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CHAPTER 1

Introduction

“When an engineer, /b%wzhg the scy/éz‘y reguéz/ions o/ the Goast Suard or
the Federal Aviation %gency, [ranslates the laws (f pﬁysics into the
specyf'ca/ions of a sleamboal boiler or the Jesfgzz (/ a jel airliner, he is
mixing science with a greal many other consideralions all re/a/z'ny to the
purposes fo be served. And it is afways purposes i the pﬁu‘a/—a serzres
o/ compromises (yf various corzsl'o/era/ionx, such as Speeo{ scy@/y, economy

GIZO/ SO on. ”

D. K Trice, The cScienz‘lﬁ'c Estale, 1966

1.1 RELIABILITY DEFINED

The emerging world economy is escalating the demand to improve the perfor-
mance of products and systems while at the same time reducing their cost.
The concomitant requirement to minimize the probability of failures, whether
those failures simply increase costs and irritation or gravely threaten the public
safety, is also placing increased emphasis on reliability. The formal body of
knowledge that has been developed for analyzing such failures and minimizing
their occurrence cuts across virtually all engineering disciplines, providing
the rich variety of contexts in which reliability considerations appear. Indeed,
deeper insight into failures and their prevention is to be gained by comparing
and contrasting the reliability characteristics of systems of differing characteris-
tics: computers, electromechanical machinery, energy conversion systems,
chemical and materials processing plants, and structures, to name a few.

In the broadest sense, reliability is associated with dependability, with
successful operation, and with the absence of breakdowns or failures. It is
necessary for engineering analysis, however, to define reliability quantitatively
as a probability. Thus reliability is defined as the probability that a system will
perform its intended function for a specified period of time under a given

1



2 Introduction to Reliability Engineering

set of conditions. System is used here in a generic sense so that the definition of
reliability is also applicable to all varieties of products, subsystems, equipment,
components and parts.

A product or system is said to fail when it ceases to perform its intended
function. When there is a total cessation of function—an engine stops running,
a structure collapses, a piece of communication equipment goes dead—the
system has clearly failed. Often, however, it is necessary to define failure
quantitatively in order to take into account the more subtle forms of failure;
through deterioration or instability of function. Thus a motor that is no longer
capable of delivering a specified torque, a structure that exceeds a specified
deflection, or an amplifier that falls below a stipulated gain has failed. Intermit-
tent operation or excessive drift in electronic equipment and the machine
tool production of out-of-tolerance parts may also be defined as failures.

The way in which time is specified in the definition of reliability may also
vary considerably, depending on the nature of the system under consideration.
For example, in an intermittently operated system one must specify whether
calendar time or the number of hours of operation is to be used. If the
operation is cyclic, such as that of a switch, time is likely to be cast in terms
of the number of operations. If reliability is to be specified in terms of calendar
time, it may also be necessary to specify the frequency of starts and stops and
the ratio of operating to total time.

In addition to reliability itself, other quantities are used to characterize
the reliability of a system. The mean time to failure and failure rate are
examples, and in the case of repairable systems, so also are the availability
and mean time to repair. The definition of these and other terms will be
introduced as needed.

1.2  PERFORMANCE, COST, AND RELIABILITY

Much of engineering endeavor is concerned with designing and building
products for improved performance. We strive for lighter and therefore faster
aircraft, for thermodynamically more efficient energy conversion devices, for
faster computers and for larger, longer-lasting structures. The pursuit of such
objectives, however, often requires designs incorporating features that more
often than not may tend to be less reliable than older, lower-performance
systems. The trade-offs between performance, reliability, and cost are often
subtle, involving loading, system complexity, and the employment of new
materials and concepts.

Load is most often used in the mechanical sense of the stress on a
structure. But here we interpret it more generally so that it also may be the
thermal load caused by high temperature, the electrical load on a generator,
or even the information load on a telecommunications system. Whatever the
nature of the load on a system or its components may be, performance is
frequently improved through increased loading. Thus by decreasing the
weight of an aircraft, we increase the stress levels in its structure; by going to
higher—thermodynamically more efficient—temperatures we are forced to
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operate materials under conditions in which there are heat-induced losses of
strength and more rapid corrosion. By allowing for ever-increasing flows of
information in communications systems, we approach the frequency limits at
which switching or other digital circuits may operate.

Approaches to the physical limits of systems or their components to
improve performance increases the number of failures unless appropriate
countermeasures are taken. Thus specifications for a purer material, tighter
dimensional tolerance, and a host of other measures are required to reduce
uncertainty in the performance limits, and thereby permit one to operate
close to those limits without incurring an unacceptable probability of ex-
ceeding them. But in the process of doing so, the cost of the system is likely to
increase. Even then, adverse environmental conditions, product deterioration,
and manufacturing flaws all lead to higher failure probabilities in systems
operating near their limit loads.

System performance may often be increased at the expense of increased
complexity; the complexity usually being measured by the number of required
components or parts. Once again, reliability will be decreased unless compen-
sating measures are taken, for it may be shown that if nothing else is changed,
reliability decreases with each added component. In these situations reliability
can only be maintained if component reliability is increased or if component
redundancy is built into the system. But each of these remedies, in turn, must
be measured against the incurred costs.

Probably the greatest improvements in performance have come through
the introduction of entirely new technologies. For, in contrast to the trade-
offs faced with increased loading or complexity, more fundamental advances
may have the potential for both improved performance and greater reliability.
Certainly the history of technology is a study of such advances; the replacement
of wood by metals in machinery and structures, the replacement of piston
with jet aircraft engines, and the replacement of vacuum tubes with solid-
state electronics all led to fundamental advances in both performance and
reliability while costs were reduced. Any product in which these trade-offs are
overcome with increased performance and reliability, withouta commensurate
cost increase, constitutes a significant technological advance.

With any major advance, however, reliability may be diminished, particu-
larly in the early stages of the introduction of new technology. The engineering
community must proceed through a learning experience to reduce the uncer-
tainties in the limits in loading on the new product, to understand its suscepti-
bilities to adverse environments, to predict deterioration with age, and to
perfect the procedures for fabrication, manufacture, and construction. Thus
in the transition from wood to iron, the problem of dry rot was eliminated,
but failure modes associated with brittle fracture had to be understood. In
replacing vacuum tubes with solid-state electronics the ramifications of reliabil-
ity loss with increasing ambient temperature had to be appreciated.

Whether in the implementation of new concepts or in the application
of existing technologies, the way trade-offs are made between reliability, perfor-
mance and cost, and the criteria on which they are based is deeply imbedded
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in the essence of engineering practice. For the considerations and criteria
are as varied as the uses to which technology is put. The following examples
illustrate this point.

Consider a race car. If one looks at the history of automobile racing at
the Indianapolis 500 from year to year, one finds that the performance is
continually improving, if measured as the average speed of the qualifying
cars. At the same time, the reliability of these cars, measured as the probability
that they will finish the race, remains uniformly low at less than 50%.* This
should not be surprising, for in this situation performance is everything, and
a high probability of breakdown must be tolerated if there is to be any chance
of winning the race.

At the opposite extreme is the design of a commercial airliner, where
mechanical breakdown could well result in a catastrophic accident. In this case
reliability is the overriding design consideration; degraded speed, payload, and
fuel economy are accepted in order to maintain a very small probability of
catastrophic failure. An intermediate example might be in the design of a
military aircraft, for here the trade-off to be achieved between reliability and
performance is more equally balanced. Reducing reliability may again be
expected to increase the incidence of fatal accidents. Nevertheless, if the
performance of the aircraft is not sufficiently high, the number of losses in
combat may negate the aircraft’s mission, with a concomitant loss of life.

In contrast to these life or death implications, reliability of many products
may be viewed primarily in economic terms. The design of a piece of machin-
ery, for example, may involve trade-offs between the increased capital costs
entailed if high reliability is to be achieved, and the increased costs of repair
and of lost production that will be incurred from lower reliability. Even here
more subtle issues come into play. For consumer products, the higher initial
price that may be required for a more reliable item must be carefully weighed
against the purchaser’s annoyance with the possible failure of a less reliable
item as well as the cost of replacement or repair. For these wide classes of
products it is illuminating to place reliability within the wider context of
product quality.

1.3 QUALITY, RELIABILITY, AND SAFETY

In competitive markets there is little tolerance for poorly designed and/or
shoddily constructed products. Thus over the last decade increasing emphasis
has been placed on product quality improvement as manufacturers have
striven to satisfy customer demands. In very general terms quality may be
defined as the totality of features and characteristics of a product or service
that bear on its ability to satisfy given needs. Thus, while product quality and
reliability invariably are considered to be closely linked, the definition of
quality implies performance optimization and cost minimization as well.
Therefore it is important to delineate carefully the relationships between

* R. D. Haviland, Engineering Reliability and Long Life Design, Van Nostrand, New York, 1964, p. 114.
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quality, reliability, and safety. We approach this task by viewing the three
concepts within the framework of the design and manufacturing processes,
which are at the heart of the engineering enterprise.

In the product development cycle, careful market analysis is first needed
to determine the desired performance characteristics and quantify them as
design criteria. In some cases the criteria are upper limits, such as on fuel
consumption and emissions, and in others they are lower limits, such as on
acceleration and power. Still others must fall within a narrow range of a
specified target value, such as the brightness of a video monitor or the release
pressure of a door latch. In conceptual or system design, creativity is brought
to the fore to formulate the best system concept and configuration for achiev-
ing the desired performance characteristics at an acceptable cost. Detailed
design is then carried out to implement the concept. The result is normally
a set of working drawings and specifications from which prototypes are built.
In designing and building prototypes, many studies are carried out to optimize
the performance characteristics.

If a suitable concept has been developed and the optimization of the
detailed design is successful, the resulting prototype should have performance
characteristics that are highly desirable to the customer. In this process ‘the
costs that eventually will be incurred in production must also be minimized.
The design may then be said to be of high quality, or more precisely of lﬁgh
characteristic quality. Building a prototype that functions with highly desirable
performance characteristics, however, is not in and of itself sufficient to assure\,
that the product is of high quality; the product must also exhibit low Varlablhty |
in the performance characteristics.

The customer who purchases an engine with highly optimized perfor-
mance characteristics, for example, will expect those characteristics to remain
close to their target values as the engine is operated under a wide variety of
environmental conditions of temperature, humidity, dust, and so on. Likewise,
satisfaction will not be long lived if the performance characteristics deteriorate
prematurely with age and/or use. Finally, the customer is not going to buy
the prototype, but a mass produced engine. Thus each engine must be very
nearly identical to the optimized prototype if a reputation of high quality is
to be maintained; variability or imperfections in the production process that
lead to significant variability in the performance characteristics should not
be tolerated. Even a few “lemons’” will damage a product’s reputation for
high quality.

To summarize, two criteria must be satisfied to achieve high quality. First,
the product design must result in a set of performance characteristics that
are highly optimized to customer desires. Second, these performance charac-
teristics must be robust. That is, the characteristics must not be susceptible
to any of the three major causes of performance variability: (1) variability or
defects in the manufacturing process, (2) variability in the operating environ-
ment, and (8) deterioration resulting from wear or aging.

In what we shall refer to as product dependability, our primary concern
is in maintaining the performance characteristics in the face of manufacturing
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variability, adverse environments, and product deterioration. In this context
we may distinguish between quality, reliability, and safety. Any variability of
performance characteristics concerning the target values entails a loss of
quality. Reliability engineering is primarily concerned with variability that is
so severe as to cause product failure, and safety engineering is focused on
those failures that create hazards.

To illustrate these relationships consider an automatic transmission for
an automobile. Among the performance characteristics that have been opti-
mized for customer satisfaction are the speeds at which gears automatically
shift. The quality goal is then to produce every transmission so that the shift
takes place at as near as possible to the optimum speed, under ail environmen-
tal conditions, regardless of the age of the transmission and independently
of where in the production run it was produced. In reality, these effects will
resultin some variability in the shift speeds and other performance characteris-
tics. With increased variability, however, quality is lost. The driver will become
increasingly displeased if the variability in shift speed is large enough to cause
the engine to race before shifting, or low enough that it grinds from operating
in the higher gear at too low a speed. With even wider variability the transmis-
sion may fail altogether, by one of a number of modes, for example by sticking
in either the higher or lower gear, or by some more catastrophic mode, such
as seizure.

Justas failures studied in reliability engineering may be viewed as extreme
cases of the performance variability closely associated with quality loss, safety
analysis deals with the subset of failure modes that may be hazardous. Consider
again our engine example. If it is a ]awn mower engine, most failure modes
will simply cause the engine to stop and have no safety consequences. A safety
problem will exist only if the failure mode can cause the fuel to catch fire,
the blades to fly off or some other hazardous consequence. Conversely, if the
engine is for a single-engine aircraft, reliability and safety considerations clearly
are one and the same.

In reliability engineering the primary focus is on failures and their preven-
tion. The foregoing example, however, makes clear the intimate relationship
among quality loss, performance variability, and failure. Moreover, as will
become clearer in succeeding chapters, there is a close correlation between
the three causes of performance variability and the three failure modes catego-
ries that permeate reliability and safety engineering. Variability due to manu-
facturing processes tends to lead to failures concentrated early in product
life. In the reliability community these are referred to as early or infant
mortality failures. The variability caused by the operating environment leads
to failures designated as random, since they tend to occur at a rate which is
independent of the product’s age. Finally, product deterioration leads to
failures concentrated at longer times, and is referred to in the reliability
community as aging or wear failures.

The common pocket calculator provides a simple example of the classes
of variability and of failure. Loose manufacturing tolerances and imprecise
quality control may cause faulty electrical connections, misaligned keys or
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other imperfections that are most likely to cause failures early in the design
life of the calculator. Inadvertently stepping on the calculator, dropping it in
water, or leaving it next to a strong magnet may expose it to environmental
stress beyond which it can be expected to tolerate. The ensuing failure will
have little correlation to how long the calculator has been used, for these are
random events that might occur at any time during the design life. Finally,
with use and the passage of time, the calculator key contacts are likely to
become inoperable, the casing may become brittle and crack, or other compo-
nents may eventually cause the calculator to fail from age. To be sure, these
three failure mode classes often subtly interact. Nevertheless they provide a
useful framework within which we can view the quality, reliability, and safety
considerations taken up in succeeding chapters.

The focus of the activities of quality, reliability, and safety engineers
respectively, differ significantly as a result of the nature and amount of data
that is available. This may be understood by relating the performance charac-
teristics to the types of data that engineers working in each of these areas must
deal with frequently. Quality engineers must relate the product performance
characteristics back to the design specifications and parameters that are di-
rectly measurable; the dimensions, material compositions, electrical properties
and so on. Their task includes both setting those parameters and tolerances
50 as to produce the desired performance characteristics with a minimum of
variability, and insuring that the production processes conform to the goals.
Thus corresponding to each performance characteristic there are likely to be
many parameters that must be held to close conformance. With modern
instrumentation, data on the multitude of parameters and their variability
may be generated during the production process. The problem is to digest
the vast amounts of raw data and put it to useful purposes rather than being
overwhelmed by it. The processes of robust design and statistical quality control
deal with utilizing data to decrease performance characteristic variability.

Reliability data is more difficult to obtain, for it is acquired through
observing the failure of products or their components. Most commonly, this
requires life testing, in which a number of items are tested until a significant
number of failures occur. Unfortunately, such tests are often very expensive,
since they are destructive, and to obtain meaningful statistics substantial num-
bers of the test specimens must fail. They are also time consuming, since
unless unbiased acceleration methods are available to greatly compress the
time to failure, the test time may be comparable or longer to the normal
product life. Reliability data, of course, is also collected from field failures
once a product is put into use. But this is a lagging indicator and is not nearly
as useful as results obtained earlier in the development process. Itis imperative
that the reliability engineer be able to relate failure data back to performance
characteristic variability and to the design parameters and tolerances. For
then quality measures can be focused on those product characteristics that
most enhance reliability.

The paucity of data is even more severe for the safety engineer, for with
most products, safety hazards are caused by only a small fraction of the failures.
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Conversely, systems whose failures by their very nature cause the threat of
injury or death are designed with safety margins and maintenance and retire-
ment policies such that failures are rare. In either case, if an acceptable
measure of safety is to be achieved, the prevention of hazardous failures must
rely heavily on more qualitative methods. Hazardous design characteristics
must be eliminated before statistically significant data bases of injuries or
death are allowed to develop. Thus the study of past accidents and of potential
unanticipated uses or environments, along with failure modes and effects
analysis and various other “‘what if”’ techniques find extensive use in identi-
fying potential hazards and eliminating them. Careful attention must also be
paid to field reports for signs of hazards incurred through product use—or
misuse—for often it is only through careful detective work that hazards can
be identified and eliminated.

1.4 PREVIEW

In the following two chapters we first introduce a number of concepts related
to probability and sampling. The rudiments of the discrete and continuous
random variables are then covered, and the distribution functions used in
later discussion are presented. With this mathematical apparatus in place, we
turn, in Chapter 4, to a quantitative examination of quality and its relationships
to reliability. We deal first with the Taguchi methodology for the measure
and improvement of quality, and then discuss statistical process control within
the framework of the Six Sigma criteria. Chapter 5 is concerned with elemen-
tary methods for the statistical analysis of data. Emphasis is placed on graphical
methods, particularly probability plotting methods, which are easily used in
conjunction with widely available personal computer spread sheets. Classical
point estimate and confidence intervals are also introduced, as are the ele-
ments of control charting.

In Chapter 6 we investigate reliability and its relationship to failure rates
and other phenomena where time is the primary variable. The bathtub curve
is introduced, and the relationships of reliability to failure modes, component
failures, and replacements is discussed. In contrast, Chapter 7 concerns the
relationships between reliability, the loading on a system, and its capacity to
withstand those loads. This entails, among other things, an exposition of the
probabilistic treatment of safety factors and design margins. The treatment
of repetitive loading allows the time dependence of failure rates on loading,
capacity and deterioration to be treated explicitly.

In Chapter 8 we return to the statistical analysis of data, but this time
with emphasis on working within the limitations frequently encountered by
the reliability engineer. After reliability growth and environmental stress test-
ing are reviewed, the probability plotting methods introduced earlier are used
to treat product life testing methods. Both single and multiple censoring and
the various forms of accelerated testing are discussed.

Chapters 9 through 11 deal with the reliability of more complex systems.
In Chapter 9 redundancy in the form of active and standby parallel systems
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is introduced, limitations—such as common mode failures—are examined,
and the incorporation of redundancy into more complex systems is presented.
Chapter 10 concentrates on maintained systems, examining the effects of both
preventive and corrective maintenance and then focusing on maintainability
and availability concepts for repairable system. In Chapter 11 the treatment
of complex systems and their failures is brought together through an introduc-
tion to continuous-time Markov analysis.

Chapter 12 concludes the text with an introduction to system safety
analysis. After discussions of the nature of hazards caused by equipment
failures and by human error, quantitative methods for safety analysis are
reviewed. The construction and analysis of fault tree analysis methods are
then treated in some detail.
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CHAPTER 2

Probability and Sampling

“jjrogaéiﬁfy is the very 7111'0/9 /o /l/e 7

Fhomas jifoéée.s‘, 1588 —1679

2.1 INTRODUCTION

Fundamental to all reliability considerations is an understanding of probabil-
ity, for reliability is defined as just the probability that a system will not fail under
some specified set of circumstances. In this chapter we define probability and
discuss the logic by which probabilities can be combined and manipulated.
We then examine sampling techniques by which the results of tests or experi-
ments can be used to estimate probabilities. Although quite elementary, the
notions presented will be shown to have immediate applicability to a variety
of reliability considerations ranging from the relationship of the reliability
of a system to its components to the common acceptance criteria used in
quality control.

2.2 PROBABILITY CONCEPTS

We shall denote the probability of an event, say a failure, X, as P{X}. This
probability has the following interpretation. Suppose that we perform an
experiment in which we test a large number of items, for example, light bulbs.
The probability that a light bulb fails the test is just the relative frequency
with which failure occurs when a very large number of bulbs are tested. Thus,
if N'is the number of bulbs tested and n is the number of failures, we may
define the probability formally as

P{X} = lim % 2.1)

Equation 2.1 is an empirical definition of probability. In some situations
symmetry or other theoretical arguments also may be used to define probabil-

10
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ity. For example, one often assumes that the probability of a coin flip resulting
in “heads” is 1/2. Closer to reliability considerations, if one has two pieces
of equipment, A and B, which are chosen from a lot of equipment of the
same design and manufacture, one may assume that the probability that A
fails before Bis 1/2. If the hypothesis is doubted in either case, one must
verify that the coin is true or that the pieces of equipment are identical by
performing a large number of tests to which Eq. 2.1 may be applied.

Probability Axioms
Clearly, the probability must satisfy
0<P{X}=1. (2.2)

Now suppose that we denote the event not X by X In our light-bulb example,
where X indicates failure, X then indicates that the light bulb passes the test.
Obviously, the probability of passing the test, P{X}, must satisfy

P{X} =1 — P{X}. (2.3)

Equations 2.2 and 2.3 constitute two of the three axioms of probability theory.
Before stating the third axiom we must discuss combinations of events.

We denote by X N Y the event that both Xand Y take place. Then, clearly
XN Y= YN X The probability that both X and Y take place is denoted by
P{X N Y}. The combined event X N Y may be understood by the use of a
Venn diagram shown in Fig. 2.1a. The area of the square is equal to one. The
circular areas indicated as X and Y are, respectively, the probabilities P{X}
and P{Y}. The probability of both X and Y occurring, P{X N Y}, is indicated
by the cross-hatched area. For this reason XN Yisreferred to as the intersection
of Xand Y, or simply as X and Y.

