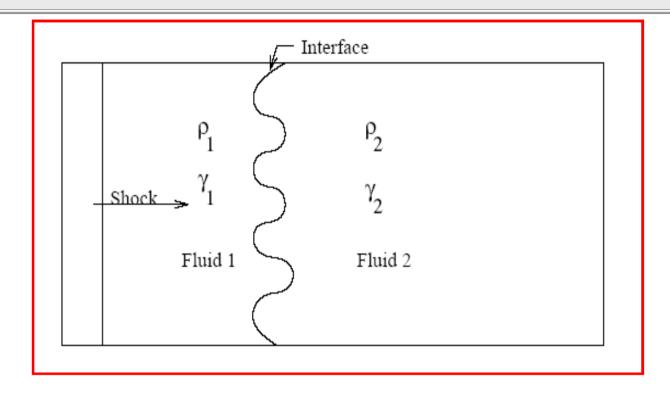






3D simulations of development of Raleigh Taylor instability at three different times. Blue is 2 times denser than red

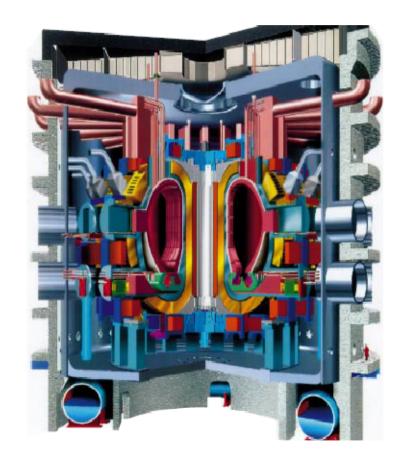
RM instability



- Manufacturing methods produce perturbed interfaces of materials
- Ritchmyer-Meshkov instability arises when a shock wave hits an irregular interface

Magnetic fusion

- In the tokomak chamber, plasma is confined by magnetic fields
 - field along the torous
 - field along the axis
- The plasma moves along the torus
- In-homogeneities and collisions lead to plasma instabilities



Magneto hydrodynamic model

 Plasmas in magnetic confinement fusion is described as double fluids of ions and electrons

$$\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e V_e) = 0$$

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i V_i) = 0$$

$$n_e m_e \frac{\partial V_e}{\partial t} = -\nabla p_e - e n_e (E + V_e \times B) + R$$

$$n_i m_i \frac{\partial V_i}{\partial t} = -\nabla p_i + Z e n_i (E + V_i \times B) - R$$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\frac{1}{\mu_0} \nabla \times B = [-en_e V_e + Zen_i V_i] + \frac{\partial D}{\partial t}$$

$$\nabla \cdot D = [-en_e + Zen_i]$$

$$\nabla \cdot B = 0$$

Objectives

- Nuclear technology centered around
 - Fission systems
 - Fusion systems
- Design and analysis of the systems
 - Significant amount of mathematical modeling
 - Realistic modeling with fast computers
 - Numerical methods and computing tools
- Feasibility of reducing experiments
- Analysis of laboratory systems
 - Feedback to improved designs
- Operation of nuclear systems

Methods needing attention

- Multi-grid techniques
- Non-orthogonal meshes
- FEM for hydrodynamics
- Preconditioning methods
- Wavelets and applications

Scope for collaborations

- Interaction with expert groups for:
 - Choice of proper algorithms
 - Mathematical base of algorithms
 - Comparative studies
- Numerical schemes for parallel computers
 - Inherently parallel algorithms
 - Error propagation in parallel computations
- Codes for specific problems
 - Study of fluid instabilities
 - Inverse problems