Suppose that one event, say X, is dependent on the second event, Y. We
define the conditional probability of event X, given event Y as P{X |Y}. The
third axiom of probability theory is

P{XN Y} = P{X|Y}P{Y}. (2.4)

That is, the probability that both X and Y will occur is just the probability
that Y occurs times the conditional probability that X occurs, given the occur-

(@XNY M) XVY

FIGURE 2.1 Venn diagrams for the intersec-
tion and union of two events.
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rence of Y. Provided that the probability that Y occurs is greater than zero,
Eq. 2.4 may be written as a definition of the conditional probability:

PIXN Y}

P{X|Y} = i)

(2.5)

Note that we can reverse the ordering of events X and Y, by considering the
probability P{X N Y} in terms of the conditional probability of ¥, given the
occurrence of X. Then, instead of Eq. 2.4, we have

P{X N Y} = P{Y|X}P{X}. (2.6)

An important property that we will sometimes assume is that two or more
events, say X and Y, are mutually independent. For events to be independent,
the probability of one occurring cannot depend on the fact that the other is
either occurring or not occurring. Thus

P{X|Y} = P{X} (2.7)
if Xand Y are independent, and Eq. 2.4 becomes
P{XN Y} = P{X}P{Y}. (2.8)

This is the definition of independence, that the probability of two events both
occurring is just the product of the probabilities of each of the events oc-
curring. Situations also arise in which events are mutually exclusive. That is,
if X occurs, then Y cannot, and conversely. Thus P{X|Y} = 0 and P{Y|X} =
0; or more simply, for mutually exclusive events

PXNY}=0. (2.9)

With the three probability axioms and the definitions of independence
in hand, we may now consider the situation where either X or Y or both may
occur. This is referred to as the union of X and Y or simply X U Y. The
probability P{X U Y} is most easily conceptualized from the Venn diagram
shown in Fig. 2.1b, where the union of Xand Yisjust the area of the overlapping
circles indicated by cross hatching. From the cross-hatched area it is clear that

P{XU Y} = P{X} + P{Y} — P{XN Y} (2.10)

If we may assume that the events Xand Yare independent of one another,
we may insert Eq. 2.8 to obtain

P{XU Y} = P{X} + P{Y} — P{X}P{Y}. (2.11)
Conversely, for mutually exclusive events, Egs. 2.9 and 2.10 yield

P{XU Y} = P{X} + P{Y}. (2.12)

EXAMPLE 2.1

Two circuit breakers of the same design each have a failure-to-open-on-demand proba-
bility of 0.02. The breakers are placed in series so that both must fail to open in order
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for the circuit breaker system to fail. What is the probability of system failure (a) if
the failures are independent, and () if the probability of a second failure is 0.1, given
the failure of the first? (¢) In part a what is the probability of one or more breaker
failures on demand? (d) In part b what is the probability of one or more failures
on demand?

Solution X = failure of first circuit breaker
Y = failure of second circuit breaker
P{X} = P{Y} = 0.02
(a) P{XN Y} = P{X}P{Y} = 0.0004.
(b) P{Y|X} = 0.1
P{X N Y} = PY|XIP{X} = 0.1 X 0.02 = 0.002.
(¢) P{IXU Y} = P{X} + P{Y} — P{XIP{Y}
= 0.02 + 0.02 — (0.02)2 = 0.0396.
(d) P{XU Y} = P{X} + P{Y} — P{Y|X}P{X}
= 0.02 + 0.02 — 0.1 X 0.02 = 0.038.

Combinations of Events

The foregoing equations state the axioms of probability and provide us with
the means of combining two events. The procedures for combining events
may be extended to three or more events, and the relationships may again
be presented graphically as Venn diagrams. For example, in Fig. 2.2q and b
are shown, respectively, the intersection of X, Y,and Z, XN Y N Z and the
union of X, ¥, and Z, X U Y U Z The probabilities P{X N Y N Z} and
P{X U Y U Z} may again be interpreted as the cross-hatched areas.

The following observations are often useful in dealing with combinations
of two or more events. Whenever we have a probability of a union of events,
it may be reduced to an expression involving only the probabilities of the
individual events and their intersection. Equation 2.10 is an example of this.
Similarly, probabilities of more complicated combinations involving unions
and intersections may be reduced to expressions involving only probabilities
of intersections. The intersections of events, however, may be eliminated only
by expressing them in terms of conditional probabilities, as in Eq. 2.6, or if

(@ XNYNZ b)XVYvuZ

FIGURE 2.2 Venn diagrams for the intersec-
tion and union of three events.
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TABLE 2.1 Rules of Boolean Algebra“

Mathematical
symbolism Designation
(lay XNY=YNX Commutative law
(Ib) XUY=YUX
(2a) XN(YN7z) =(XNnyyn-z Associative law

2b) XU (YU Z) =(XUY)UZ

32) XN (YU Z) =(XNY)U (XN 2 Distributive law
(8b) XU (YN 2) = (XUY)N (XU 2

(4a) XN X=X Idempotent law
(4b) XU X=X

(ba) XN (XU Y)=X
(5b) XU (XNY) = X
(6a) XN X = ¢" Complementation
(6b) XU X=171

(6c) (X) = X
(7a) (XN'Y)
(7b) (XU 1)
8a) dN X=
(8b) p U X =
B)IN X=X

@&d) I1UX=1

(92) XU (XNY)=XUY These relationships are unnamed.
(9b) XN (XU ¥)y=XNV¥V=(XUY)

I

Law of absorption

de Morgan’s theorem

I
b b
o C
~u =

Operations with 1

S o

“Adapted from H. R. Roberts, W. E. Vesley, D. F. Haastand, and F. F. Goldberg, Faull tree
Handbook, NUREG-0492, U.S. Nuclear Regulatory Commission, 1981.

"¢ = null set; / = universal set.

the independence may be assumed, they may be expressed in terms of the
probabilities of individual events as in Eq. 2.8.

The treatment of combinations of events is streamlined by using the rules
of Boolean algebra listed in Table 2.1. If two combinations of events are equal
according to these rules, their probabilities are equal. Thus since according
to Rule la, X N ¥V = Y N X, we also have P{X N Y} = P{Y N X}. The
communicative and associative rules are obvious. The remaining rules may
be verified from a Venn diagram. For example, in Fig. 2.3a and b, respectively,
we show the distributive laws for X N (Y U Z) and X U (Y N Z). Note that

(@) XN (YU Z) B)Xu(¥YNz)

FIGURE 2.3 Venn diagrams for combinations
of three events.
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in Table 2.1, ¢ is used to represent the null event for which P{¢} = 0, and I
is used to represent the universal event for which P{I} = 1.

Probabilities of combinations involving more than two events may be
reduced sums of the probabilities of intersections of events. If the events are
also independent, the intersection probabilities may further be reduced to
products of probabilities. These properties are best illustrated with the follow-
ing two examples.

EXAMPLE 2.2

Express P{X N (YU Z)} in terms of the probabilities of intersections of X, Y, and Z.
Then assume that X, Y, and Z are independent events and express the result in terms
of P{X}, P{Y}, and P{Z}.

Solution Rule 3a: P{IX N (YU Z)} = P{(XN Y) U (XN Z)}
This is the union of two composites X N Yand Y N Z. Therefore from Eq. 2.10:
PXN (YU ZD)}=PXNY}+PXNZ - PXNTY)N (XN )}
Associative rules 2a and 2b allow us to eliminate the parenthesis from the last term
by first writing (XN Y) N (XN Z) = (YN X) N (XN Z) and then using law 4a to obtain
¥YNX)NEXNZ)=YNXNX)NZ=YNXNZ=XNYNZ
Utilizing these intermediate results, we have
PIXN (YU Z)}=PXNY}+ PXNZ - PXNYN Z.
If the events are independent, we may employ Eq. 2.8 to write
P{XN (YU 2)} = P{X}P{Y} + P{X}P{Z} — P{X}P{Y}P{Z}.

EXAMPLE 2.3
Repeat Example 2.2 for P{X U YU Z}.

Solution From the associative law, P{XU YU Z} = P{XU (YU Z)}
Since this is the union of event X and (Y U Z), we use Eq. 2.10 to obtain
PIXU YU Z}=P{X}+ P{YU Z} - P(XN (YU 2)}
and again to expand the second term on the right as
P{Yu z} = P{Y} + P{Z} — P{Y N Z}.

Finally, we may apply the result from Example 2.2 to the last term, yielding
P{XU YU Z} = P{X} + P{Y} + P{Z} — P{XN Y}

—P{XNZ}— P{YNZ} + PIXN YN Z}.
Applying the product rule for the intersections of independent events, we have
P{XU YU Z} = P{X} + P{Y} + P{Z} — P{X}P{Y}

- P{X}P{Z} — P{Y}P{Z} + P{X}P{Y}P{Z}

In the following chapters we will have occasion to deal with intersections
and unions of large numbers of » independent events: X,, X5, X5 ... X,. For
intersections, the treatment is straightforward through the repeated applica-
tion of the product rule:

PIX,N XN XN N X} = PXIPXIPIX) - - - P{X.} (213)
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To obtain the probability for the union of these events, we first note that the
union may be related to the intersection of the nonevents X;:

PIXXUXUXU---UXJ+PXXNXNXN--- X =1 (214

which may be visualized by drawing a Venn diagram for three or four events.
Now if we apply Eq. 2.13 to the independent X;, we obtain, after rearrang-
ing terms

PIX,UX,UX;U---UX}=1- PXJPX}P{X} - - P{X). (2.15)
Finally, from Eq. 2.3 we must have for each X;,
P{X} =1 - P{X} (2.16)
Thus we have,

P{XI UX;uXx;u--- an}z 1 -11 _P{XI}][I "P{X‘z}]
[1— P{Xs}] - -+ [1 = P{X,}], (2.17)

or more compactly

n

PX,UX,UX,U---UX}=1-]][1- P{X}]. (2.18)

i=1

This expression may also be shown to hold for the X,.

EXAMPLE 2.4

A critical seam in an aircraft wing must be reworked if any one of the 28 identical
rivets is found to be defective. Quality control inspections find that 18% of the seams
must be reworked. (@) Assuming that the defects are independent, what is the probabil-
ity that a rivet will be defective? (b) To what value must this probability be reduced if
the rework rate is to be reduced below 5%?

Solution (a) Let X, represent the failure of the ith rivet. Then, since
P{Xi} = P{Xo} = - - - P{Xy},
018=PX\UX,U---UXy}=1-[1—-P{X}*®
P{Xi}=1- (0.82)"/%* = 0.0071.

(b) Since 0.05 =1 — [1 — P{X}]*,
P{X} =1 - (0.95)V* = 0.0018.

One other expression is very useful in the solution of certain reliability prob-
lems. It is sometimes referred to as the law of “‘total probability.”’ Suppose
we divide a Venn diagram into regions of X and X as shown in Fig. 2.4 We
can always decompose the probability of ¥, denoted by the circle, into two
mutually exclusive contributions:

PY} = P{yn X} + P{Y N X (2.19)



Probability and Sampling 17

(@) (6
FIGURE 2.4 Venn diagram for total probabil-
ity law.

Thus using Eq. 2.4, we have
P{Y} = P{Y|X}P{X} + P{Y|X}P{X}. (2.20)

EXAMPLE 2.5

A motor operated relief valve opens and closes intermittently on demand to control
the coolant level in an industrial process. An auxiliary battery pack is used to provide
power for the approximately 1/2 percent of the time when there are plant power
outages. The demand failure probability of the valve is found to be 3 X 107% when
operated from the plant power and 9 X 107° when operated from the battery pack.
Calculate the demand failure probability assuming that the number of demands is
independent of the power source. Is the increase due to the battery pack operation sig-
nificant?

Solution Let X signify a power outage. Then P{X} = 0.005 and P{X} = 0.995.
Let Y signify valve failure. Then P{Y|X} = 3 X 10™* and P{¥|X} = 9 X 107°. From Eq.
2.20, the valve failure per demand is,

P{Y} = 9 X 107 X 0.005 + 3 X 107 X 0.095 = 3.03 X 107",

The net increase in the failure probability over operation entirely with plant power is
only three percent.

2.3 DISCRETE RANDOM VARIABLES

Frequently in reliability considerations, we need to know the probability that
a specific number of events will occur, or we need to determine the average
number of events that are likely to take place. For example, suppose that we
have a computer with N memory chips and we need to know the probability
that none of them, that one of them, that two of them, and so on, will fail
during the first year of service. Or suppose that there is a probability p that
a Christmas tree light bulb will fail during the first 100 hours of service. Then,
on a string of 25 lights, what is the probability that there will be n (0 < n <
25) failures during this 100-hr period? To answer such reliability questions,
we need to introduce the properties of discrete random variables. We do this
first in general terms, before treating two of the most important discrete
probability distributions.
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Properties of Discrete Variables

A discrete random variable is a quantity that can be equal to any one of a
number of discrete values x;, %1, Xo, ..., X,, ..., Xy. We refer to such a
variable with the bold-faced character x, and denote by x, the values to which
it may be equal. In many cases these values are integers so that x, = n. By
random variables we mean that there is associated with each x, a probability

Jf(x,) that x = x,. We denote this probability as
flx,) = Pix = x,}. (2.21)

We shall, for example, often be concerned with counting numbers of failures
(or of successes). Thus we may let x signify the number » of failures in N tests.
Then £(0) is the probability that there will be no failure, f(1) the probability of
one failure, and so on. The probabilities of all the possible outcomes must
add to one

> fx) =1, (2.22)

where the sum is taken over all possible values of x,.

The function f(x,) is referred to as the probability mass function (PMF) of
the discrete random variable x. A second important function of the random
variable is the cumulative distribution function (CDF) defined by

F(x,) = P{x < x,}, (2.23)

the probability that the value of x will be less than or equal to the value x,.
Clearly, it is just the sum of probabilities:

1@»:§ﬂw» (2.24)

Closely related is the complementary cumulative distribution function (CCDF),
defined by the probability that x > x,:

F(x,) = P{x > x,}. (2.25)
It is related to the PMF by
N N
F(x,)=1-F(x,) = 2 flxu), (2.26)
n'=n+1

where xy is the largest value for which f(x,) > 0.
It is often convenient to display discrete random variables as bar graphs
of the PMF. Thus, if we have, for example,

0)=0, f(1) =14, [f2) =% [fB) =& [ =41 [f6)=r1e

the PMF may be plotted as in Fig. 2.54. Similarly, from Eq. 2.24 the bar graph
for the CDF appears as in Fig. 2.55.

A
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FIGURE 2.5 Discrete probability distribution: (a) probability
mass function (PMF), (§) corresponding cumulative distribution
function (CDF).

Several important properties of the random variable x are defined in
terms of the probability mass function f(x,). The mean value, u, of x is

w= 2 X, f(%,), (2.27)
and the variance of X is
o= Z (%, = ) *f(x.), (2.28)
which may be reduced to
ot =2 xlf(x) — ph (2.29)

n

The mean is a measure of the expected value or central tendency of x when
a very large sampling is made of the random variable, whereas the variance
is a measure of the scatter or dispersion of the individual values of x, about
w. It is also sometimes useful to talk about the most probable value of x: the
value of x, for which the largest value of f(x,) occurs, assuming that there is
only one largest value. Finally, the median value is defined as that value x =
x, for which the probability of obtaining a smaller value is 1/2:

> flxa) =4, (2.30)
and consequently,
> flxa) =4 (2.31)

EXAMPLE 2.6

A discrete probability distribution is given by
fx,) =An  n=0,1,2345

(@) Determine A.
{6) What is the probability that x < 3?
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(¢) What is u?
(d) What is o?

Solution (a) From Eq. 2.22

5
1= An=A0+1+2+3+4+5) =154

n=0
1
A——15.
(b) From Eq. 2.23 and 2.24,
Sn_ 1 2
<3}= =Y 2= (0+1+2+3)==.
P{ix<3}=F(3) 215 15(0 1+2+3) 5

(¢) From Eq. 2.27
p=Sat=Loritaro+16+25) =L
<"15 15 3

(d) Using Eq. 2.29, we first calculate

5 5

> X2 f(x,) =Z—1—n3=i(0+1+8+27+e4+ 125) = 15,
n=0 n=015 15

to obtain for the variance

, 11)?
o?=15—-u?=15— 3 = 1.555

o= 1.247.

The idea of the expected value is an important one. In general, if there
is a function g(x,) of the random variable x, the expected value E{ g} is defined
for a discrete random variable as

Elgh =2 g(x) f(x)- (2.32)
Thus the mean and variance given by Eqgs. 2.27 and 2.28 may be written as
= E{x} (2.33)
o = E{(x ~ w)* (2.34)
or as in Eq. 2.29,
o’ = E{x*} — u* (2.35)

The quantity o = Vo is referred to as the standard error or standard deviation
of the distribution. The notion of expected value is also applicable to the
continuous random variables discussed in the following chapter.
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The Binomial Distribution

The binomial distribution is the most widely used discrete distribution in
reliability considerations. To derive it, suppose that p is the probability of
failure for some piece of equipment in a specified test and

g=1-p (2.36)

is the corresponding success (i.e., nonfailure) probability. If such tests are
truly independent of one another, they are referred to as Bernoulli trials.
We wish to derive the probability

f(n) = P{n = n|N, p} (2.37)

that in N independent tests there are # failures. To arrive at this probability,
we first consider the example of the test of two units of identical design and
construction. The tests must be independent in the sense that success or
failure in one test does not depend on the result of the other. There are four
possible outcomes, each with an associated probability: gq¢ is the probability
that neither unit fails, pg the probability that only the first unit fails, gp the
probability that only the second unit fails, and pp the probability that both
units fail. Since these are the only possible outcomes of the test, the sum of
the probabilities must equal one. Indeed,

P2t ¢ = (pt9f =1, (2.38)
and by the definition of Eq. 2.37
JO) = ¢, f) =2qp, f(2) = P (2.39)

In a similar manner the probability of n independent failures may also
be covered for situations in which a larger number of units undergo testing.
For example, with N = 3 the probability that all three units fail independently
is obtained by multiplying the failure probabilities of the individual units
together. Since the units are identical, the probability that none of the three
fails is ¢gq. There are now three ways in which the test can result in one unit
failing: the first fails, pgq; the second fails, gpg, or the third fails, ggp. There
are also three combinations that lead to two units failing: units 1 and 2 fail,
ppg; units 1 and 3 fail, pgp; or units 2 and 3 fail, gpp. Finally, the probability
of all three units failing is ppp.

In the three-unit test the probabilities for the eight possible outcomes
must again add to one. This is indeed the case, for by combining the eight
terms into four we have

g 3¢+ 3+ p = (g )= L (2.40)

The probabilities of the test resulting in 0, 1, 2, or 3 failures are just the
successive terms on the left:

f0) =g, f(1) =3¢y, f(2) =3qp%, [(3) = p’. (2.41)



22 Introduction to Reliability Engineering

The foregoing process may be systematized for tests of any number of
units. For N units Eq. 2.41 generalizes to

CONqN+ C{quNfl + CQJPQqu‘Z 4.+ C%_lpx\’—lq
+ CpN= (gt p)V=1, (2.42)

since ¢ = 1 — p. For this expression to hold, it may be shown that the C}
must be the binomial coefficients. These are given by

N!

N — :
Cn (N=n)!nl’

(2.43)

A convenient way to tabulate these coefficients is in the form of Pascal’s
triangle; this is shown in Table 2.2. Just as in the case of N = 2 or 3, the
N + 1 terms on the left-hand side of Eq. 2.42 are the probabilities that there
will be 0, 1, 2, ..., N failures. Thus the PMF for the binomial distribution is

fln) = Cip"(1 — p)N7, n=0,1,...,N. (2.44)
That the condition Eq. 2.22 is satisfied follows from Eq. 2.42. The CDF
corresponding to f(n) is

F(n) = 2 Chp” (1 — p)¥, (2.45)
n'=0

and of course if we sum over all possible values of »’ as indicated in Eq. 2.22
we must have

N
> Cipr(1 — py¥r=1. (2.46)
n=0

The mean of the binomial distribution is

= Np, (2.47)
and the variance is
o= Np(1 — p). (2.48)
TABLE 2.2 Pascal’s Triangle

1 N=90

1 1 N=1

1 2 1 N=2

1 3 3 1 N=3

1 4 6 4 1 N=4

1 5 10 10 5 1 N=5

1 6 15 20 15 6 1 N=6

1 7 21 35 35 21 7 1 N=7

1 8 28 56 70 56 28 8 1 N=8§8
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EXAMPLE 2.7

Ten compressors with a failure probability p = 0.1 are tested. (a) What is the expected
number of failures E{n}? (b)) What is 0® (¢) What is the probability that none will fail?
(d) What is the probability that two or more will fail?

Solution (a) F{n} = u = Np=10X 0.1 = L
(b) o = Np(1 = $) = 10 X 0.1(1 — 0.1) = 0.9,
(&) Pln = 0}10, p} = f(0) = CPp(1 — p)* =1 X 1 X (1 — 0.1)" = 0.349.

(d) Pln=2010, p} =1 — f0) — f(1) =1 = Clp°(1 — p)"" = CI'p'(1 — p)°
=1—(1-0D"—=10x0.1 X (1 —0.1)"= 0264

The proof of Eqs. 2.47 and 2.48 requires some manipulation of the
binomial terms. From Eqs. 2.27 and 2.44 we see that

= nCpr(1 — p)¥, (2.49)
n=1

where the n = 0 term vanishes and therefore is eliminated. Making the
substitutions M = N — 1 and m = n — 1 we may rewrite the series as

M
w=p> (m+1)CHIp (L = p)i. (2.50)
m=0
Since it is easily shown that
S
(m+1)ClH = (M+1)CJ, (2.51)

we may write

M

w=(M+1)p> Clpm(1— p)¥m (2.52)

m=0

However, Eq. 2.46 indicates that the sum on the right is equal to one. There-
fore, noting that M + 1 = N, we obtain the value of the mean given by Eq. 2.47.
To obtain the variance we begin by combining Eqgs. 2.29, 2.44 and 2.47

N
ot = nCpr(1 — PV — N3 (2.53)
n=1
Employing the same substitutions for Nand », and utilizing Eq. 2.51, we obtain
M M
0.‘2 = (M+ l)p{E mcﬁfpm(l _ p) M—m + E C{\n/lpm(l — p) Mm} _ NQpQ. (254)
m=0 m=0

But from Eqgs. 2.46 and 2.49 we see that the first of the two sums is just equal
to Mp and the second is equal to one. Hence

o= (M+ )p(Mp + 1) — N*p~. (2.55)
Finally, since M = N — 1, this expression reduces to Eq. 2.48.
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The Poisson Distribution

Situations in which the probability of failure p becomes very small, but the
number of units tested Nis large, are frequently encountered. It then becomes
cumbersome to evaluate the large factorials appearing in the binomial distribu-
tion. For this, as well as for a variety of situations discussed in later chapters,
the Poisson distribution is employed.

The Poisson distribution may be shown to result from taking the limit
of the binomial distribution as p — 0 and N — o, with the product Np
remaining constant. To obtain the distribution we first multiply the binomial
PDF given by Eq. 2.44 by N"/N" and rearrange the factors to yield

_[_~ C.Y) PP
f(n)—{(N_n)!N"}(l PR (= ) (2.56)

Now assume that p << 1 so that we may write In (1 — p) =~ —p and hence
the last factor becomes

(1 = p)¥=-exp[NIn (1 — p)] = ™. (2.57)

Likewise as p becomes vanishingly small (1 — p)™ — 1 for finite n, and as
N — ©, we have

! -1 -
W_%)W-ﬁ(l—"]v ><1—"N2> (1—X])1—>1 (2.58)

Hence as p — 0 and N — o, with Np = u, Eq. 2.56 reduces to

n

fin) = % e, (2.59)

which is the probability mass function for the Poisson distribution.

Unlike the binomial distribution, the Poisson distribution can be ex-
pressed in terms of a single parameter, . Thus f(n) may be written as the prob-
ability

Pln = nju} = —"—, ., n=01,23,.... (2.60)

The normalization condition, Eq. 2.22, must, of course, be satisfied. This may
be verified by first recalling the power series expansion for the exponential
function

S M
ot Z{)nl (2.61)

Thus we have

Sy =3 ’—;— =erer =1 (2.62)
n=0 n=0
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In the foregoing equations we have chosen Np = u because it may be shown
to be the mean of the Poisson distribution. From Egs. 2.59 and 2.61 we have

o

> onf(n) =) n%”ﬂ = . (2.63)
n=0 .

n=0

Likewise, since it may be shown that

o

> nif(n) =, nQ%:e‘“ =u(p+ 1), (2.64)
n=0 .

n=0
we may use Eq. 2.35 to show that the variance is equal to the mean,
o? = pu. (2.65)

EXAMPLE 2.8

Do the preceding 10-compressor example approximating the binomial distribution
by a Poisson distribution. Compare the results.

Solution (a) m = Np = 1.
(b) o® = p =1 (0.9 for binomial).
(¢) Pln = 0lu =1} = ¢* = 0.3678 (0.3874 for binomial).
(d) Pln=2u=1}=1— f(0) — f(1) =1 — 2¢* = 0.2642 (0.2639 for binomial).

2.4 ATTRIBUTE SAMPLING

The discussions in the preceding section illustrate how the binomial and
Poisson distributions can be determined, given the parameter p, which we
often use to denote a failure probability. In reliability engineering and the
associated discipline of quality assurance, however, one rarely has the luxury
of knowing the value of p, a priori. More often, the problem is to estimate a
failure probability, mean number of failures, or other related quantity from
test data. Moreover, the amount of test data is often quite restricted, for
normally one cannot test large numbers of products to failure. For the number
of such destructive tests that may be performed is severely restricted both by
cost and the completion time, which may be equal to the product design life
or longer.

Probability estimation is a fundamental task of statistical inference, which
may be stated as follows. Given a very large—perhaps infinite—population
ofitems of identical design and manufacture, how does one estimate the failure
probability by testing a sample of size N drawn from this large population? In
what follows we examine the most elementary case, that of attribute testing
in which the data consists simply of a pass or fail for each item tested. We
approach this by first introducing the point estimator and sampling distribu-
tion, and then discussing interval estimates and confidence levels. More exten-
sive treatments are found in standard statistics texts; we shall return to the
treatment of statistical estimates for random variables in Chapter 5.
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Sampling Distribution

Suppose we want to estimate the failure probability p of a system and also
gain some idea of the precision of the estimate. Qur experiment consists of
testing N units for failure, with the assumption that the N units are drawn
randomly from a much larger population. If there are n failures, the failure
probability, defined by Eq. 2.1, may be estimated by

p=n/N (2.66)

We use the caret to indicate that ﬁ is an estimate, rather than the true value
p. It is referred to as a point estimate of p, since there is no indication of how
close it may be to the true value.

The difficulty, of course, is that if the test is repeated, a different value
of n, and therefore of p, is likely to result. The number of failures is a random
variable that obeys the binomial distribution discussed in the preceding sec-
tion. Thus $ is also a random variable. We may define a probability mass
function (PMF) as

P{f) = ﬁn

where p, = n/Nis just the value taken on by p when there are n failures in
N trials. The PMF is just the binomial distribution given by Eq. 2.44

f(p.) = Cip"(1 — p)M . (2.68)

This probability mass function is called the sampling distribution. It indicates
that the probability for obtaining a particular value p, from our test is just
f(p,), given that the true value is p.

For a specified value of p, we may gain some idea of the precision of the
estimate for a given sample size N by plotting the f($,). Such plots are shown
in Fig. 2.6 for p = 0.25 with several different values of N. We see—not
surprisingly—that with larger sample sizes the distribution bunches increas-
ingly about p, and the probability of obtaining a value of p with a large error
becomes smaller. With p = 0.25 the probability that pwill be in error by more
than 0.10 is about 50% when N = 10, about 20% when N = 20, and only
about 10% when N = 40.

We may show that Eq. 2.66 is an unbiased estimator: If many samples of
size N are obtained, the mean value of the estimator (i.e., the mean taken
over all the samples) converges to the true value of p. Equivalently, we must
show that the expected value of f is equal to p. Thus for p to be unbiased we
must have E{p} = p. To demonstrate this we first note by comparing Eqs. 2.44
and 2.68 that f(§,) = f(n). Thus with p = n/N we have

wr= B = 3 S5 = 3 3 nfn. (269

n

N g} = f(§), n=01,2...N, (2.67)

The sum on the right, however is just Np, the mean value of n. Thus we have

w; = p. (2.70)
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FIGURE 2.6 Probability mass function for binomial sampling where p = 0.25.

The increased precision of the estimator with increased N is demonstrated
by observing that the variance of the sampling distribution decreases with
increased N. From Eq. 2.29 we have

ot =2 Pifih) — . 2.71)
Inserting & = Np, p = n/N, and f(p,) = f(n), we have
o} = ]\1, {E nif(n) = pﬁ}, (2.72)

but since the bracketed term is just Np(1 — p), the variance of the binomial
distribution, we have

9 l
oi=~p1=p), (278)
or equivalently
1
a;=—=Vp(l — p). (2.74
ARV :
Unfortunately, we do not know the value of p beforehand. If we did, we

would not be interested in using the estimator to obtain an approximate
value. Therefore, we would like to estimate the precision of ﬁ without knowing
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the exact value of p. For this we must introduce the somewhat more subtle
notion of the confidence interval.

Confidence Intervals

The confidence interval is the primary means by which the precision of a
point estimator can be determined. It provides lower and upper confidence
limits to indicate how tightly the sampling distribution is compressed around
the true value of the estimated quantity. We shall treat confidence interval
more extensively in Chapter 5. Here we confine our attention to determining
the values of

p=p—A (2.75)
and
pT=p+B (2.76)

where these lower and upper confidence limits are associated with the point
estimator p.

To determine A and B, and therefore the limits, we first choose a risk
level designated by a: o = 0.05, which, for example, would be a 5% risk.
Suppose we are willing to accept a risk of @/2 in which the estimated lower
confidence limit p~ will turn out to be larger than p, the true value of the
failure probability. This may be stated as the probability

P{p~ > pt = a/2, (2.77)

which means we are 1 — a/2 confident that the calculated lower confidence
limit will be less or equal to the true value:

Plp-<=pt=1-a/2 (2.78)

To determine the lower confidence limit we first insert Eq. 2.75 and rearrange
the inequality to obtain

Plp<p+A=1-a/2 (2.79)

But this is just the CDF for the sampling distribution evaluated at p + A. Thus
from the definition of the Cumulative Distribution Function given in Eq. 2.24
we may write

> fp)=1—a/2 (2.80)

ﬁns/ﬁA

Recalling that p, = n/ N and copying the Probability Mass Function explicitly
from Eq. 2.68, we have

N(p+A)
E CYpr(1— p¥r=1-a/2. (2.81)
n=0

Thus to find the lower confidence limit we must determine the value of A
for which this condition is most closely satisfied for specified «, N and p.
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Similarly, to obtain the upper limit at the same confidence we require
Plp<pt=1-a/2 (2.82)
which upon insertion of Eq. 2.76 yields
Plp=p—B=1—-a/2 (2.83)

and leads to the analogous condition on B,

N
>oapa-pir=1-a/2 (2.84)
n=N(p—B)
To express the confidence interval more succinctly, the combined results
of the foregoing equations are frequently expressed as the probability

Plp spspt=1-a (2.85)

Solutions for Egs. 2.81 and 2.84 have been presented in convenient graphical
form for obtaining p* and p~ from the point estimator p = n/N. These are
shown for a 95% confidence interval, corresponding to a/2 = 0.025, in Fig.
2.7 for values of N ranging from 10 to 1000. The corresponding graphs for
other confidence intervals are given in Appendix B.

The results in Fig. 2.7 indicate the limitations of classical sampling meth-
ods if highly accurate estimates are required, particularly when small failure
probabilities are under considerations. Suppose, for example, that 10 items
are tested with only one failure; our 95% confidence interval is then 0.001 <
$ < 0.47. Much larger samples are needed to obtain reasonable error bounds
on the parameter p. For sufficiently large values of N, typically Np > 5 and
N(1 — p) > b, the confidence interval may be expressed as

N B

Pm= DT za N pd—p) (2.86)

with zgy = 1.28, 2005 = 1.54, 20005 = 1.96 and zgs = 2.58. The origin of this

expression is discussed in Chapter 5. Note that in all binomial sampling the

true value of p is unknown. Thus 13, the unbiased point estimator, must be
utilized to evaluate this expression.

EXAMPLE 2.9

Fourteen of a batch of 500 computer chips fail the final screening test. Estimate the
failure probability and the 80% confidence interval.

Solution = 14/500 = 0.028. Since pN = 14 (>5), Eq. 2.86 can be used.

1
With z,; = 1.28, p* = 0.028 £ 1.28 ——="V0.028(1 — 0.028
0.1 ‘b m ( )

b= 0.028 = 0.009 or p~ = 0.019, p* = 0.037

We must take care in interpreting the probability statements related to
confidence limits and intervals. Equation 2.85 is best understood as follows.
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FIGURE 2.7 The 95% confidence intervals for the binomial distribution. [From E. S. Pearson
and C. J. Clopper, “The Use of Confidence or Fiducial Limits Illustrated in the Case of the
Binomial,” Biometrica, 26, 204 (1934). With permission of Biometrica.]

Suppose that a large number of samples each of size N are taken and that
the values of p~ and p* are tabulated. Note that p~ and p*, along with p, are
random variables and thus are expected to take on different values for each
sample. The 90% confidence interval simply signifies that for 90% of the
samples, the true value of p will lie between the calculated confidence limits.

2.5 ACCEPTANCE TESTING

Binomial sampling of the type we have discussed has long been associated
with acceptance testing. Such sampling is carried out to provide an adequate
degree of assurance to the buyer that no more than some specified fraction
of a batch of products is defective. Central to the idea of acceptance sampling
is that there be a unique pass-fail criterion.

The question naturally arises why all the units are not inspected if it is
important that p be small. The most obvious answer is expense. In many cases
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it may simply be too expensive to inspect every item of large-size batches
of mass-produced items. Moreover, for a given budget, much better quality
assurance is often achieved if the funds are expended on carrying out thorough
inspections, tests, or both on a randomly selected sample instead of carrying
out more cursory tests on the entire batch.

When the tests involve reliability-related characteristics, the necessity for
performing them on a sample becomes more apparent, for the tests may be
destructive or at least damaging to the sample units. Consider two examples.
If safety margins on strength or capacity are to be verified, the tests may
involve stress levels far above those anticipated in normal use: large torques
may be applied to sample bolts to ensure that failure is by excessive deforma-
tion and not fracture; electric insulation may be subjected to a specified but
abnormally high voltage to verify the safety factor on the breakdown voltage.
If reliability is to be tested directly, each unit of the sample must be operated
for a specified time to determine the fraction of failures. This time may be
shortened by operating the sample units at higher stress levels, but in either
case some sample units will be destroyed, and those that survive the test may
exhibit sufficient damage or wear to make them unsuitable for further usc.

Binomial Sampling

Typically, an acceptance testing procedure is set up to provide protection for
both the producer and the buyer in the following way. Suppose that the
buyer’s acceptance criteria requires that no more than a fraction p, of the
total batch fail the test. That is, for the large (theoretically infinite) batch the
failure probability must be less than p,. Since only a finite sample size Nis to
be tested, there will be some risk that the population will be accepted even
though p > p;. Let this risk be denoted by 3, the probability of accepting a
batch even though p > p;. This is referred to as the buyer’s risk; typically, we
might take 8 =~ 10%.

The producers of the product may be convinced that their product ex-
ceeds the buyer’s criteria with a failure fraction of only py(py < p1). In taking
only a finite sample, however, they run the risk that a poor sample will result
in the batch being rejected. This is referred to as the producer’s risk and it
is denoted by «, the probability that a sample will be rejected even though
p < po. Typically, an acceptable risk might be a =~ 5%.

Our object is to construct a binomial sampling scheme in which g, and
#; result in predetermined values of @ and 8. To do this, we assume that the
sample size is much less than the batch size. Let n be the random variable
denoting the number of defective items, and n, be the maximum number of
defective items allowable in the sample. The buyer’s risk 8 is then the probabil-
ity that there will be no more than n, defective items, given a failure probability
of pi:

B = P{n < ny|N, pi}. (2.87)
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Using the binomial distribution, we obtain

7!(1

B =2 Cpt(1 — p)¥. (2.88)

n=0

Similarly, the producer’s risk a is the probability that there will be more than
n, defective items in the batch, even though p = py:

a = P{n > ny|N, po} (2.89)

or

N
a= > C¥p(l— p)N (2.90)
n=n,+1

From Eqs. 2.88 and 2.90 the values of n,and N for the sampling scheme
can be determined. With n, and N thus determined, the characteristics of the
resulting sampling scheme can be presented graphically in the form of an
operating curve. The operating curve is just the probability of acceptance

versus the value p, the true value of the failure probability:

Pl n|Nph= 3 Cipr(1 = p)* (2.91)

In Fig. 2.8 is shown a typical operating curve, with 3 being the probability of
acceptance when p = p;, and « the probability of rejection when p = p,.

The Poisson Limit

As in the preceding section, the binomial distribution may be replaced by the
Poisson limit when the sample size is very large N >> 1, and the failure
probabilities are small p,, p; << 1. This leads to considerable simplifications
in carrying out numerical computations. Defining m, = Np, and m; = Np,,
we may replace Eqgs. 2.88 and 2.90 by the corresponding Poisson distributions:

B=> —¢m (2.92)

oo }a=5%

|
0 001 pPo 0.03 004 P 0.06 0.07

FIGURE 2.8 Operating curve for a binomial sampling scheme.
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TABLE 2.3* Binomial Sampling Chart for o = 0.05; 8 = 0.10

ng my m P/ po Ny My m p1/ po
0 0.0513 2.303 44.9 13 8.463 18.96 2.24
1 0.3531 3.890 11.0 14 9.246 20.15 2.18
2 0.8167 5.323 6.52 15 10.04 21.32 212
3 1.365 6.681 4.89 16 10.83 22.49 2.08
4 1.969 7.994 4.06 17 11.63 23.64 2.03
5 2.613 9.275 3.55 18 12.44 24.78 1.99
6 3.285 10.53 3.21 19 13.25 25.91 1.96
7 3.980 11.77 2.96 20 14.07 27.05 1.92
8 4.695 12.99 2.77 21 14.89 28.20 1.89
9 5.425 14.21 2.62 22 15.68 29.35 1.87
10 6.168 15.45 2.50 23 16.50 30.48 1.85
11 6.924 16.64 2.40 24 17.34 31.61 1.82
12 7.689 17.81 2.32 25 18.19 32.73 1.80

" Adapted from E. Schindowski and O. Schiirz, Statistische Qualitdtskonirolle, VEB Verlag Technik, Berlin, 1972.

and

"
a=1->, — e, (2.93)
n=0 1

Given « and B, we may solve these equations numerically for m; and m,
with n;, = 0, 1, 2, . . .. The results of such a calculation for &« = 5% and 8 =
10% are tabulated in Table 2.3. One uses the table by first calculating p,/ py;
n, is then read from the first column, and N is determined from N = (m,/

po) or N = (my/py). This is best illustrated by an example.

EXAMPLE 2.10

Construct a sampling scheme for n, and N, given
a = 5%, B =10%, py = 0.02, and p; = 0.05.

Solution We have p,/p, = 0.05/0.02 = 2.5. Thus from Table 2.3 n, = 10. Now
N = my/p, = 6.168/0.02 = 308.

Multiple Sampling Methods

We have discussed in detail only situations in which a single sample of size N
is used. Acceptance of the items is made, provided that the number of defective
items does not exceed n,, which is referred to as the acceptance number.
Often more varied and sophisticated sampling schemes may be used to glean
additional information without an inordinate increase in sampling effort.*
Two such schemes are double sampling and sequential sampling.

* See, for example, A. V. Feigenbaum, Total Quality Control, 3rd ed., McGraw-Hill, New York,
1983, Chapter 15.
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FIGURE 2.9 A sequential sampling chart.

In double sampling a sample size N, is drawn. The batch, however, need
not be rejected or accepted as a result of the first sample if too much uncer-
tainty remains about the quality of the batch. Instead, a second sample N; is
drawn and a decision made on the combined sample size N; + N,. Such
schemes often allow costs to be reduced, for a very good batch will be accepted
or a very bad batch rejected with the small sample size N,. The larger sample
size N; + N, is reserved for borderline cases.

In sequential sampling the principle of double sampling is further ex-
tended. The sample is built up item by item, and a decision is made after
each observation to accept, reject, or take a larger sample. Such schemes can
be expressed as sequential sampling charts, such as the one shown in Fig. 2.9.
Sequential sampling has the advantage that very good (or bad) batches can
be accepted (or rejected) based on very small sample sizes, with the larger
samples being reserved for those situations in which there is more doubt
about whether the number of defects will fall within the prescribed limits.
Sequential sampling does have a disadvantage. If the test of each item takes
a significant length of time, as usually happens in reliability testing, the total
test time is likely to take too long. The limited time available then dictates
that a single sample be taken and the items tested simultaneously.
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Exercises

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9.

Suppose that P{X} = 0.32, P{Y} = 0.44, and P{XUY} = 0.58.

(a) Are the events mutually exclusive?
(b) Are they independent?

(c) Calculate P{X|Y}.

(d) Calculate P{Y|X}.

Suppose that X and Y are independent events with P{X} = 0.28 and
P{Y} = 0.41. Find (a) P{X}, (b) P{X N Y}, (c) P{¥}, (d) {X N 7},
(e) P{X U Y}, (f) P{X N T)}.

Suppose that P{A} = 1/2, P{B} = 1/4, and P{~A N B} = 1/8. Determine
(a) P{A|B}, (b) P{B|A}, (c) P{A U B}, (d) P{A|B}.

Given: P{A} = 0.4, P{A U B} = 0.8, P{A N B} = 0.2.
Determine (a) P{B}, (b) P{A|B}, (c) P{B|A}.

Two relays with demand failures of p = 0.15 are tested.

(a) What is the probability that neither will fail?
(b) What is the probability that both will fail?

For each of the following, draw a Venn diagram similar to Fig. 2.3
and shade the indicated areas: (a) (X U Y) N Z (b)y XN YN Z
@ XUP)Nzd XNy UzZ

An aircraft landing gear has a probability of 107 per landing of being
damaged from excessive impact. What is the probability that the landing
gear will survive a 10,000 landing design life without damage?

Consider events A, B and C. If P{A} = 0.8, P{B} = 0.3, P{C} = 0.4,
P{AIBN C} = 0.5, P{BIC} = 0.6.

(a) Determine whether events B and C are independent.

(b) Determine whether events Band C are mutually exclusive.
(c) Evaluate P{A N BN C}

(d) Evaluate P{B N C|A}

A particulate monitor has a power supply consisting of two batteries in
parallel. Either battery is adequate to operate the monitor. However,
since the failure of one battery places an added strain on the other, the
conditional probability that the second battery will fail, given the failure
of the first, is greater than the probability that the first will fail. On the
basis of testing it is known that 7% of the monitors in question will have
at least one battery failed by the end of their design life, whereas in 1%
of the monitors both batteries will fail during the design life.

(a) Calculate the battery failure probability under normal operating
conditions.
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(b) Calculate the conditional probability that the battery will fail, given
that the other has failed.

Two pumps operating in parallel supply secondary cooling water to a
condenser. The cooling demand fluctuates, and it is known that each
pump is capable of supplying the cooling requirements 80% of the time
in case the other fails. The failure probability for each pump is 0.12;
the probability of both failing is 0.02. If there is a pump malfunction,
what is the probability that the cooling demand can still be met?

For the discrete PMF,

flx,) = Cx3; x, = 1,2, 8.
(a) Find C.
(b) Find F(x,).
(¢) Calculate g and o.
Repeat Exercise 2.11 for

f(x,) = Cx,(6 — x,), x, =0,1,2,...,6.

Consider the discrete random variable defined by
X, 0 1 2 3 4 5

oy L9 7 5 5 1
Sl 36 36 36 36 36 36
Compute the mean and the variance.

A discrete random variable x takes on the values 0, 1, 2, and 3 with
probabilities 0.4, 0.3, 0.2, and 0.1, respectively. Compute the expected
values of x, x°, 2x + 1, and ¢~

Evaluate the following:

(a) G3, (b) C3, (c) CF, (d) CH.

A discrete probability mass function is given by f{(0) = 1/6, f(1) =
1/3, f(2) = 1/2.

(a) Calculate the mean value w.

(b) Calculate the standard deviation o.

Ten engines undergo testing. If the failure probability for an individual

engine is 0.10, what is the probability that more than two engines will
fail the test?

A boiler has four identical relief valves. The probability that an individual
relief valve will fail to open on demand is 0.06. If the failures are inde-
pendent:

(a) What is the probability that at least one valve will fail to open?

(b) What is the probability that at least one valve will open?
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If the four relief valves were to be replaced by two valves in the preceding
problem, to whatvalue must the probability of an individual valve’s failing
be reduced if the probability that no valve will open is not to increase?

The discrete uniform distribution is

fin) = 1/N, n=1234,...N
(a) Show that the mean is (N + 1)/2.
(b) Show that the variance is (N? — 1)/12.

The probability of an engine’s failing during a 30-day acceptance test is
0.3 under adverse environmental conditions. Eight engines are included
in such a test. What is the probability of the following? (a) None will
fail. (b) All will fail. (c¢) More than half will fail.

The probability that a clutch assembly will fail an accelerated reliability
test is known to be 0.15. If five such clutches are tested, what is the
probability that the error in the resulting estimate will be more than 0.1?

A manufacturer produces 1000 ball bearings. The failure probability for
each ball bearing is 0.002.

(a) What is the probability that more than 0.1% of the ball bearings
will fail?

(b) What is the probability that more than 0.5% of the ball bearings
will fail?

Verify Egs. 2.63 and 2.64.

Suppose that the probability of a diode’s failing an inspection is 0.006.

(a) What is the probability that in a batch of 500, more than 3 will fail?
(b) What is the mean number of failures per batch?

(Note: Use the Poisson distribution.)

The geometric distribution is given by

fin)y =pA —p"', n=1,234,...®

(a) Show that Eq. 2.22 is satisfied.
(b) Find that the expected value of nis 1/p.
(c) Show that the variance of f(n) is 1/p%

(Note: The summation formulas in Appendix A may be useful.)

One thousand capacitors undergo testing. If the failure probability for
each capacitor is 0.0010, what is the probability that more than two
capacitors will fail the test?

Let pequal the probability of failure and n be the trial upon which the first
failure occurs. Then n is a random variable governed by the geometric
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distribution given in exercise 2.26. An engineer wanting to study the
failure mode proof tests on a new chip. Since there is only one test setup
she must run them one chip at a time. If the failure probability is p = 0.2.

(a) What is the probability that the first chip will not fail?

(b) What is the probability that the first three trials will produce no
failures?

(c) How many trials will she need to run before the probability of
obtaining a failure reaches 1/2?

A manufacturer of 16K byte memory boards finds that the reliability of
the manufactured boards is 0.98. Assume that the defects are inde-
pendent.

(a) What is the probability of a single byte of memory being defective?

(b) If no changes are made in design or manufacture, what reliability
may be expected from 128K byte boards?

(Note: 16K bytes = 2'* bytes, 128K bytes = 2!7 bytes.)

The PMF for a discrete distribution is
f(n)=%%exp(~)\)+%yn—!exp(—n), n=0,1,2,3,4,...©

(a) Determine u,
(b) Determine o2

Diesel engines used for generating emergency power are required to
have a high reliability of starting during an emergency. If the failure to
start on demand probability of 1% or less is required, how many consecu-
tive successful starts would be necessary to ensure this level of reliability
with a 90% confidence?

An engineer feels confident that the failure probability on a new electro-
magnetic relay is less than 0.01. The specifications require, however,
only that p < 0.04. How many units must be teSted without failure to
prove with 95% confidence that p < 0.04?

A quality control inspector examines a sample of 30 microcircuits from
each purchased batch. The shipment is rejected if 4 or more fail. Find
the probability of rejecting the batch where the fraction of defective
circuits in the entire (large) batch is

(a) 0.01,
(b) 0.05,
(c) 0.15.

Suppose that a sample of 20 units passes an acceptance test if no more
than 2 units fail. Suppose that the producer guarantees the units for a
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failure probability of 0.05. The buyer considers 0.15 to be the maximum
acceptable failure probability.

(a) What is the producers risk?
(b) What is the buyer’s risk?

Suppose that 100 pressure sensors are tested and 14 of them fail the
calibration criteria. Make a point estimate of the failure probability, then
use Eq. 2.86 to estimate the 90% and the 95% confidence interval.

Draw the operating curve for the 2 out of 20 sampling scheme of exer-
cise 2.34.

(a) What must the failure probability be to obtain a producer’s risk of
no more than 10%?

(b) What must the failure probability be for the buyer to have a risk of
no more than 10%?

Construct a binomial sampling scheme where the producer’s risk is 5%,
the buyer’s risk 10%, p, = 0.03, and p, = 0.06. (Use Table 2.3)

A standard acceptance test is carried out on 20 battery packs. Two fail.

(a) What is the 95% confidence interval for the failure probability?

(b) Make a rough estimate of how many tests would be required if the
95% confidence interval were to be within *0.1 of the true failure
probability. Assume the true value is p = 0.2.

A buyer specifies that no more than 10% of large batches of items should
be defective. She tests 10 items from each batch and accepts the batch
if none of the 10 is defective. What is the probability that she will accept
a batch in which more than 10% are defective?
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3.1 INTRODUCTION

In Chapter 2 probabilities of discrete events, most frequently failures, were
discussed. The discrete random variables associated with such events are used
to estimate the number of events that are likely to take place. In order to
proceed further with reliability analysis, however, it is necessary to consider
how the probability of failure depends on a variety of other variables that are
continuous: the duration of operation time, the strength of the system, the
magnitudes of stresses, and so on. If the repeated measurement of such
variables is carried out, however, the same value will not be obtained with
each test. These values are referred to as continuous random variables for
they cannot be described with certainty, but only with the probability that
they will take on values within some range. In Section 3.2 we first introduce
the mathematical apparatus required to describe random variables. In Section
3.3 the normal and related distributions are presented. In section 3.4 the
Weibull and extreme-valve distributions are described.

3.2 PROPERTIES OF RANDOM VARIABLES

In this section we examine some of the important properties of continuous
random variables. We first define the quantities that determine the behavior
of a single random variable. We then examine how these properties are
transformed when the variable is changed.

40
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Probability Distribution Functions

We denote a continuous random variable with bold-faced type as x and the
values that x may take on are specified by x, that is, in normal type. The
properties of a random variable are specified in terms of probabilities. For
example, P{x < x} is used to designate the probability that x has a value less
than x. Similarly, P{a < x < 8} is the probability that x has a value between
aand b. Two particular probabilities are most often used to describe a random
variable. The first one,

F(x) = P{x < «}, (8.1

the probability that x has a value less than or equal to , is referred to as the
cumulative distribution function, or CDF for short. Second, the probability that
x lies between x and x + Ax as Ax becomes infinitesimally small is denoted by

flx) Ax = P{x < x < x + Ax}, (3.2)

where f(x) is the probability density function, referred to hereafter as the PDF.
Since both f(x) and F(x) are probabilities, they must be greater than or equal
to zero for all values of x.

These two functions of x are related. Suppose that we allow x to take on
any values — < x < 4o, Then the CDF is just the integral of the PDF over
all x < «x:

P = |1 i) . (3.3)
We also may invert this relationship by differentiating to obtain
d
f() = 2 (). (3.4)

The probability distributions f(x) and F(x) are normalized as follows: We
first note that the probability that x lies between a and b may be obtained
by integration

f”f(x) dx= Pla<x< b (3.5)
Now, x must have some value between — and +%. Thus
P{—0 < x < oo} =1, (3.6)
The combination of this relationship with Eq. 3.5 with ¢ = —o and b = +®
then yields the normalization condition
j: f(x) dx=1. (3.7)

Then, setting x = « in Eq. 3.3, we find the corresponding condition on the
CDF to be

F(0) = 1. (3.8)
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One more function that is often used is the complementary cumulative
distribution function or CCDF, which is defined as

F(x) = Pix > «x}, (3.9)

where we use the tilde to designate the complementary distribution, since
X > x is the same as x not < x. The definition of f{x) and Eq. 3.7 allows us
to write F(x) as

Fx) = ffﬂx') d' =1— ﬁwf(x') dx', (3.10)
or combining this expression with Eq. 3.3 yields
F(x) =1 — F(x). (3.11)

Thus far we have assumed that x can take on any value —% < x << +0o.
In many situations we must deal with variables that are restricted to a smaller
domain. For example, time is most often restricted to 0 < t << . In such
cases the foregoing relationships may be modified quite simply. For example,
in considering only positive values of time we have

Fiy=0, (<0, (3.12)

and therefore for time, Eq. 3.3 becomes
F(1) = jo‘f(t') di'. (3.13)
Similarly, the condition of Eq. 3.7 becomes
f: fly di=1. (3.14)

In Fig. 3.1 the relation between f(x) and F(x) is illustrated for a typical random
variable with the restriction that 0 < x < . In what follows we retain the
*oo limits on the random variables, with the understanding that these are to
be appropriately reduced in situations in which the domain of the variable
is restricted.

10 T T T

FIGURE 3.1 Continuous probability distribution: (@) probability density function (PDF),
() corresponding cumulative distribution function (CDF).
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EXAMPLE 3.1

The PDF of the lifetime of an appliance is given by
S = 0.2517%%, t=0,

where ¢ is in years. () What is the probability of failure during the first year? ()
What is the probability of the appliance’s lasting at least 5 years? (¢) If no more than
5% of the appliances are to require warranty services, what is the maximum number
of months for which the appliance can be warranted?

Solution First calculate the CDF and CCDF:
F(y = [ de0.2500% = 1= (1+ 050 6%,

F(t) = (1+0.50) 7%,

(a) F(1) =1 — (1 +0.5 X 1)1 = 0.0902.
(b) F(3) = (1 + 0.5 X 5)¢ "% = 0.2873.
(¢) We must have F(t,) = 0.95, where {, is the warranty period in years. From part

(@) it is clear thdt the warranty must be less than one year, since F1) =1 -
F(1) = 0.91.

Try 6 months, & = T
Try 9 months, #, = %
Try 8 months, #, = 13
The maximum warranty is 8 months.

Characteristics of a Probability Distribution

Often it is not necessary, or possible, to know the details of the probability
density function of a random variable. In many instances it suffices to know
certain integral properties. The two most important of these are the mean
and the variance.

The mean or expectation value of x is defined by

= J: xf(x) dx. (3.15)
The variance is given by
o = f (x— w)2f(x) dx. (3.16)

The variance is a measure of the dispersion of values about the mean. Note that
since the integrand on the right-hand side of Eq. 3.16 is always nonnegative, the
variance is always nonnegative. In Fig. 3.2 examples are shown of probability
density functions with different mean values and with different values of the
variance, respectively.

More general functions of a random variable can be defined. Any func-
tion, say g(x), that is to be averaged over the values of a random variable we
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Hx) f>(x) fi(x)

falx)

x x
(@) py <m0y = 0 (b) py = pp, 0y <03

FIGURE 3.2 Probability density functions.

write as
Elgt}=["_g(x) fx) dx (8.17)

The quantity E{g(x)} is referred to as the expected value of g(x). It may be
interpreted more precisely as follows. If we sampled an infinitely large number
of values of x from f(x) and calculated g(x) for each one of them, the average
of these values would be E{g}. In particular, the nth moment of f(x) is defined
to be

E{x} = f " () dx. (3.18)

With these definitions we note that E{x"} = 1, and the mean is just the
first moment:
= E{x} (3.19)

Similarly, the variance may be expressed in terms of the first and second
moments. To do this we write

o' = E{(x — )% = E{& — 2xu + p'}. (3.20)
Butsince u isindependent of x, it can be brought outside of the integral to yield
o? = E{x*} — 2E{x}u + u2 (8.21)

Finally, using Eq. 3.19, we have
o? = E{x’} — E{x}*. (3.22)

In addition to the mean and variance, two additional properties are
sometimes used to characterize the PDF of a random variable; these are the
skewness and the kurtosis. The skewness is defined by

sh= %f"_"m (x— w)*f(x) dox. (3.23)

It is a measure of the asymmetry of a PDF about the mean. In Fig. 3.3 are
shown two PDFs with identical values of w and ¢?, but with values of the
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fi(x) fr(x)

Ky = g, 01 =02

FIGURE 3.3 Probability density
functions with skewness of opposite signs.

skewness that are opposite in sign but of the same magnitude. The kurtosis,
like the variance, is a measure of the spread of f(x) about the mean. It is
given by

ku=$f: (x— ) f(x) dx. (3.24)

\
EXAMPLE 3.2

A lifetime distribution has the form
S(t) = Bte™™,
where tis in years. Find B8, i, and o in terms of «.
Solution  We shall use the fact that (see Appendix A)
f " dgge =,
From Eq. 3.14,
[Cagie=1.
With { = at, we therefore have
%f:dggﬂ:%x 1=1.

Thus 8 = & and we have f(1) = a’te ™.
The mean is determined from Eq. 3.15:

© o 1 (e 2!
= = 52 D 2,70 = 2=
M fo ditf(t) = o J.O dtt*e aﬁ, d{{*e o

Therefore, u = 2/a.
The variance is found from Eq. 3.22, which reduces to

ol = J’: dit* (1) — w2,
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but
" » 1 (= 31 6
2 = 2 3,—at — _— 3,70 = 20—
[Fanso = o2 [ dwe a2ﬁ)d§§e S=
and therefore,
g b _(2)_2
o? o o

Thus o = \/§/a.

EXAMPLE 3.3

Calculate u and o in Example 3.1.

Solution Note that the distribution in Examples 3.1 and 3.2 are identical if
a = 0.5. Therefore u = 4 years, and o = 2V2 years.

Transformations of Variables

Frequently, in reliability considerations, the random variable for which data
are available is not the one that can be used directly in the reliability estimates.
Suppose, for example, that the distribution of speeds of impact f(v) is known
for a mechanical snubber. If the wear on the snubber, however, is proportional
to the kinetic energy, ¢ = 3 mv? the energy is also a random variable and it
is the distribution of energies f,(¢) that is needed. Such problems are ubiqui-
tous, for much of engineering analysis is concerned with functional relation-
ships that allow us to predict the value of one variable (the dependent variable)
in terms of another (the independent variable).

To deal with situations such as the change from speed to energy in the
foregoing example, we need a means for transforming one random variable
to another. The problem may be stated more generally as follows. Given a
distribution f(x) or F,(x) of the random variable x, find the distribution
/(y) of the random variable y that is defined by

y = y(x). (3.25)

We then refer to f(y) as the derived distribution. Hereafter, we use subscripts
x and y to distinguish between the distributions whenever there is a possibility
of confusion. First, consider the case where the relation between y and x has
the characteristics shown in Fig. 3.4; that is, if % < xy, then y(x)) < y(x).
Then y(x) is a monotonically increasing function of x; that is, dy/dx > 0. To
carry out the transformation, we first observe that

P{x < x} = Ply < y(x)}, (3.26)
or simply

F(x) = E(y) (3.27)
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y(x)

FIGURE 3.4 Function of a random
variable x.

To obtain the PDF f(y) in terms of f£(x), we first write the preceding equa-
tion as

ﬁmfx(x') dx’ = ﬂ(:)ﬁ(y’) dy'. (3.28)
Differentiating with respect to x, we obtain
£ = f(3) 2 (3.29)
dx
or
dx

FOy) = h(x) (3.30)

dy|’

Here we have placed an absolute value about the derivative. With the absolute
value, the result can be shown to be valid for either monotonically increasing
or monotonically decreasing functions.

The most common transforms are of the linear form

y=ax+ b, (3.31)

and the foregoing equation becomes simply

1 —b
%) =Hﬂ<%>. (3.32)

Note that once a transformation has been made, new values of the mean
and variance must be calculated, since in general

[ e £ [ g0 f5) ay (3.39)

EXAMPLE 3.4

Consider the distribution Llx) =ae™ 0 < x< o, ¢ > 1,
(@) Transform to the distribution f(y), where y = ¢*
(b) Calculate u, and My
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Solution (a) dy/dx = e therefore, Eq. 3.30 becomes f,(y) = ¢ *f(x). We also
have x = In y. Therefore,

03
h) = taeen =5 1=y<e,

y

e X —l
() wo= [ e a=—,

py = fl yay @ dy=

a—1"

3.3 NORMAL AND RELATED DISTRIBUTIONS

Continuous random variables find extensive use in reliability analysis for the
description of survival times, system loads and capacities, repair rates, and a
variety of other phenomena. Moreover, a substantial number of standardized
probability distributions are employed to model the behavior of these vari-
ables. For the most part we shall introduce these distributions as they are
needed for model reliability phenomena in the following chapters. We intro-
duce here the normal distribution and the related lognormal and Dirac delta
distributions, for they appear in a variety of different contexts throughout the
book. Moreover, they provide convenient vehicles for applying the concepts
of the foregoing discussion.

The Normal Distribution

Unquestionably, the normal distribution is the most widely applied in statistics.
It is frequently referred to as the Gaussian distribution. To introduce the
normal distribution, we first consider the following function of the random
variable x,

] _ 2
f(x)=\/-2%bexp[‘§(%l>]’ TosxEe B9

where a and b are parameters that we have yet to specify. It may be shown
that f(x) meets the conditions for a probability density function. First, it is
clear that f(x) = 0 for all x. Second, by performing the integral

AT
Foe e

it may be shown that the condition on the PDF given by Eq. 3.7 is met. The
evaluation of Eq. 3.35 cannot be carried out by rudimentary means. Rather,
the methcd of residues from the theory of complex variables must be em-
ployed. For convenience, some of the more common integrals involving the
normal distribution are included in Appendix A.

A unique feature of the normal distribution is that the mean and variance
appear explicitly as the two parameters a and 5. To demonstrate this, we insert
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Eq. 3.34 into the definitions of the mean and variance, Egs. 3.15 and 3.16.
Using the evaluated integrals in Appendix A, we find

_[= x 1{x—a\*| _
/L=fﬁwdx\/2_;bexp[*§< ; >]—a, (3.36)

Y
O'QEJZO dx(x—,Uv)Q\/Ql—n_bexp[—%<x b d) ] = b (3.37)

Consequently, we may write the normal PDF directly in terms of the mean
and variance as

— o\
flx) = \/_ expl:—%(x U“) ] o0 < x< 0. (3.38)
TOo
Similarly, the CDF corresponding to Eq. 3.34 is

[ 1 RV AN Y
F(x)'fm\/Q—Wa_exp[ 2( - )]dx (3.39)

When we use the normal distribution, it is often beneficial to make a
change of variables first in order to express F(x) in a standardized form. To
this end, we define the random variable z in terms of x by

z=(x— u)y/o. (8.40)

Recalling that PDFs transform according to Eq. 3.30, we have

_ 2
- 5 o

J(z) =

which for x = u + oz

fi(z) = vlg—ﬁexp(—%zz). (3.42)

This implies that for the reduced variate z, w, = 0 and o? = 1.

The PDF is plotted in Fig. 3.5. Its appearance causes it to be referred to
frequently as the bell-shaped curve. The standardized form of the CDF may
also be found by applying Eq. 3.40 to F(x),

F(x) = ®[(x — p) /0], (3.43)

where the standardized error function on the right is defined as

P(z) = exp(—z{?) dd. (3.44)

1 jz
Vor!-=
The integrand of this expression is just the standardized normal PDF. A
graph of ®(z) is given in Fig. 3.6; note that each unit on the horizontal axis
corresponds to one standard deviation &, and that the mean value is now at
the origin. A tabulation of ®(z) is included in Appendix C. Although values
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for z < 0 are included in Appendix C, this is only for convenience, since for
the normal distribution we may use the property f(—z) = f(z) to obtain
$P(—z) from

D(—2) =1 - D(2). (3.45)

EXAMPLE 3.5

The time to wear out of a cutting tool edge is distributed normally with & = 2.8 hr
and o = 0.6 hr.

(a) What is the probability that the tool will wear out in less than 1.5 hr?

(b) How often should the cutting edges be replaced to keep the failure rate less than
10% of the tools?

Solution (a) P{t < 1.6} = F/(1.5) = ®(z), where

z=(t— /o, z= (1.5 — 2.8)/0.6 = —2.1667

From Appendix C: ®(—2.1667) = 0.0151.
(b)) P{t < ¢ = 0.10; (z) = 0.10. Then from Appendix C, z = —1.28. Therefore, we

have

—1{+ p = 1280, t=p— 1280 =28 —1.28 X 0.6 = 2.03 hr.

The normal distribution arises in many contexts. It may be expected to
occur whenever the random variable x arises from the sum of a number of
random effects, no one of which dominates the total. It is widely used to
represent measurement errors, dimensional variability in manufactured
goods, material properties, and a host of other phenomena.

A specific illustration might be as follows. Suppose that an elevator cable
consists of strands of wire. The strength of the cable is then

x=x b b x o Xy, .(3.46)

where x;is the strength of the ith strand. Even though the PDF of the individual
strands x; is not a normal distribution, the strength of the cable will be given
by a normal distribution, provided that N, the number of strands, is suffi-
ciently large.

The normal distribution also has the following property. If x and y are
random variables that are normally distributed, then

u = ax + by, (8.47)

where @ and b are constants, is also distributed normally. Moreover, it may

“be shown that the mean and variance of u are related to those of x and y by

Mo = apx + b, (3.48)
and

oL = d'ol + Vo, (3.49)
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The same relationships may be extended to linear combinations of three or
more random variables.

Often the normal distribution is adopted as a convenient approximation,
even though there may be no sound physical basis for assuming that the
previously stated conditions are met. In some situations this may be justified
on the basis that it is the limiting form of several other distributions, the
binomial and the Poisson, to name two. More important, if one is concerned
only with very general characteristics and not the details of the shape, the
normal distribution may sometimes serve as a widely tabulated, if rough,
approximation to empirical data. One must take care, however, not to pursue
too far the idea that the normal distribution is generally a reasonable represen-
tation for empirical data. If the data exhibit a significant skewness, the normal
distribution is not likely to be a good choice. Moreover, if one is interested
in the “‘tails’” of the distribution, where I(x — [L)/O" >> 1, improper use of
the normal distribution is likely to lead to large errors. Extreme values of
distribution must often be considered when determining safety factors and
related phenomena. Distributions appropriate to such extreme-value prob-
lems are taken up in section 3.4.

The Dirac Delta Distribution

If the normal distribution is used to describe a random variable x, the mean
w is the measure of the average value of x and the standard deviation o is a
measure of the dispersion of x about u. Suppose that we consider a series of
measurements of a quantity u with increasing precision. The PDF for the
measurements might look similar to Fig. 3.7. As the precision is increased—
decreasing the uncertainty—the value of o decreases. In the limit where there
is no uncertainty o — 0, x is no longer a random variable, for we know that
X = .

The Dirac delta function is used to treat this situation. It may be defined as

o—0

T L
6(x — u) = lim o aexp [ 557 (x F«)Q]- (3.50)

f(x)
flx)
f(x)

AN

(a) oy b) o, (c) o3
a1 > (5] > a3

FIGURE 3.7 Normal distributions with different values of the variance.
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Two extremely important properties immediately follow from this definition:

{oo, o
S(x— ) = , (3.51)
K 0, X F
and
j”” S(x—w)de=1, &>0. (3.52)
n—e

Specifically, even though &(0) is infinite, the area under the curve is equal
to one.

The primary use of the Dirac delta function in this book is to simplify
integrals in which one of the variables has a fixed value. This appears, for
example, in the treatment of expected values.

Suppose that we want to calculate the expected value of g(x), as given
by Eq. 3.17 when f(x) = 6(x — xy); then

Elg} = [ g08(x— x) dx (3.59)
may be written as

Elg(x)} = f 2(0)8(x— x,) dx, &> 0, (3.54)

since 8(x — %) = 0 away from x = x,. If g(x) is continuous, we may pull it
outside the integral for very small & to yield

X, t&
E{g(x)} = g(x) j o= ) d (3.55)
Xo &
Therefore, for arbitrarily small &, we obtain

Ego} = [7 g(08(x— m) dx = g(x). (3.56)

A more rigorous proof may be provided by using Eq. 3.50 in Eq. 3.53 and
expanding g(x) in a power series about x;.

The Lognormal Distribution

As indicated earlier, if a random variable x can be expressed as a sum of the
random variables, x;, ¢ = 1, 2, ..., N where no one of them is dominant,
then x can be described as a normal distribution, even though the x; are
described by nonnormal distributions that may not even be the same for
different values of i. A second frequently arising situation consists of a random
" variable y that is a product of the random variables y;:

Y= e e (3.57)
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For example, the wear on a system may be proportional to the product of
the magnitudes of the demands that have been made on it. Suppose that we
take the natural logarithm of Eq. 3.57:

Iny=Iny +1Iny +---+Iny,. (3.58)

The analogy to the normal distribution is clear. If no one of the terms on
the right-hand side has a dominant effect, then In y should be distributed
normally. Thus, if we define

x=1Iny, (3.59)

then x is distributed normally and y is said to be distributed lognormally.
To obtain the lognormal distribution for y, we first write the normal
distribution for x,

__ 1
}i(x)—\/g—ﬂaxexp[ 20§i(x MX)Q], (3.60)

where u, is the mean value of x, and o2 is the variance of the distribution in
x. Now suppose that we let x be the natural logarithm of the variable y. In
order to find the PDF in y, we must transform the distribution according to
Eq. 3.30:

dx
Ky = f(x) Pk (3.61)
Noting that
dx d 1
——=—Iny=-, (3.62)
dy dy ) y

and using x = In y to eliminate x from Egs. 3.60 and 3.61, we obtain

S SN S B PRS2
j§(y)—\/2_ﬁwyexp{ 20* [ln (J’o)] }’ (3.65)

where we have made the replacements
Mx = In y; o, = o. (3.64)

The corresponding CDF is obtained by integrating over y with a lower
limit of y = 0. The results can be expressed in terms of the standardized

normal integral as
|l (2
E(y)=®|=In|=]|. (3.65)
(O Yo

The PDF and the CDF for the lognormal distribution are plotted as a
function of y in Fig. 3.8. Note that for small values of w, the lognormal and
normal distributions have very similar appearances.
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FIGURE 3.8 The lognormal distribution (a) probability density function (PDF), (b) cu-
mulative distribution function (CDF).

The mean of the lognormal distribution may be obtained by applying
Eq. 3.15 to Eq. 3.63:

My = 5o exp(w?/2). (3.66)

Note that it is not equal to the parameter y, for which the distribution is a
maximum. On the contrary, y, may be shown to be the median value of y.
Similarly, the variance in y is not equal to w but rather is

a5 = y§ exp(®?) [exp(w?) — 1]. (3.67)

Lognormal distributions are widely applied in reliability engineering to
describe failure caused by fatigue, uncertainties in failure rates, and a variety
of other phenomena. It has the property that if variables xand yhave lognormal
distributions, the product random variable z = xy is also lognormally dis-
tributed.

The lognormal distribution also finds use in the following manner. Sup-
pose that the best estimate of a variable is y, and there is a 90% certainty that
Y 18 known within a factor of n. That is, there is a probability of 0.9 that it
lies between y,/n and y,n, where n > 1. We then have

o1 1 ?
0.05 = [ x {— —, [m <l>] } dy. 3.68
J; Varwy P17 207 | " \y/] S P (5:68)
With the change of variables { = (1/®) In(y/ y) Eq. 3.68 may be written as
—(1/w)nn l
0.05 = exp(—3?) di. 3.69
[ e (3.69)

This integral is the CDF for the standardized normal distribution, given by
Eq. 3.44. Thus we have

0.05 =@ <— lln n), (3.70)
®
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where @ is the standardized normal CDF. Similarly, it may be shown that
095 =@ <+ lln n> (8.71)
)

From the table in Appendix C it is seen that the argument for which ® =
0.05 or 0.95 is +1.645. Thus we have

lln n=1.645. (3.72)
o

Therefore, the parameter w is given by

T In n. (8.73)

With y, and @ determined, the @, can be determined from Eq. 3.66.

EXAMPLE 3.6

Fatigue life data for an industrial rocker arm is fit to a lognormal distribution. The
following parameters are obtained: y, = 2 X 107 cycles, @ = 2.3. (a) To what value
should the design life be set if the probability of failure is not to exceed 1.0%? (b) If
the design life is set to 1.0 X 10° cycles, what will the failure probability be?

Solution (a) Let y be the number of cycles for which the failure probability is
1%. Then, from Eq. 3.65, we have

—E( = | L (—2
0.01 = E(y) —db[zgln (2X 107)].

From Appendix C we find
P(—2.32) ~ 0.01.
Thus

_9g9_ L y
232 =53 (2 X 10’)

and
y=2X10"exp(~2.32 X 2.3)
=9.63 X 10 cycles.

1 (a1 10°
2=, (y(,) 530 <2.0 X 107)

—1.302.

(6) In Eq. 3.65 we have

I

From Appendix C, ®(—1.302) =~ 0.096 so that
E(y) = 0.096 probability of failure.
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3.4 WEIBULL AND EXTREME VALUE DISTRIBUTIONS

The Weibull and extreme value distributions are widely employed for reliability
related problems. Their relationship to one another is analogous to that
between the lognormal and the normal distribution. The Weibull distribution,
like the log normal, ranges 0 < x < oo, while extreme value like normal
distributions have the range —o < x < . Moreover, the distributions are
related through a logarithmic transformation.

Weibull Distribution

The Weibull distribution is widely used in reliability analysis for describing
the distribution of times to failure and of strengths of brittle materials, such
as ceramics. It is quite flexible in matching a wide range of phenomena. It is
particularly justified for situations where a “‘worst link’” or the largest of many
competing flaws is responsible for failure. The Weibull CDF is given by

F(x) =1~ exp[—(x/6)"], 0=x= (3.74)

where 8 is the scale and m is the shape parameter. The derivative may be
performed as indicated in Eq. 3.4 to obtain the PDF

-1
Ax) =%’<§> exp[—(x/0)"], 0=x=oo. (8.75)
The PDF for the Weibull distribution is shown in Fig. 3.9 for several different
values of m.
The mean and the variance of the distribution are obtained from Egs.
3.15 and 3.16, respectively. They are rather complicated functions of the scale
and shape parameters:

w=001 + 1/m) (3.76)
and
o= @TA + 2/m) — T + 1/m)?]. (3.77)
m=4
% 2
=
1
0.5 | X
0 6 26 36

Time to failure PDF

FIGURE 3.9 The Weibull distribu-
tion.
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FIGURE 3.10 The gamma function.

In these expressions the complete gamma function I'(v) is defined by the in-
tegral

I'(v) = f Temetdg (3.78)

Figure 3.10 shows the dependence of 1/T'(v) for the values 0 < v < 1, since
v > 1, can be obtained from the identity:

I'ivyy = (v— DHI'(v = 1). (3.79)

A wide spread use of the Weibull distribution is in describing weakest
link phenomena. This may be illustrated by considering a proverbial chain,
where the strengths of the N link are described by the random variables x,,
Xs, X3 . . . Xy. The strength of the chain is then also a random variable, sayy,
which takes on the value of the weakest link. Thus

Py>y=Px>yNx>yNx,>yN---Nxy>9yh  (3.80)
If the link strengths are independent,
P{y > y} = P{x, > y}P{x2 > y}P{xg > y} <o Plxy > y}. (3.81)

If all of the links are governed by identical strength distributions we can
express the probabilities on the right in terms of a single CDF, F,(x):

Pix, >y} =1 Plx, =y} = 1 — E(y). (3.82)

Likewise, since the CDF for y may be written as F,(y) = 1 — Ply > y}, Eq.
3.81 becomes

F(y) =1—[1-FE(yl~ (3.83)
Now, suppose the link strengths are governed by a Weibull distribution,
F(x) =1 = exp[—(x/0)"]; (3.84)

then combining these two equations, we have
F(y) =1 = [e0V=1 — gNwo", (3.85)
Thus the chain strength may also be expressed as a Weibull distribution

E(y) =1 = exp[=(y/8)"] (3.86)
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with the same shape parameter, and a scale parameter of
¢ = N~'/"0. (3.87)

Even in situations where the underlying distribution is not explicitly known,
but the failure mechanism arises from many competing flaws, the Weibull
distribution often provides a good empirical fit to the data.

EXAMPLE 3.7

A chain is made of links whose strengths are Weibull distributed with m = 5 and 6 =
1,000 1bs. (a) What is the mean strength of one link.? () What is the mean strength
of a chain of 100 links? (¢) At what load is there a 5% probability that the 100 link
chain will fail?

Solution (a) From Eq. 3.76: u, = 1,000 I'(1.20) = 1,000 - 0.918 = 918 lbs.

(b) From Eq. 3.87: ¢ = 1007% - 1000 = 398 Ibs.
Thus p, = 398 I'(1.20) = 398 - 0.918 = 365 Ibs.

(¢) 0.05 =1 — exp[—(y/6)"] or y = 6 [{In(1/0.95)]"/° = 398 - 0.552 = 220 Ibs.

A special case of the Weibull distribution is probably the most widely
used in reliability engineering. Taking m = 1 results in the single-parameter
exponential distribution. The CDF is

F(x) =1 — &9, 0=sx= o (3.88)
and the PDF is

flx) = %e"‘/g, 0=<x= o, (3.89)

The mean and the variance are both given in terms of the single parameter
as u = fand o® = ¢ respectively.

Extreme Value Distributions

Extreme value distributions, or more precisely asymptotic extreme value distri-
butions, frequently arise in situations where the number of variables—flaws,
acceleration, etc.—from which the data is gathered is very large. Both maxi-
mum and minimum extreme value distributions are applied in reliability
engineering. There are a number of different types of extreme value distribu-
tions. We will confine our attention here to the type I or Gumbel distributions.
The PDF for the maximum and minimum Gumbel distributions are plotted
in Fig. 3.11. Note that they have long tails on the right and left respectively.
The CDF for the maximum extreme value distribution is given by

F(x) = exp[—e *“ /%], —o0 < x < o0, (3.90)
Differentiating according to Eq. 3.4 then produces the PDF:

flx) = % /O exp[—e /0], —00 < x < o0, (3.91)
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FIGURE 3.11 Extreme-value probability density functions. E. J. Gumbel op. cit.

The PDF is plotted in Fig. 3.11a. The mean and the variance are given by
n=ut+y0, (3.92)
where y = 0.5772157 ..., and

2
ﬁ:%w. (3.93)

Like the normal and lognormal distribution, a reduced variant can be defined
which simplifies the CDF. If we take w = (x — u) /®, then the CDF becomes

Fo(w) = e, (3.94)

which explains why type I extreme value distributions are frequently referred
to as double exponential distributions.

The maximum extreme value distribution often works well in combining
loads on a system when it is the maximum load that determines whether the
system will fail. Suppose that x,, X,, X3 ... xy are the magnitudes of the
individual loads, and let y denote the maximum of these loads. To determine
the probability that y will not exceed some specified value y, we may write

Ply=y=Pxi=yNx=yNxs=yN---Nxy=y. (3.95)

If the magnitudes of the successive loads are independent of one another,
this expression simplifies to

Ply =y} = Plx; = 3} P{x, = y} P{xs = y} - - - P{xxy =y} (3.96)

We also note, from Eq. 3.1, that each of these probabilities is just a CDF. Thus
if the loads are identically distributed we may rewrite this equation as

E(y) = E(y)™ (3.97)

Now, assume that the CDF for each loading is the maximum extreme value
distribution, given by Eq. 3.90. We then have

E(y) = {exp[—¢ 07/9}V = exp[—Ne 0-9/9], (3.98)
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and the CDF for y can be written as a single extreme-value distribution
E(y) = exp[—e 0770, (3.99)
where the displacement parameter has been increased to a value of

v =u+ Oln (N), (3.100)

and ® remains unchanged.

EXAMPLE 3.8

The stress on a landing gear fastener is governed during landing by a maximum
extreme-value distribution with a displacement parameter of « = 8.0 kips (kilopounds)
and ©® = 1.5 kips. (@) What is the mean value for individual loading. () What is the
mean value of the maximum load over the 10,000 landing design life of the fastener?
(¢) What strength should the fastener be designed to if there is to be no more than
a 1% chance of overloading during the 10,000 landing design life?

Solution  (a) From Eq. 3.92, u = 8.0 + 0.5772 - 1.5 = 8.87 kips.

(b) From Eq. 3.100 we have »' = 8.0 + 1.5 In(10,000) = 21.8 kips.
Again from Eq. 3.92 we have u = 21.8 + 0.5772 - 1.5 = 22.7 Kkips.

(¢) Solve Eq. 3.99 for y: y = o' — @ In [In (1/F)].
With F = 0.99, we have y = 21.8 — 1.5 In [In (1/099)] = 21.8 — 1.5(—4.60)
or y = 28.7 kips.

The minimum extreme-value distribution is frequently used as an alterna-
tive to the Weibull in describing strength distributions and related phenom-
ena. The CDF for the corresponding minimum extreme-value distribution is

F(x) =1 — exp[_e(x—u)/(')], —oo < x < o, (3.101)

and the corresponding PDF is
fix) = % eOexp[—dI0], —e <x< oo, (3.102)

The PDF is plotted in Fig. 3.11b. The mean and variance are given by
w=u-vy0 (3.103)

and
o?=—0"2 (3.104)

If we define a reduced variate by w = (u — x) /©, we again obtain Eq. 3.94
as the CDF of the reduced variate w.

It is noteworthy that the minimum extreme value distribution is closely
related to the Weibull distribution and as a result is often used for similar
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purposes, such as representing distributions of times to failure. If we let
x = In(y), (3.105)

then the foregoing equations in x for the minimum extreme-value distribution
reduce to a Weibull distribution in y; the Weibull parameters are given in
terms of those for the extreme-value distribution by

0= e (3.106)
and
m=1/0. (3.107)

Thus the Weibull distribution has the same relationship to the minimum
extreme-value distribution as the lognormal has to the normal: In both cases
they are related by Eq. 3.105, and in the first, the domain of the random
variable is —o < x < oo, while in the second it is 0 < y < o,
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Exercises

3.1 For the PDF
bx(1 — x), 0=s=x=<1,
flx) = .
X otherwise

determine b, u, and o.

3.2 Consider the following PDF:
flx)y =1/2 0<x<2,

=0 otherwise

Determine the mean and variance.



3.3

3.4

3.5

3.6
3.7

3.8
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A motor is known to have an operating life (in hours) that fits the
distribution

a =

f(t) =m, t=0.

The mean life of the motor has been estimated to be 3000 hr.

(a) Find @ and b.
(b) What is the probability that the motor will fail in less than 2000 hr?

(c) If the manufacturer wants no more than 5% of the motors returned
for warranty service, how long should the warranty be?

For a random variable for which the PDF is
0, x<—1
flxy =14, —1<x<1

0, x>1

Determine (a) A, (b) w, (c) o (d) sk, (e) ku.
Suppose that
F(x) = 1 — ¢ — 0.2xe "%, 0<x< o,

(a) Find f(x).
(b) Determine u and o2
(c) Find the expected value of ¢

Repeat Exercise 3.4 for f(x) = A exp(—|x|), —© < x < .

Suppose that the maximum flaw size in steel bars is given by
f(x) = 4xe®, 0< x< o,

where x is in microns.

(a) What is the mean value of the maximum flaw size?

(b) If flaws of lengths greater than 1.5 microns are detected and the
bars rejected, what fraction of the bars will be accepted?

(c) What is the mean value of the maximum flaw size for the bars that
are accepted?

The following PDF has been proposed for the distribution of pit depths
in a tailpipe of thickness x:

flx) = Asinh[a(x, — x)], 0<x=< xp.

(a) Determine A in terms of «.
(b) Determine F(x): the CDF.
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(c) Determine the mean pit depth. What is the probability that there
will be a pit of more than twice the mean depth?

3.9 The PDF for the maximum depths of undetected cracks in steel pip-
ing is

1 e

fx) = SaA =7

where 7is the pipe thickness and y = 6.25 mm.

(a) What is the CDF?
(b) For a 20-mm-thick pipe, what is the probability that a crack will
penetrate more than half of the pipe thickness?

3.10 For a random variable for which the PDF is f(x), —% =< x < « find the
following in terms of the moments x" = fj: x" flx) dx:
(@) w, (b) o2 (¢) sk, (d) ku.

3.11 Under design pressure the minimum unflawed thickness of a pipe re-
quired to prevent failure is 7.

(a) Using the maximum crack depth PDF from Exercise 3.9, show that
if the probability of failure is to be less than &, the total pipe thickness
must be at least

T=1vIn [1 +é(e’ﬂ/7— l)].

(b) Fory = 6.25 mm and a minimum unflawed thickness of 7, = 4 cm,
what must the total thickness be if the probability of failure is 0.1%?

(c) Repeat part b for a probability of failure of 0.01%.
(d) Show that for 7y >> vy and ¢ << 1, 7is approximately 7, + yIn(1/¢).

3.12 Suppose

0, x<<0
flx) =41, 0<x<1
0, x>1

(@) If y = 22, find £(y). (b) If z = 8x, find £(2).
3.13 Express the skewness in terms of the moments E{x"}.

3.14 The beta distribution is defined by

() =211 —mrl, 0=<x<l.
B
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3.16

3.17

3.18

3.19
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Show

(a) thatif ¢ and r are integers,

(r—=D!t—r— 1!

B= (-1 ’

(b) thatu = /¢,
(c) that

o_m(d—w) _r(t—7)
t+1 2+ 1)

(d) that if ¢ and r are integers, f(x) may be written in terms of the
binomial distribution:

Jlx) = (= 1) Crixm! (1 = x)"
Transform the beta distribution given in the Exercise 3.14 by
y=a+ (b—axasyshb

(a) Find f(y). (b) Find p,.

A PDF of impact velocities is given by ae *. Find the PDF for impact

kinetic energies E, where E = 3 mv®.

The tensile strength of a group of shock absorbers is normally distributed
with a2 mean value of 1,000 1b. and a standard deviation of 40 1b. The
shock absorbers are proof tested at 950 Ib.

(a) What fraction will survive the proof test?

(b) If it is decided to increase the strength of the shock absorbers
(i.e., to increase the mean strength while leaving the standard deviation
unchanged) so that 99% pass the test, what must the new value of the
mean strength be?

(c) If it is decided to improve quality control (i.e., to decrease the
variance while leaving the mean strength unchanged) so that 99% pass
the test, what must the new value of the standard deviation be?

An elastic bar is subjected to a force /. The resulting strain energy is
given by

g = cl?
where c¢is d/2AE, with d the length of the bar, A the area, and FE the
modulus of elasticity. Suppose that the PDF of the force can be repre-

sented by standardized normal form f(!). Find the PDF f(g) for the
strain energy.

The life of a tool bit is normally distributed with

mean: ¢ = 10 hr variance: o = 4 hr?
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3.20

3.21

3.22

3.23

3.24
3.25

3.26
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What is the L, of the tool?

(Lyy = time at which 10% of the tools have failed.)

Suppose

0, x<<1
flx) =41, 1<x<2
0,

x>2

(a) if y = In(x) find the PDF for y. (b) if z = exp(x) find the PDF for z.

The total load on a building may often be represented as the sum of
three contributions: the dead load d, from the weight of the structure;
the live load 1, from human beings, furniture, and other movable weights;
and the wind load w. Suppose that the loads from each of the sources
on a support column are represented as normal distributions with the
following properties:

e = 6.0 Kkips oy = 0.4 kips,

w = 9.2 kips o = 1.2 kips,

M = 4.6 Kips o, = 1.1 kips.
Determine the mean and standard deviation of the total load.

Verify that u and o* appearing in Eq. 3.38 are indeed the mean and
variance of f(x); that is, verify Eqs. 3.36 and 3.37.

If the strength of a structural member is known with 90% confidence
to a factor of 3, to what factor is it known with (a) 99% confidence, (b)
with 50% confidence? Assume a lognormal distribution.

Verify Egs. 3.66 through 3.67.

The Ly, of a bearing is the life of the bearing at which 10% failures may
be expected. A new bearing design follows a Weibull distribution with
m = 2, and a Ljy of one year. (a) What fraction of the bearings would
you expect to fail in six months? () If you had to guarantee no more
than 1% failures, to what length of time would you limit the design life?

One-inch long ceramic fibers are known to have a strength given by a
Weibull distribution with a scale parameter of 8 Ib and a shape parameter
of 7.0. Assume weakest link theory.

(a) What will the scale and shape parameters be for fibers that are two
inches long?

(c) If 1.0% of the one inch fiber breaks under the stress of a particular
application, what fraction of the two-inch fibers would you expect
to break under the same stress?
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(d) If two, two-inch fibers are used in parallel to increase the strength,
what fraction would you expect to break?
(e) How many lb of force were the fibers under?

3.27 The distribution of detectable flaw sizes in tubing is given by Eq. 3.88
with 6 = 1/17 cm. There are an average of three detectable flaws per
centimeter of tubing.

(a) What fraction of the flaws will have a size larger than 0.8 cm?

(b) What is the probability of finding a flaw larger than 0.8 cm in a
100-m length of tubing?

(c) In 1000 meters of tubing?

3.28 Suppose a system contains 12 of the bearings from exercise 3.25 and
the system fails with the failure of the first bearing failure. Estimate the
system L.



CHAPTER 4

Quality and Its Measures

The /g'rs/ step cf the engineer in frying fo sa/is/[y these wants s, /Aer%re,
that o/ /ranséz/iny as near_/y as pomié/e these wants info the péys[ca/
characteristics o/' the /ﬁiny mamy[ac/ured fo Ja/zbfy these wants. In /aé[ng this
step intuifion and /’udymen/ p/ay an important role as well as the broad
énow@Jye o/f the human element involved in the wants <y[ the individuals. The
second step cyf the engineer is lo sel up ways and means o/[ oé/ainz’ny a

pro«/uc/ which will o/yfs’r /}*om the czréi/rczn'/y set standards zyf these 7uaﬁ/y
characteristics 55/ no more than may be /e/? fo chance.”

Walter A Shewhar,
Economic Control o/f Qua&/y o/ %nu/zc/ureo/ Products, 1931.

4.1 QUALITY AND RELIABILITY

Quality and reliability are intertwined in the design and manufacture of prod-
ucts and in their usage. With the mathematical apparatus set forth in the
two preceding chapters we can become more quantitative in examining the
relationships that were introduced in Chapter 1. Our objective is to provide
an outline to those quality considerations that provides the broad framework
useful for the more focused treatment of reliability contained in the chapters
to come.

Recall from the discussion in Chapter 1 that the definition of quality
leads to two related considerations. First, quality is associated with the ability
to design products that incorporate characteristics and features that are highly
optimized to meet the customer’s needs and desires. Whereas some of these
characteristics may be esthetic, and therefore inherently qualitative in nature,
the majority can be specified as quantitative performance characteristics. Sec-
ond, quality is associated with the reduction of variability in these performance

68
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characteristics. It is the control and reduction of performance variability with
which we shall be most concerned.

Quality is diminished as the result of three broad causes of perfor-
mance variability:

1. variability in the manufacturing processes
2. variability in the operating environment
3. product deterioration.

Quality improvement measures that reduce or counteract these three causes
of performance variability result in large positive impacts on productreliability,
for failures usually may be traced to these causes and their interactions.
Generally, the product variabilities arising from lack of precision or deficien-
cies in manufacturing processes lead to failures concentrated early in the
product life. These are referred to as carly failures or infant mortality. Variabil-
ity caused by extremes in the operating environment is associated with failures
that are equally likely to occur randomly throughout product life; their occur-
rence probability is independent of the product age. Finally, deterioration
most frequently leads to wear or aging failures concentrated toward the end
of product life.

To further pursue the improvement of quality—and therefore of reliabil-
ity—it is instructive to relate the sources of variability and failure to the stages
of the product development cycle. Product development falls roughly into
three categories:

1. product design
2. process design

3. manufacturing.

Product design encompasses both conceptual and detailed stages. In concep-
tual design the customer’s wants are translated into performance specifications
and both the functional principles and physical configuration of the product
are synthesized. In detailed design the detailed configuration of the compo-
nents and parts is set forth and part parameters and tolerances are specified.
Process design also includes conceptual and detailed phases in which the
manufacturing processes to be employed are first chosen and then the detailed
' tooling specifications are made. Finally, after the processes are designated
and the factory is organized, manufacturing begins and is monitored. To
obtain high quality productsitis necessary to effectively connect the customer’s
wants to the design process, and to consider concurrently the manufacturing
processes that are to be employed as the product is designed. Only with strong
efforts to integrate the product design with the selection of the manufacturing
processes can the desirable performance characteristics be produced with a
minimum of variability and cost.
In Table 4.1 the three product development activities are related to the
three sources of variability and failure. On reflection, it becomes clear that
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TABLE 4.1 Stages at which Product Performance Variability can be

Reduced
Source of Variability
Development Manufacturing Operating Product
Stage Processes Environment Deterioration
Product Design O O O
Process Design (@) X X
Manufacture O X X

O - variability reduction possible
X - variability reduction impossible

much quality and reliability must be designed into a product. Once the design
is completely specified, nothing more can be accomplished in process design
or manufacturing to reduce the product’s susceptibility to failures that are
brought about primarily by environmental stresses or product deterioration.
Only the product variability leading to infant mortality failures can be substan-
tially reduced through process design and manufacturing quality control.

While the highest importance may be placed on product design, process
design is arguably a close second. The conceptual process design—the choice
of what processes are to be used and the possible development of new pro-
cesses—and the detailed determination of process parameters and variability
largely determine the conformance to the target values that can be maintained
in the manufacturing process. Process design has a large impact on manufac-
turing variability.

The reduction of variability through the design of product and process
is termed off-line quality control, to contrast it with the on-line control that
is exercised while production is in progress. The name of Dr. Genichi Taguchi
is strongly associated with off-line quality control, for he has lead in developing
quantitative methodologies for quality improvement. In the following section,
we examine the rationale behind off-line quality control and discuss the tech-
niques through which it is implemented. In Section 4.3 we examine the
minimization of variability in the manufacturing process, employing the Six
Sigma methodology for relating process quality control to design specifica-
tions.

4.2 THE TAGUCHI METHODOLOGY

To gain an understanding of off-line quality control we first formulate quality
in terms of the Taguchi loss function. We then examine his approach to
robust design: design that decreases performance sensitivity to the variabilities
introduced by manufacturing, operating environment, or deterioration. Fi-
nally, we briefly outline the experimental design formalism through which
the designs of both products and manufacturing processes may be optimized.
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Quality Loss Measures

To access the quality of a product the optimized target values of the perfor-
mance characteristics are compared with the distribution of values that has
actually been achieved in the production process. The characteristic variability
is represented by a probability density function, say f{x), where x, the charac-
teristic, is a continuous random variable. Since the variability most often results
from many small causes in the manufacturing processes, no one of which is
dominant, f(x) is frequently represented by a normal distribution,

I

with a mean w and a standard deviation o.

This probability distribution must be compared to a target value and to
the specification limits to assess the quality achieved. Suppose that 7 is the
characteristic target value, and the specification is that x has a value within
the interval 7+ A. The upper and lower specification limits are then defined by

ISL=7—~ A and USL= 71+ A.

Often the distribution mean is assumed to be on target (i.e., w = 7), and the
tolerance limits are taken to be roughly three standard deviations above and
below the target. This situation is shown in Fig. 4.1a. Using the CDF for the
standard normal distribution, we can see that the fraction of product for
which the characteristic is out of specification is 2 ®(—A/0). According to
the classical interpretation of the specification limits, any product with a
characteristic falling between the LSL and USL is equally acceptable. This
implies that no quality loss is incurred so long as x lies between these limits.
Conversely if the characteristic falls outside the limits, it is unacceptable. If
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(a) (b)
FIGURE 4.1 Normal probability distribution (a) with tolerance limits (b) with tradi-
tional quality loss.
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L, is the loss in dollars associated with failure to meet the tolerance per
product, then we may define a quality loss function according to

L, x<LSL
L(x) =40, LSL=x= USL;, (4.2)
L, x>USL

which is shown graphically in Fig. 4.16. Note that the expected quality loss
per product is defined by

L= fL(x)f(x) dx. (4.3)

Thus using Eq. 4.2 and the centered normal distribution, we obtain
L=2L®(—A/0). (4.4)

The loss function pictured in Fig. 4.15is sometimes characterized as the goal-
post philosophy: If you kick the ball anywhere between the goal posts the
quality reward is the same, i.e., zero quality loss. Taguchi argues that this is
not realistic. Any deviation from the design target is undesirable, and the loss
in quality grows continuously with the deviation from the target value.

Some illustrations demonstrate the weakness of the goal-post loss func-
tion. Consider the three distributions shown in Fig. 4.2, all of which have
roughly the same expected value of the goal-post loss function (ie., L,
multiplied by the area under the curve outside of the specification limits).
They have, however, very different quality implications. Case a is what one
would normally expect: a normal distribution with & = 7. In case b the mean
is on target, but the variance has increased significantly as a result of the
change in the distribution’s shape. The distribution for case c is normal, and
the variance has decreased significantly from case a. Now, however, the mean
is shifted downward substantially from the target value. Taguchi illustrates
the quality losses incurred in cases b and ¢ through two frequently-quoted
case studies.*

Color TV tubes were produced at two locations under a single set of
specifications. It was determined, however, that at the second location many

Lo Lo Lo Lo Lo~l/\ Lo
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(a) ) (c)
FIGURE 4.2 Traditional quality loss for (a) unbiased normal distribution, (b) unbiased non-
normal distribution (c) biased normal distribution.

* G. Taguchi and Y. Wu, Introduction to Off-Line Quality Control, Central Japan Quality Control
Association, Nagaya, 1979.
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more customer complaints were recorded about the picture being dim or
about premature tube burnout caused by too bright a picture. A detailed
study of the tube brightness revealed the problem. The first plant’s brightness
distribution was normally distributed about the target values as shown in Fig.
4.2a. The second plant’s distribution was nearly uniform as shown in Fig.
4.2b. Thus, even though the tubes from the second plant were within the
goal-post specifications, large numbers of sets were produced near the upper
or the lower specification limits, and it was these sets that were causing com-
plaints. The consumer did notview the sets in terms of go /no-go specifications.
For even within the specified limits, increased deviations from the optimum
brightness caused increased numbers of dissatisfied customers.

Figure 4.2c¢illustrates a quality problem associated with Polyethylene film
produced in Japan for use as greenhouse coverings. The film needed to be
thick enough to resist wind damage but not so thick as to prevent the passage
of light. To satisfy these competing needs, the specification stated that the
thickness should be 1.0 mm * 0.2 mm. The producer made the film thinner
in order to manufacture additional square meters of the film at the same
materials cost. Since the film thickness could be controlled to *.02 mm
consistently, the nominal thickness was reduced from 1.0 mm to 0.82 mm.
The ability to produce the film within 0.02 mm of the nominal assured that
the product would still meet specifications while at the same time yielding a
significant savings in the required amount of polyethylene feed stock.

Strong typhoon winds, however, destroyed a large number of greenhouses
in which the film was used. The replacement cost of the film had to be paid
by the customer, and these costs were much higher than expected. The film
producer had failed to consider that the customer’s cost would rise while the
producer’s fell. The film was of poor quality and reliability. For even though
there was a small variability in the production process, the decrease in the
nominal thickness caused the film to be more susceptible to failure under
the extreme environmental stress caused by the typhoon.

Experiences such as these prompted Taguchi to formulate a continuous
loss function that more closely represents the quality degradation associated
with increased deviation from the performance characteristic target value:

L(x) = k(x — 1)%, (4.5)

where the coefficient is determined by setting the loss equal to L, at both
lower and upper specification limits as indicated in Fig. 4.3a. Lo = kA? so that

k= L,/A% (4.6)

With this loss function the expected loss accounts for both deviations of the
mean from the target value and variability about the mean. Moreover, the
expected loss evaluation does not require f(x) to be normally distributed. To
demonstrate, we substitute the Taguchi loss L(x) into Eq. 4.3:

1= fk(x— )2 f(x) dx. (4.7)
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L(x) L(x)
Lo — L
0 x 0 x
LSL T USL 4 0 usL LSL
Target value Smaller-Is Better Larger-Is Better
(@) ) (c)

FIGURE 4.3 Taguchi loss functions.

If we write x — 7= (x — u) + (u — 7), the expected loss may be recast as

L= [ (o= dx+20u = 1) [ (x= ) fx) d
(4.8)
+ (u = )* [ fx) dx

With the definitions of w and o and the normalization of the probability
density function defined in Chapter 3, the first term becomes the variance,
the second vanishes, and the third is referred to as the bias. We obtain

L=Fko?+ (u— 72 (4.9)
Hence, only the mean and variance of the characteristic distribution f(x) are

required to evaluate the expected value of the loss function.

EXAMPLE 4.1

The specification for a shaft diameter is 10 * 0.0 cm. The diameter distribution of
manufactured shafts is known to be normal, but it is found that 1.5% of the shaft
diameters are greater than the upper specification limit and 0.04% are smaller than
the lower specification limit. If the cost of producing an out-of-tolerance shaft is $3.50,
what is the expected value of the Taguchi loss function?

Solution ®[(10.01 — w)/o] = 1.0 — 0.015 = 0.985, ®[(9.99 — w)/c] = 0.0004
Thus from Appendix C: (10.01 — wu)/o = 2.17, (9.99 — w)/o = —3.35, Hence,
u + 2170 = 10.01 and pu — 3.350 = 9.99. Solve for u = 10.002, and o = 0.0036.
Since the specification half width is A = 0.01 we may combine Egs. 4.6 and 4.9 to obtain:

$3.50
0.012

L= [(0.0036)2 + (10.00 — 10.002)2] = $0.60

For the many situations where the performance characteristic should be
minimized, such as in fuel consumption, emissions, or engine noise, only an
upper specification limit, USL is set. For these situations, Taguchi defines the
smaller-is-better loss function as

L(x) = kx?, (4.10)
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where £ is determined by equating the loss function to the quality loss at the
USL, as indicated in Fig. 4.36. Thus

k= (USL)L,. (4.11)
The expected loss is obtained by combining Egs. 4.3 and 4.10

7= kf: X2 f(x) dx. (4.12)

EXAMPLE 4.2

The distribution of a contaminant in an industrial solvent is known to be approximated
by an exponential distribution. If 0.5% of the solvent containers are found to exceed
the upper specification limit and must be discarded at a cost of $12.00 per container,
what is the expected value of the Taguchi loss function?

Solution From Eq. 3.88 we have F(USL) = 1 — ¢ "% = (0.995 or ¢ " = 0.005.
Thus USL/6 = In(1/0.005) = 5.298. Then from Egs. 4.11 and 4.12:

$12.00 (= x’ _ $12.006°

L= "2 vt gy

USL? Jo 6~ USL?
Thus L = $12.00(5.298)72 - 2 = $0.95.

: E2¢7¢dE = $12.00(USL/ 0) % - 2

For performance characteristics where larger-is-better, such as strength,
impact resistance, computing speed, or carrying capacity, only the lower speci-
fication limit, LSL, is designated. The Taguchi loss function is then

L(x) = kx%, (4.13)

with %k determined by setting the loss function equal to L, at the LSI, as
indicated in Fig. 4.3¢. Hence,

k= (LSL)L,, (4.14)

and the expected loss is

I-= kf: x2f(x) dx. (4.15)

EXAMPLE 4.3

The strength of components made of a new ceramic are found to be Weibull distributed
with a shape factor of m = 4 and a scale parameter of 6 = 5001b. The lower specification
limit on strength is 100 Ib. What is the expected Taguchi loss if each failed specimen
costs $30.00?

Solution  Inserting the Weibull distribution from Eq. 3.75 into Eq. 4.15, we have,
for m = 4, L= LyLSL26™ [ xe™®%" dx. Changing variables, z = \/2-(x/ 0)? and multi-
plying numerator and denominator by V2, we can express the integral in term of
the CDF of the standard normal distribution. Hence:

1

_112
Vo e ? dz= LyV2m LSL207*® () = L,V 2r LSL*672
T

T = L,LSL*69V 27 j :
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Therefore:
L =$30.00 - V2r - 1002 - 50072 = $3.01.

In the quest for high conformance, reducing quality loss for smaller-is-
better and larger-is-better performance characteristics is equivalent to charac-
teristic minimization and maximization, respectively. Many performance char-
acteristics fall into one of these two classes. The situation is more complex
for target characteristics, for as indicated in Eq. 4.9, one must reduce the
quality loss which arises both from the variance and bias terms, o2 and (u —
7)%, respectively. Target characteristics appear frequently in product design,
but they are more prevalent in the design of manufacturing processes. In
order to obtain product characteristics that are maximized or minimized, it
is necessary for the process parameters to be on target. For example, to
maximize engine power or minimize fuel consumption, a plethora of dimen-
sional and materials design parameters must be produced with precision. But
to accomplish this, manufacturing processes must be designed such that their
performance characteristics (i.e., their ability to produce precision dimen-
sions, coating thicknesses, alloy compositions, etc.) are on target, with very
little variability.

A basic premise of Taguchi methodology is that it is much easier to
eliminate bias from the target characteristics than to reduce the variance.
Thus quality improvement is achieved most effectively by first concentrating
on variance reduction, even if a side effect is to increase the bias. Once the
variance is reduced, the removal of the bias is more straightforward. The plastic
sheet problem discussed earlier provides a transparent example. Achieving a
small variance in the thickness requires precision sheetforming machinery
and careful control of the composition of the polymer feed stock and of
the temperature, pressure, and other process variables. Changing the mean
thickness of the sheet, however, required only a single change of process
parameter for the forming machinery. This two-step approach for reducing
variability in performance characteristics serves as a basis for the robust design
methodology that we treat next.

Robust Design

A robust design may be defined as one for which the performance characteris-
tics are very insensitive to variations in the manufacturing process, variability
in environmental operating conditions, and deterioration with age. Taguchi
designates these factors as product noise, outer noise, and inner noise respec-
tively.* Likewise, in his writings he frequently refers to performance character-
istics as functional or product characteristics. In attempting to develop highly
robust products it is useful to distinguish between the techniques that may
be employed during the conceptual and detailed design phases.

*# G. Taguchi, Iniroduction to Quality Engineering, Asian Productivity Organization, 1986 (Distributed
by American Supplier Institute, Inc., Dearborn, MI).
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In conceptual design the specifications of customer needs and desires
are translated into a product concept. The physical principles to be employed,
the geometrical configuration, and the materials of construction are deter-
mined in this stage. In a conceptual engine design, for example, the fuel to
be burned, the number of cylinders, the configuration (opposed or V) the
coolant (water or air) and the engine block material would be included among
the host of issues to be settled. Each decision made in the conceptual design
process has quality and reliability implications that are fixed once the product
concept has been delineated. Concepts requiring fewer and simpler parts may
reduce susceptibility to manufacturing variability. Configurations conducive
to natural convection may reduce sensitivity to environmental temperature
changes. And judicial materials selection may stave off deterioration from
corrosion, warpage, or fatigue. Even with the conceptual design complete,
however, much remains to be done to make a product more robust.

The conceptual product design, often existing as a set of sketches, config-
uration drawings, models, and notes is transformed through detailed design
to a set of working drawings and specifications that are sufficiently complete
so that the product—or at least a prototype—can be built. Within detailed
design a distinction is frequently made between parameter and tolerance
design, since each dimension, material composition, or other design parame-
ter must have tolerance limits associated with it before the task is complete.

The Taguchirobust design methodology focuses on choosing mean values
of the design parameters such that the product performance characteristics
are made less sensitive to parameter variance. If this is accomplished, the
performance sensitivity to manufacturing variability will be reduced. Likewise,
since the design parameters tend to vary with temperature and other environ-
mental conditions as well as with wear, sensitivity to environmental and aging
effects also will be reduced. The product quality is thus increased and a
concomitant increase in reliability may be expected. This is a more intelligent
approach than reducing performance variability simply by specifying tighter
design parameter tolerances. Tighter tolerances will increase manufacturing
costs and they are notlikely to decrease performance sensitivity to environmen-
tal or aging effects.

The two-step robust design methodology is illustrated schematically in
Fig. 4.4a, b and c. Initially, as indicated in Fig. 4.4a, the mean value of the
performance characteristic is on target, but the variance is too large. First,
optimize the value of one or more design parameters to minimize the perfor-
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FIGURE 4.4 Distribution of performance characteristic x.
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(a) (b)

FIGURE 4.5 Performance characteristic x vs. (a) design parameter A, (b) design parameter B.

mance sensitivity to the value of that parameter, regardless of the effect on
the performance mean. To achieve this transformation a design parameter
must be identified for which the performance characteristic displays a nonlin-
ear response. Such a situation is shown in Fig. 4.5a where increasing the value
of the design parameter A, increases the mean value of the performance
characteristic x, but decreases the variance in x. Success in this effort leads
to a performance distribution such as that shown in Fig. 4.45, were the variance
is greatly reduced, though a large positive bias from the target value has been
introduced. Second, identify an adjustment parameter to bring the mean back
on target without increasing the variance. The result is shown in Fig. 4.4c.
Such a parameter must have a linear effect on the performance characteristic.
As indicated in Fig. 4.56, increasing the parameter B will increase the mean
value of the performance characteristic x, while leaving its variance unaffected.

Two examples—one electrical and the other mechanical—illustrate the
foregoing procedure.* Consider first a circuit that is required to provide a
specified output voltage. This voltage is determined primarily by the gain of
a transistor and the value of a resistor. The transistor is a nonlinear devise.
As a result, graphs of output voltage versus transistor gain appear as the two
curved lines shown in Fig. 4.6 for resistor values R, and R,. Suppose the
prototype design achieves the target voltage, indicated by the arrow, with
resistance R, and transistor gain G, as shown. The inherent variability in the
transistor gain depicted by the bell-shaped curve about G,, however, causes
an unacceptably wide distribution of output voltages as indicated by curve a.

Improving performance quality directly through tolerance reduction is
difficult, because a substantially higher quality component—the transistor—
would be required to reduce the width of the curve centered about G,, thus
increasing costs. In robust design, parameter values are used to improve

* P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1988.
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voltage
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Transistor gain

FIGURE 4.6 Output voltage vs transistor gain. (From Ross, P. Taguchi Techniques for Quality En-
gineering, pgs. 176, 178, 258, McGraw-Hill, New York, 1988. Reprinted by permission.)

performance quality before the tightening of tolerances is considered. To
accomplish this we again follow the two-step procedure of decreasing variance
and then removing bias. If we operate the transistor at a higher gain, at point
G2, the gain variance will also increase as indicated by the normal distribution
about G,. Nevertheless, the nonlinear relationship between gain and output
voltage causes the output voltage distribution, given by curve b, to have a
much narrower distribution.

Increasing the gain in going from case a to case b introduces a large
positive bias in the output voltage. We must now proceed with the second
step to eliminate this bias. After examining several possible values of the
resistance, we choose the value R, that results in the lower voltage versus gain
curve plotted in Fig. 4.6. The resistance R, brings the output voltage back on
target, and as indicated by curve c, the narrow spread in the output voltage
is maintained. Thus we have achieved a smaller quality loss in the performance
characteristic without resorting to the use of a higher quality—and therefore
more expensive—transistor.

Finally, note that in addition to allowing a lower quality component to
be used, the forgoing parameter optimization reduced the effects of operating
environment and transistor aging on the output voltage. Since the transistor
gain is likely to be somewhat effected by the ambient temperature, reducing
the output voltage sensitivity to the gain also reduces its sensitivity to ambient
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temperature. Likewise, the output voltage in the improved design is less sensi-
tive to the drifts in transistor gain, which are likely to be a result of aging.

The engine, metal, oil-fill tube and associated rubber cap pictured in Fig.
4.7 provides a second instructive example. The cap must be easy to remove
or install. It must also seal the tube against the engine crankcase pressure.
Consequently, the force required to release the cap must be small enough
for any owner to remove and insert the cap easily, but large enough that the
crankcase pressure will not be capable of blowing the cap off under foreseeable
operating conditions. Thus, the required release force is a performance char-
acteristic. The vertical axis of Fig. 4.8 shows the upper force limit determined
by minimum user strength and the lower force limit determined by maximum
crankcase pressure; the target is centered between the limits.

The force resisting installation or removal results from the crimped ridge
in the metal tube over which the rubber cap must deflect. The cap can be
removed or inserted only when it deflects sufficiently for its outside diameter
(OD) to become less than the inside diameter (ID) of the crimp in the tube.
Roughly speaking, the force required is proportional to the product of the
required deflection and the cap stiffness. The resisting force can thus be
increased by increasing the difference between the cap OD of the tube crimp
ID. The required force can also be made larger by observing that the cap
stiffness increases with wall thickness.

The deflection is much more difficult to control than the stiffness. The
stiffness predominantly depends on the wall thickness, which is easily con-
trolled within a small percentage variation. The required deflection is deter-
mined by a small difference in diameters that is likely to be very sensitive to
variability in the manufacturing process. It will also be sensitive to environmen-
tal conditions since different coefficients of thermal expansion are likely to
change the necessary deflection with temperature.

Two force versus deflection curves are shown in Fig. 4.8 for different
wall thicknesses and therefore for different cap stiffness. The initial design
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FIGURE 4.7 Engine oil fill tube and cap. (From
Ross, P. Taguchi Techniques for Quality Engineering,
pgs. 176, 178, 258, McGraw-Hill, New York, 1988.
Reprinted by permission.)
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FIGURE 4.8 Cap removal force using parameter design.
(From Ross, P. Taguchi Techniques for Quality Engineering, pgs.
176, 178, 258, McGraw-Hill, New York, 1988. Reprinted by
permission.)

corresponds to the high stiffness curve, which results in an unacceptably
wide force distribution spread about the target characteristic. The stiffness is
decreased by making the wall thickness of the cap smaller. This reduces the
spread in the force distribution significantly. However, if the same ID and
OD are retained, the result is a mean force that is too small to resist the
crankcase pressure. If the required deflection is then increased by increasing
the ID-OD difference, the mean force is brought back on target. As indicated
in Fig. 4.8, a design is then achieved in which the variability in the performance
characteristic is decreased by changing parameters, but without tightening
manufacturing tolerances.

Manufacturing processes as well as the products themselves can be im-
proved greatly through the use of the robust design methodology. By setting
the process parameters to minimize the variability in the process output,
higher quality parts and components are obtained without a commensurate
increase in cost for manufacturing equipment. Moreover, in process optimiza-
tion, it is often clear from the beginning what factor can be used for the
adjustment; it is often the length of time that the process is applied. To
illustrate, consider a spray coating operation. The thickness of the coating is
specified within a very narrow tolerance interval, i.e., a very smooth finish is
required. Suppose that the variability in the coating thickness is sensitive to
the temperature at which it is applied to the surface. The process engineer
first varies the application temperature and determines the temperature at
which the variance in the thickness is minimized. She then adjusts the spray
time until the mean thickness coincides with the target value.

The Design of Experiments

The robust design examples considered thus far could be illustrated graphi-
cally because in each case two identifiable design parameters are manipulated
to reduce the variance of the performance characteristic and return the mean
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to the target value. More often, however, many parameters interact in de-
termining the behavior of each performance characteristic. It is often unclear
which of these are important, and which are not. This situation arises fre-
quently regardless of whether the performance characteristic is of the larger-
is-better, smaller-is-better, or target value variety.

In some situations the relationships between parameters and the perfor-
mance characteristics may be studied through computer modeling. This is
often the case, for example, in circuit analysis and in the many mechanical
stress problems that are amenable to solution by finite element analysis. In
other situations, however, understanding of the process has not reached the
point where computer simulation can be utilized effectively. Then, experi-
ments must be performed on product or process prototypes, and the perfor-
mance evaluated with different sets of parameters. In either event—whether
the experiments are computational or physical—efficacy demands that the
optimal parameter combination be found with the fewest experiments possi-
ble, because the cost of the optimization effort tends to rise in direct propor-
tion to the number of experiments that must be performed.

Picking parameters by trial and error would be an exceedingly wasteful
effort and would not likely come close to the optimal conditions within a
reasonable number of trials. Varying one parameter at a time is more system-
atic, but is still relatively inefficient. Moreover, false conclusions may be
reached if the factors interact with one another. This can be illustrated with
a simple two-parameter case. Suppose we represent a performance characteris-
tic as the elevation in the contour plots shown in Fig. 4.9. The design parame-
ters, x and y, are to be selected to maximize the characteristic. Thus, the
object of the experimentation is to locate the point marked by a #. The
fundamental difference between Fig. 4.9¢ and b is that the contour ellipses
in Fig. 4.96 appear to be rotated with respect to the axes, while those in Fig.
4.9a are not. In statistical terms the parameters are said to interact in Fig.
4.9b, while those in Fig 4.9a do not.

Changing a single variable at a time will successfully find the optimum
in Fig. 4.94, where there are no interactions. Starting at (x, y,), we first vary
x by performing a number of experiments while holding y constant at a value
¥ = Y. Assume a maximum at x; is found. Then y is varied by doing an
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FIGURE 4.9 Performance characteristic contour maps for design parameters x and y (a) no
interaction between x and y (b) interaction between x and y.
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additional set of experiments while holding x constant at x = x,. The maximum
found at y = y,, and indeed the optimal value, is at (x;, y;).

This procedure will give a false result in Fig. 4.94, however, where an
interaction is present. Starting at (X, y) we again vary x, holding y constant
aty = y, and find a maximum at x,. But now varying y with x = x, yields a
maximum at y,, but (x;, y) is far from the optimal point marked with a #.
In this situation one would need to iterate several times, next holding y = y,
and searching for the maximum x,, then holding x = x, and searching for
the maximum y = y,, and so on. The number of experiments required and
therefore the cost of the exercise could soon become prohibitive.

This simple two parameter problem indicates experiments in which only
one variable changes at a time are ineffective when statistical interactions exist
between parameters. The weakness becomes more pronounced as the number
of design parameters increases. As a result, more powerful strategies have
been developed in which all of the parameters are changed simultaneously
in order to reduce the total number of experiments needed to locate the
optimum. These strategies are collectively referred to as designed experiments.

The most complete of the designed experiments is the full factorial
experiment in which m values, called levels, of each parameter are used in
all possible combinations. Consequently, if there are n parameters, a full
factorial experimental design requires that m" experiments be performed. For
the two-parameter example above, 4 experiments would be required with 2
levels, 9 with 3 levels and so on. When several parameters must be examined,
the number of required experiments rises very rapidly. A two-level experiment
with ten parameters, for example, requires 2'° = 1024 experiments. Even if the
experiments consist of computer simulations, the numbers can soon become
excessive. One strategy for reducing the number of experiments without
commensurate loss of information is the fractional factorial experiment.

The difference between full factorial, fractional factorial, and single pa-
rameter at a time experiments is illuminated by examining three parameters,
with two possible values (or levels) for each. The three strategies are shown
schematically in Fig. 4.10 where the dimensions correspond to the parameters.
Experiments are run for the (x, y, z) combinations indicated by solid circles

Y

FIGURE 4.10 Three factor experimental designs: (a) full factorial, (b) half factorial, (c) one-
factor at a time,
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and are omitted where the open circles are shown. Thus, Fig. 4.104 is a full
factorial design, with the 2° or eight experiments corresponding to all possible
combinations of the low and high level of each parameter. Only four experi-
ments are run using either the half-factorial design in Fig. 4.106 or the single
parameter at a time variation in Fig. 4.10¢. Note that in the fractional factorial
design there are two experiments done at the high and at the low level of
each parameter, whereas in the single-parameter-at-a-time design two experi-
ments are performed at the low level of x, y and z, but only one at the high
level of each of these parameters.

Comparisons of Fig. 4.106 and ¢ allow us to examine how more effective
use is made of a given number of experiments in the half factorial designed
experiment than by changing a single parameter at a time. Assume we want
to maximize the value of a performance characteristic 7. To determine the
effect of the parameter x using the single parameter at a time experiment in
Fig. 4.10¢, we calculate the difference between the two experiments for which
yand z are held constant:

An,=m — M. (4.16)

Consequently, only two experiments are utilized. In contrast, the partial facto-
rial design of Fig. 4.105 utilizes all four experimental results; we compute the
effect as an average difference between experiments in which x is at level 2
and at level 1,

An.= (g + ms — m — ms)/2. (4.17)

The use of more experiments reduces the effects of the noise due to random
errors in individual measurements. It also tends to average out effects due to
changes with respect to y and z, since both high and low level values of y and
z are included. The same argument applies to determining the effects of the
y and z parameters. The fractional factorial design also allows one to estimate
the effects of selected statistical interactions between variables.

Fractional factorial experiments become more valuable as the number
of parameters increases and the number of levels per parameter is increased
to three or possibly more. They eliminate many of the difficulties of single-
parameter-at-a-time experiments but require many fewer trials than a full-
factorial experiment. Taguchi has packaged techniques for performing frac-
tional factorial experiments in a particularly useful form called orthogonal
arrays. Moreover, he has coupled the parameter selection with techniques for
including the noise arising from temperature, vibration, humidity, or other
environmental effects.

Figure 4.11a is an example from the collection of orthogonal arrays
provided by Taguchi for dealing with different numbers of parameters and
levels. For this three-level experiment the effects of four design parameters
are to be studied. A full-factorial experiment would require 3* = 81 trials.
The array shown in Fig. 4.11a reduces the number of trials to nine, each
represented by a row of the array. The columns represent the four design
parameters, with the entries in each column representing the test level for
that parameter in each of the nine experiments. Observe that each level for
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Design Noise
Parameters Factors
Run# 6, 63 6. 6, Wy W, W3
1 11 1 1 1 1 1
2 1 2 2 2 1 2 2
3 1 3 3 3 2 1 2
4 2 1 2 3 2 2 1
5 2 2 3 1
6 2 3 1 2
7 31 3 2
8 3 2 1 3
9 3 3 2 1

FIGURE 4.11 Orthogonal arrays: (a) three-
level design parameter array, (b) two-level
noise array.

each parameter appears in the same number of experiments: level 1 of 8, for
example appears in trials 1, 4 and 7; level 2 in trials 2, 5 and 8; and level 3
in trials 3, 6 and 9.

The balance between parameter levels in the orthogonal array allows
averages to be computed that isolate the effect of each parameter by averaging
over the levels of the remaining parameters. Procedures for estimating the
effects of each of the parameters on the performance characteristic n are
sometimes referred to as analysis of means (or ANOM). Suppose that 7, 7y,
73, - . . My are the results of the nine experiments. Let 7, be the performance
characteristic averaged over those experiments for which 8, is at level one,
a2 over those experiments for which 6, is at level two, and so on. We then have

MNa = (M + M2+ M3)/3,
N = (N + M5+ M6) /3, (4.18)

Mas = (M7 + ns + Mo) /3.
Similarly we would have

N = (m +mns+m7)/3 (4.19)
and so on.

Plots are instructive in determining the main effect of each parameter
on the performance characteristic. To determine the effect of 6,, we plot
1> Mo and 7,3 versus the value of 6, at each of the three levels. If the result
appears as in Fig. 4.12a, there is no effect on the performance characteristic,
and the value of 6, may be chosen on the basis of cost. If the plot appears as
in Fig. 4.12b or ¢, however, there is a significant effect. Then, since the object
of this particular exercise is to maximize 7, the value of 6, that corresponds
to the largest value of 1 should be chosen. The procedure is illustrated with
the following example.
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FIGURE 4.12 Performance characteristic vs. design parameters.

EXAMPLE 4.4

A manufacturer of filaments for incandescent lamps wants to determine the effect of
the concentration of two alloy metals and of the speed and temperature at which the
filaments are extruded on the filament life. A three-level experiment is to be used.
The three levels of parameters 8, and 6; are the concentrations of alloy metals A and
B, parameter 6 is the extrusion speed, and parameter 6, the extrusion temperature.
Levels 1, 2, and 3 correspond to low, intermediate, and high values of each parameter.
Nine sets of specimens are prepared according to the parameter levels given in Fig.
4.11a. Each experiment consists of testing the thirty specimens to failure and recording
the mean time to failure (MTTF) for that set. The resulting MTTFs for the nine
experiments are: 105, 106, 109, 119, 119, 115, 129, 122, 125 hr.

Determine which parameters are most significant and estimate the optimal factor
levels to maximize filament life.

Solution Calculate the three level averages for parameter 6, from Eq. 4.18, and
the averages for 6, ¢, and 6, can be obtained analogously:

na = (105 + 106 + 109)/3 = 106.7 nm = (105 + 119 + 129)/3 = 117.7
ne = (119 + 119 + 115)/3 = 117.7 ng = (106 + 119 + 122)/3 = 115.7
N = (129 + 122 + 125)/3 = 125.3 nm = (109 + 115 + 125)/3 = 116.3

na = (105 + 115 + 122)/3 = 114.0 N = (105 + 119 + 125)/3 = 116.3
Ne = (106 + 119 + 125)/3 = 116.7 npe = (106 + 115 + 129)/3 = 116.7
Ne = (109 + 119 + 129)/3 = 119.0 nps = (109 + 119 + 122)/3 = 116.7

If

Graphs showing the main effects of the four parameters are shown in Fig. 4.13. Clearly
parameter 6, is most significant, and whereas 65, and 6. have significantly less effect,
0p has virtually no effect on the results. To maximize the MTTF, 6, should be set at

ny ng ne np
I _ .
— *————o / [ —
S
o
S | | | A | | | B | | | c | | | D
1 2 3 1 2 3 1 2 3 1 2 3

FIGURE 4.13 Performance characteristic vs. design parameters for example 4.4.
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level 3, 0 and 6. at levels 1 and 3, respectively; 6, can be determined strictly on the
basis of cost.

The foregoing procedure provides a means of determining which factors
have the largest effects on performance. It also allows the optimum settings
for the various parameters to be determined. Thus far we have implicitly
assumed, however, that all the factors are significant. No quantitative method
has been provided for determining whether the changes in parameter level
are significant or are just the result of random effects or measurement errors.
In the foregoing example, for instance, repeated measurements of the MTTF
for a given set of the four parameters would not be expected to yield identical
results, since the time-to-failure is an inherently random variable. By averaging
over many measurements this randomness is reduced, but it still may be
significant. Thus the following question must be addressed: Are the changes
that occur with different parameter levels significant, or would changes of
comparable magnitude occur if the experiments were repeated with a single
set of parameters?

Such questions, related to the determination of which effects are signifi-
cant and which are not, can be addressed with a powerful statistical technique
referred to as the analysis of the variance or ANOVA. The step-by-step proce-
dures of applying ANOVA to the results of partial-factorial experiments may
be found in a number of texts, but are too lengthy to be treated here. Suffice
it to say that the techniques are extremely valuable in the early stages of
designed experiments, where many design parameters must be screened to
determine which have a significant impact on performance, and which can
safely be ignored in optimization studies.

Arrays such as that shown in Fig. 4.11a are often called design arrays,
and the design parameters 6, 65, 0, 6 are referred to as control factors in the
Taguchi literature, since they can be prescribed by the designer. Frequently, it
is desirable also to understand the sensitivity of the performance characteristic
to those environmental factors that cannot easily be controlled under field
conditions: ambient temperature, humidity, and vibration, for example. For
such situations a second orthogonal array, referred to as a noise array, is
added to the experimental procedure. Standard nomenclature is then to
designate design and noise arrays as inner and outer arrays, since they deal
with what Taguchi defines as product and outer noise: noise due to parameter
and environmental variability, respectively.

An example of a noise array—this one being a two-level array for three
environmental noise factors—is shown in Fig. 4.115. In order to do the parame-
ter optimization with this noise array included, each of the nine experiments
with different parameter combinations must be repeated four times with the
noise levels specified in the outer array. Thus 36 trials must be carried out.
If w; is temperature and levels one and two are 50°F and 100°F, then for each
of the nine parameter combinations the first and third runs would be at 50°F
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and the second and fourth at 100°F. The analysis would then be the same as
with Eq. 4.18, but now each of the values of 7, on the right of these equations
would be averaged over the four runs corresponding to the rows of the
noise array.

Carefully designed experiments typically take place in three-phase proto-
cal. In the first, several design parameters—perhaps ten or more—are
screened using a two-level orthogonal array. The ANOVA then identifies the
two to four design parameters and their interactions that are most important
in determining the performance characteristic 7. The second phase then
involves performing experiments with a three-level array only for the design
parameters that are found to be most significant. The ANOM of the second
phase experiments then estimates of value of the performance characteristic
and the optimal combination of design parameters. The third and final phase
consists of a confirmation experiment to assure that the predicted value of 0
is achieved with the design parameters that have been selected.

Taguchi, adopting terminology common in electrical engineering, speci-
fies m, the quantity to be maximized, not as the performance characteristic
itself, but as the signal-to-noise or S/N ratio. For larger-is-better or smaller-is-
better performance characteristics, 1 is expressed in terms of the expected
quality loss L given by Eq. 4.15 or 4.12 respectively, as the logarithmic rela-
tionship

n = —10 log,o(L?). (4.20)

In the discussion of robust design emphasis is placed on the two step
procedure in which design parameters are first selected to reduce the variance
of the performance characteristic about the mean, even if a shift in the mean
results. In using designed experiments based on orthogonal arrays for this
purpose, Taguchi recommends that the ratio u/o, the inverse of the coeffi-
cient of variation for the characteristic distribution f(x), be used as a basis
for the signal to noise ratio

n = —10 logiy(a®/u*) (4.21)

Once design parameters have been chosen to maximize this signal-to-noise
ratio, an adjustment factor is employed to bring u back on target. A number
of other signal-to-noise ratio’s are also defined in Taguchi’s writing for the
analysis of differing forms of the loss function.

4.3 THE SIX SIGMA METHODOLOGY

Thus far we have discussed the measurement of quality loss. We have also
examined robust design methods for minimizing the effects of variability
in parts fabrication and assembly on the performance characteristics. The
achievement of a robust design allows the specification limits on parts dimen-
sions, materials composition, and the myriad of other parameters that appear
on shop drawing and specifications to be less stringent without a commensu-
rate loss of reliability. Nonetheless, while good design will reduce the cost of
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the manufacturing processes, those processes still must be implemented to
reduce the number of parts that do not meet specifications to very small
numbers. For as products become more complex, the number of parameters
that must fall within specification limits increases rapidly. To deal with this
challenge, process capability concepts and the stringent requirements associ-
ated with them must be understood.

After providing some basic definitions, we examine the six sigma criteria
which are increasingly coming into use for the improvement of product qual-
ity. Although the terminology and notation is somewhat different than that
used in defining Taguchi loss function concepts, the approaches have much
in common, for they take into account the related problems of reducing
process variability and maintaining the process mean on target. Taguchi analy-
sis is aimed primarily at off-line quality control; it targets the design of products
and manufacturing processes to make performance as insensitive to part
variability as possible. The six sigma methodology is focused primarily on
controlling manufacturing processes such that the production of an out-
of-tolerance part is an exceedingly rare event. In the analysis the normal
distribution is a widely assumed model for parameter variability. This is justifi-
able, since variability in such parameters tends to arise from many small causes,
no one of which is dominant.

Process Capability Indices

The basic quantity about which much of the analysis is centered is the capability
index, C,. It is the ratio of the specification interval,

USL — LSL = 2A (4.22)

to the process variability. The process parameter is assumed to be distributed
normally, with the variability represented by 60, six times the standard devia-
tion. Thus

C, = (USL — LSL)/6o0. (4.23)

The factor 6 is employed since traditionally specification limits have been
most often taken to be three standard deviations above and below the target
value. Equation 4.22 may be used to eliminate the USL and LSL and express
the capability index in terms of the specification half-width A. We then have

C, = A/3a. (4.24)

The definition of the capability index assumes that the mean value of
the parameter x is the target value, causing the distribution to be centered
between the tolerance limits as indicated in Fig. 4.14. Since x is assumed
to be normally distributed, the fraction of out-of-specification parts can be
determined from @, which is the CDF of the standardized normal distribution
defined in Chapter 3. Of the parts that don’t meet specifications, half will
have values of x << 7 — A and the other half will have values of x > 7 + A.
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FIGURE 4.14 Capability index C, for normal distributions.

Thus introducing the reduced variant

2= (x— u)/o, (4.25)
and taking x = 7 — A at the lower specification limit, we obtain z = — AJo.
If we use Eq. 4.24, we may write z in terms of C,;: z = —3C,. The fraction of

rejected parts is then twice the area under the normal CDF to the left of the
LSL. Hence

p = 2®(—z) = 2P(-3C,). (4.26)
The corresponding yield is defined as the fraction of parts accepted:
Y=1-20(-3C). (4.27)

From the definition of the capability index and the assumption of a centered
normal distribution, a value of C, = 1.0 corresponds to 0.27% out-of-tolerance
parts, or a yield of ¥ = 99.73%. As indicated in Fig. 4.14, a larger capability
index implies that the fraction of items out of specification is smaller, while
a smaller index corresponds to a larger fraction being outside the specifica-
tion interval.

The capability index C, is used as a measure of the short term or part-
to-part variation of parameters against the specification interval. For example,
if metal parts are being machined, no two successive parts will have exactly
the same dimension. Machine vibrations, variability in the local material prop-
erties, and other random causes result in the part-to-part spread that gives
rise to the normal distribution. If these short term variations are completely
random, however, the distribution mean should remain equal to the target
value.

Over longer periods of time more systematic variations in the manufactur-
ing process are likely to cause the distribution mean to drift away from the
target value. Possible causes for such drift are tool wear, changes in ambient
temperature, operator change, and differing properties in batches of materi-
als. To take these effects into account a second index, often referred to as
the location index, is defined as

Cyp= C(1 — k), (4.28)
where kis defined as the ratio of the mean drift to the specification half-width:

k= |t — ul/A. (4.29)
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Thus if either the part-to-part variability increases or the process mean drifts
from the target value, the index C,, will decrease.

EXAMPLE 4.5

Calculate C,, k, and C, for the distribution of shaft diameters in Example 4.1

Solution From Example 4.1 we know that u = 10.002, o = 0.0036, and A = 0.01.
From Eq. 4.24 C, = 0.01/(3 X 0.0036) = 1.02. Since 7 = 10.00, from Eq. 429 k£ =
[10.00 — 10.002|/0.01 = 0.2 and from Eq. 2.28 C, = (1 — 0.2) X 1.02 = 0.816.

The quantities G, and C, are often referred to as the short- and long-term
process capability, respectively. If the long-term drifts tend also to be of a
random nature, it is useful to picture Cy in terms of a normal distribution
with an enlarged standard deviation. This is illustrated in Fig. 4.15 where the
part-to-part variation at a number of different times is indicated by normal
distributions. With mean shifts which are randomly distributed over long
periods of time, we obtain the normal distribution indicated in Fig. 4.15 by

Short-term capability

\

AN
VN
/

Time 1

\ Time 2
/ \ \ Timf: 3

Time N

Long-term capability T—
Nonconformance
to standard
s N

LSL NOMINAL ustL

FIGURE 4.15 Effect of long term variability on process capability.
(From Harry M. L. and Lawson, . R., Six Sigma Producility Analysis
and Process Characterization, pgs. 3-5 and 6-9, Addison-Wesley Pub-
lishing Co. Inc. and Motorola, Inc. 1992. Reprinted by permission.)
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time averaging. The capability index may be written in this form as
Cu = A/30y, (4.30)

where o, is a measure of the increased spread of the distribution. We may
view the standard deviation appearing in C, as

o, = (0o, (4.31)

where the o on the right is again the contribution of the part-to-part variability
that appears in C,, whereas c¢is a multiplier greater than one that arises from
the variability induced over longer periods of time by the movement of the
mean away from the target value 7. Clearly, we may also combine Eqs. 4.28,
4.30 and 4.31 to obtain k = 1 — 1/¢, where kis referred to as the equivalent
shift in the mean.

Since Eqgs. 4.30 and 4.31 are equivalent to assuming that the time-aver-
aged, long-term variability is also normally distributed about the target value,
the long-term yield can be calculated simply by replacing C, by Cyin Eq. 4.27:

Y=1-20(-3C,). (4.32)

A third, and final, capability index, C,,, is finding increased use. Like Cy
it measures both the variation about the mean and the bias of the mean from
the target value. This index is closely related to the Taguchi loss function
and thereby does not implicitly assume that the PDF is normally distributed.
We define

Cpw = A/80,, (4.33)
where the newly defined variance
ol=0%+ (u—1)° (4.34)

is the sum of contribution of the variance about the mean and the bias. We
see from Eq. 4.9 that C,, is closely related to the expected value Z, of the
Taguchi loss function. Combining Eqs 4.6, 4.9 and 4.34, we have o} =
A’L/L,, or equivalently

Cj)m = -}3‘ v LO/Z (435)

Yield and System Complexity

Historically, the target in manufacturing processes has been to yield a short-
term capability index of C, = 1. Consequently, the process was considered
satisfactory if the specification limits were three standard deviations from the
process mean. This resulted in 0.27% out-of-specification parts. Over a wide
range of processes, it was found that the long-term variability tended to be
considerably larger,* with values of ¢ commonly in the range 1.4 < ¢ < 1.6.

* M. J. Harry and J. R. Lawson, Six Sigma Producibility Analysis and Process Characterization, Addison-
Wesley Publishing Company, Reading, MA, 1992.
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For example, if we take ¢ = 1.5, for which & = 1/3, we find that with ¢ =1
the long-term capability index is only C, = 2/3. Thus Eq. 4.32 indicates that
over time the yield is reduced to 1 — 2®(—2) or 95.55%.

Yields computed in this way, however, apply only to a single part, and
then only to a part with one specification. Real parts typically have a number
of specifications that must be met. As products or systems grow more complex,
having many parts, the total number of specifications grows very rapidly.
Computer memory chips, for example, have many identical diodes, each of
which must meet a performance specification. Conversely, an engine may
have fewer parts, but each part may have a substantial number of specifications
on critical dimensions, materials properties, and so on. In each case a large
number of specifications must be satisfied if the product is to meet perfor-
mance requirements. Indeed the complexity of the system may be measured
roughly by the number of such specifications.

To better understand the relationship between complexity and yield,
consider a device with M specifications, and let X; signify the event that the
i specification is met. If all of the specifications must be met for the device
to be satisfactory, then the yield will be

Y=PXNXNX; N Xy (4.36)
If we consider the specifications to be independent, then
Y= PIX}P{Xo} P{Xs} - - - P{X} (4.37)
For simplicity, assume that the probability of each specification not being met
is p, or equivalently P{X;} = 1 — p. Hence
Y=(1-pn (4.38)

Since the natural logarithm and exponential are inverse operations we may
rewrite this equation as

Y = explin(l — p)M]. (4.39)

However, In(1 — p)” = MIn (1 — p). Furthermore, for any reasonable values
of the capability indices we can assume that p << 1, and for small values of
p the approximation In(1 — p) = —p is adequate. Hence the yield equation
reduces to

Y= et (4.40)

The importance of small rejection probabilities per specification is obvious.
The yield decays exponentially as the number of specifications increases,
unless the probability p of violating each specification is reduced. To maintain
the same yield, the value of p must be halved for each doubling in the number
of specifications.

EXAMPLE 4.6

A manufacturer of circuits knows that 5 percent of the circuit boards fail in proof
testing due to independent diode failures. The failure of any diode causes board
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failure. (a) If there are 100 diodes on the board, what is the probability of any one
diode’s failing? (b) If the size of the boards is increased to contain 500 diodes, what
percent of the new boards will fail the proof testing? (¢) What must the failure
probability per diode be if the 5% failure rate is to be maintained for the 500 di-
ode boards?

Solution (@) Yo =1 — 0.056 = ¢ %%, thus p = —1t5 In (0.95) = 0.5 X 107%
(b) 1= Yap=1— & =1— exp[—500 X 0.5 X 107°] = 0.22 = 22%
(¢) Yio = 0.95 = ¢ thus p' = — s In (0.95) = 0.1 X 107°.

Six Sigma Criteria

The exponential decay of yield with the number of required components or
specifications has given rise to the demand to decrease the variability in
manufacturing processes relative to the specification width. As indicated by
our example, although it only leads to a 0.27 percent rejection rate on a single
specification, the traditional three sigma criteria will quickly tend to 100
percent rejection as the number of specifications is increased: in a 100 specifi-
cation system, for example, 76 percent will be found acceptable. If the long-
term variability is also taken into account, using the multiplier of ¢ = 1.5,
then only 1.1 percent are acceptable.

This dilemma has appeared in many industries. It is perhaps most pro-
nounced in microelectronics where integrated circuits may require millions
of individual diodes to function properly. In order to produce highly complex
systems that are also reliable, the probability of any one specification not
being met must be measured in parts per million or ppm (where 1 ppm =
0.0001 percent). As a result, the Motorola Corporation formulated a strict set
of criteria, and a methodology for implementing them that has seen increas-
ingly wide spread use in recent years. The methodology is referred to as six
sigma since the basic requirement is that the tolerance half-width be at least
six standard deviations of the process distribution for short-term variation.
This implies that C, > 2.0. The fraction rejected on a short-term basis is then
reduced to

p < 20(—6) = 0.002 ppm (4.41)

The improvement in yield when going from the traditional three sigma criteria
to four, five, and finally six sigma is illustrated in Fig. 4.16a as a function of
the number of specifications that must be met.

The six sigma methodology also places a tighter criterion on the long-
term multiplier ¢. Under the six sigma methodology it is required that long-
term variability be reduced to ¢ < 1.333. Thus from Eq. 4.28 we have Cy >
1.5, and from Eq. 4.32 we see that the rejection rate will be less than 6.8 ppm.
The relationship between Cj, yield and complexity is shown in Fig. 4.165.
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printed by permission.)
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Implementation

The implementation of the six sigma criteria requires close interaction be-
tween the design and manufacturing processes. Assume a manufacturing pro-
cess is to be implemented with the requirement that specified values of C,
and C, must be obtained. Since the specification limits have been set by the
designer, these requirements can be met only by achieving sufficiently small
o and oy in the manufacturing process. Success requires first bringing the
process into control. This entails making the process stable so that over the
short term there is a well-defined . Then the systematic causes of long-term
variation must be eliminated to reduce the value of ¢, and therefore of o,, to
specified levels.

The techniques for bringing a process into control and then reducing
and maintaining the smallest possible levels of short- and long-term variability
require two engineering talents. An intimate knowledge of the manufacturing
process and its physical basis is needed to identify and eliminate the causes
of variability. The tools of statistical process control(SPC) must be mastered
in order to identify the sources of long-term variation in the presence of
background noise, to measure the reductions in variability, and to gain early
warning of disturbing influences. The methods of SPC are discussed briefly
in the concluding section of Chapter 5.

Reducing the causes of long-term variation may require a number of
systematic changes to the manufacturing process. These may include better
operator training, improved control over batch to batch variability of stock
materials, more frequent tool changes, and better control over ambient tem-
perature, dust or other environmental conditions, to name a few. Once the
process has been brought into control, and the identifiable causes of long-
term variation are reduced to a minimum, process capability, and therefore
vield, cannot be further improved without decreasing o?, the short term
process variance, or increasing A, the specification half interval.

To decrease o* one must return to the process design and make it more
robust. That is, one must perform designed experiments to find combinations
of process parameters, which will yield a smaller part-to-part variance in the
production output. Similar experiments may by performed to optimize the
compositions of the feed stock materials. If the process parameter improve-
ments achieved by robust design efforts are inadequate, then either of two
alternatives may be considered, each of which is likely to add substantially to
the production costs. Higher purity materials or better quality machinery of
the same type may be specified to reduce the short-term variability. Alternately,
a totally different process that is inherently more expensive may be required.

Alternately, A may be increased. To permit such an increase, however,
one must retreat to earlier in the product development cycle in order to
make the product performance characteristics less sensitive to the particular
component or part parameter. Only then can an increase in the specification
interval be justified. If this is inadequate, then features of the conceptual
design or of the performance requirements may require reexamination. This
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iterative procedure for improving process and product design makes clear
the necessity for concurrent engineering—the simultaneous design of the
product and manufacturing processes. Costly delays or diminished quality
and reliability are avoided only if the proposed manufacturing processes and
their inherent limitations are considered concurrently while design concepts
are worked out and product parameters and tolerances set.
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Exercises

4.1 The allowable drift on a voltage regulator has a specification of 0.0 *
0.8 volts. Each time a regulator does not satisfy this specification, there
is an $80.00 cost for rework.

a. Write the expression for the Taguchi loss function and evaluate
the coefficient.

b. If the PDF for the drift in volts is
fx)=@/H0-x) |xd<1
f(x) =0 |x[>1
what is the expected value of the Taguchi loss?

c. With the PDF given in b, what fraction of the regulators do not meet
the specifications?

4.2 Widgets are manufactured with an impurity probability density func-
tion of

X, 0=x=1
flx)=42—x 1=x=2

0, otherwise
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4.3

4.4

4.5

4.6

Introduction to Reliability Engineering

(a) Sketch the PDF.

(b) Determine the mean.

(c) Determine the variance.

(d) The Taguchi smaller-is-better loss function for the widgets is given
by L(x) = 10«2

Determine the expected value L of the loss function.

The probability density function for impurities is given by

Oy x<0
flx) =q1/USL, 0<x<USL
0, x> USL

where USLis the upper specification limit. Evaluate the expected smaller-
is-better quality loss, assuming that L, is the penalty for exceeding the
USL.

The target value for release pressure on a safety valve is p, with a tolerance
of £Ap. The manufacturer barely manages to meet this criterion with
a PDF of

1
fp) = EIVS lp—p) <Ap
0, |p—pl=4p

If L, is the valve replacement cost, what is the average Taguchi loss L
for the valves?

The luminescence of a surface is described by a PDF of
f(x) = 4xe*, 0=x=< oo,
The specifications are 1.0 = 0.5.

(a) What is the probability that the specification will not be met?

(b) What is the expected value of the Taguchi loss function if the cost
of being out of specification is $5.00?

(c) Calculate the signal-to-noise ratio.

{Note: see useful integrals in Appendix A.}

Suppose four parameters are to be chosen to maximize a toughness
parameter. Nine experiments are to be analyzed using the orthogonal
array shown in Fig. 4.11a. The results of the experiments are (in as-
cending order) 76, 79, 92, 84, 65, 68, 73, 86 and 74.

(a) Draw the linear graphs.

(b) Which factor or factors do you think are most important?

(c) Whatsettings (1, 2 or 3) for each factor will maximize the parameter?
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A component’s time-to-failure PDF is given by
§iG) =%t2e*’, 0=t= oo,

The lower specification limit is LSL = 0.25 and the cost of not meeting
the specification is $100.

(a) Evaluate the expected Taguchi larger-is-better loss function.
(b) What is the probability that the specification will not be met?

The following L, orthogonal array can be used to treat three factors:
Trial A B C
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

Suppose four tests are run to maximize the strength of an adhesive.
They are run for two different application pressures (Factor A), two
temperatures (Factor B), and two surface roughnesses (Factor C). The
results for trials 1 through 4 are 24, 19, 28, and 21 kg/mm?

(a) Draw the linear graphs.
(b) Which is the most important factor?
(c) What are the optimal levels for the three factors?

A widget manufacturer is trying to improve the process for producing
a critical dimension of 10.0 * 0.0005 cm.

(a) If there is a short-term capability index of C, = 1.4, what fraction
of the widgets will fail to meet specifications, assuming the mean is
on-target?

(b) If the mean moves off-target by 0.0001 cm, calculate C, and deter-
mine what fraction of the widgets will fail to meet specifications.

Suppose the specifications on a part dimension are 40 = 0.01 cm.

(a) If the mean is on target, what must the standard deviation of a
normal distribution be if no more than 0.1% of the parts are to
be rejected?

(b) What value of C, is required to meet the criteria of part a?

(c) If the mean moves off target by 0.003 cm, what is the value of Cu?

(d) With the mean off target by 0.003 cm, to what must the value of C,
be increased to in order to produce no more than 0.1% of the parts
out-of-specification?

(¢) What will be the value of C,, after C, is increased?

Suppose that a batch of ball bearings is produced for which the diameters
arc distributed normally. The acceptance testing procedures remove all
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those for which the diameter is more than 1.5 standard deviations from
the mean value. Therefore, the truncated distribution of the diameters
of the delivered ball bearings is

4 exp[-—l—;(x—/,:,){l, |x — u| < 1.5¢
fle)y =9 V2mc 26
0, lx — ul > 15¢

(a) What fraction of the ball bearings is accepted?
(b) What is the value of A?

(c) What fraction of the accepted ball bearings will have diameters
between u — cand w + &

(d) What is the variance of f(x), the PDF of delivered ball bearings?
{Note: numerical integration is required.}

A large batch of 50 Ohm resistors has a mean resistance of 49.96 Ohms
and a standard deviation of 0.70 Ohms. The resistances are normally
distributed. The lower and upper specification limits are 48 and 52 Ohms.

(a) Evaluate C,.

(b) Evaluate C.

(c) Evaluate C,,.

(d) What is the expected Taguchi quality loss if the cost of an outof-
specification resistor is $0.80?

(e) What is the signal-to-noise ratio calculated from Eq. 4.21?

A process is found to have C, = 1.5 and C, = 1.0. What fraction of the
parts will not meet the specifications?

Repeat exercise 4.12 for a batch of 1.0 cm diameter ball bearings with
a mean diameter of 0.9996 cm and a standard deviation of 0.0012 cm.
The specification limits are 0.9950 and 1.0050 cm and the cost of an
out-of-specification bearing is $0.35.

If a part must meet six independent specifications, estimate the largest
failure probability per specification that can be tolerated if the partyield
must be at least 90%.

Suppose the specification on battery output voltage is given by 10.00 *
0.50 volts. After measuring the voltage of many batteries the distribution
is found to be normal, with & = 10.10 volts and o = 0.16 volts.

(a) What is the value of C,?

(b) What is the value of Cy?

(¢) What fraction of the output will have a value greater than the upper
tolerance limit?
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4.17 Over a short period of time a roller bearing manufacturer finds that 2%
of the bearings exceed the USL diameter of 2.01 cm and 2% are less
than the LSL of 1.99 cm. If the distribution of diameters is normal:
(a) What is the mean diameter?

(b) What is the standard deviation?
(c) What is C, for the process?



CHAPTER 5

Data and Distributions

Dnd the more observations or experiments there are made, the less
will the conclusions be liable fo error, prouz'o/eo/ /Aey adhnit cy/ 591'1257

. »
repea/eo/ under the same circumstances.

Thomas Simpson 1710—1761

5.1 INTRODUCTION

In the preceding chapters some elementary concepts concerning probability
and random variables are introduced and utilized in the discussions of a
number of issues relating to quality and reliability. Thus far statistics have
been discussed only in the context of the simple binomial trials for estimating a
failure probability. But statistical analysis of laboratory experiments, prototype
tests, and field data is pervasive in reliability engineering. Only through the
statistical analysis of such data can reliability models be applied and their
validity tested. We now take up the questions of statistics: Given a set of data,
how do we infer the properties of the underlying distribution from which the
data have been drawn? If, for example, we have recorded the times to failure
of a number of devices of the same design and manufacture, what can we
surmise about the probability distribution of times-to-failure that would
emerge if a very large population of all such devices was to be tested to failure?

Two approaches may be taken to data analysis; nonparametric and para-
metric. In nonparametric analysis no assumption is made regarding the distri-
bution from which the sample data has been drawn. Rather, distribution-free
properties of the data are examined. The construction of histograms from
the sample data is probably the most common form of nonparametric analysis.
The sample mean, variance, and other sample statistics can also be obtained
from the data without reference to a specific distribution. In addition to
histograms and sample statistics, we introduce elementary rank statistics in
Section 5.2. They provide an approximate graph of the CDF of the random

102
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variable even though there is insufficient data to construct a reasonable histo-
gram. Rank statistics also serve as a basis for the probability plotting methods
covered in Section 5.3.

Parametric analysis encompasses both the choice of the probability distri-
bution and the evaluation of the distribution parameters. A number of factors
guide distribution choice. Frequently, previous experience in fitting distribu-
tions to data from very similar tests may strongly favor the choice of a particular
distribution. Alternatively, the choice between distributions may be made on
the basis of the phenomena. If the sum of many small effects is involved, for
instance, the normal distribution may be suitable; if it is a weakest link effect
the Weibull distribution may be more appropriate. Corresponding arguments
can be made for the exponential, lognormal, extreme-value, and other distri-
bution functions. Finally, the nonparametric analysis tools discussed in Section
5.2 may often provide insight toward the selection of a distribution.

Once adistribution has been selected, the next step is the estimation of the
parameters. Probability plotting, described in Section 5.3, has the advantage of
providing both parameter estimates and a visual representation of how well
the distribution describes the data. Such plotting is particularly valuable when
the paucity of data makes more classical methods for parameter estimation
problematical. In Section 5.4 we return to the notion of the confidence interval
in order to determine the precision with which we can estimate the distribution
parameters. Only the most elementary results—those applicable to large sam-
ple sizes—are presented, however, for the determination of confidence limits
for smaller sample sizes requires statistical techniques that are beyond the
scope of an introductory text.

The methods described in Sections 5.2 through 5.4 deal with complete
sets of data; that is, data that come from tests that have been run to completion.
Important situations exist, however, where results are needed at the earliest
possible time. In testing products to failure, for example, decisions must often
be reached before the last test specimen has failed. The data is then said to
be censored. The methods for handling such data are examined in Chapter
8. A second situation where timely decisions must be made is in statistical
process control, where inadvertent changes in manufacturing processes must
be detected rapidly to prevent the production of defective items. Section 5.5
contains a brief introduction to the statistical process control techniques by
which this is accomplished.

5.2 NONPARAMETRIC METHODS

Nonparametric methods allow us to gain perspective as to the nature of the
distribution from which data has been drawn without selecting one particular
distribution. When there is a sufficient number of data points, the representa-
tion of the distribution by a histogram or with sample statistics can be quite
helpful. In many situations, however, the amount of data is insufficient to
construct a realistic histogram. It is then useful to approximate the CDF by
the technique plotting the median rank—a term that is defined below.
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TABLE 5.1 Raw data: 70 Stopping Distance Measurements

in Feet

A B C D E F G
1 39 54 21 42 66 50 56
2 62 59 40 41 75 63 58
3 32 43 51 60 65 48 61
4 27 46 60 73 36 38 54
5 60 36 35 76 54 55 45
6 71 54 46 47 42 52 47
7 62 55 49 39 40 69 58
8 52 78 56 55 62 32 57
9 45 84 36 58 64 67 62
10 51 36 73 37 42 53 49
Data from E. Pieruschka, Principles of Reliability, Prentice-Hall, Englewood Cliffs,

NJ, 1963, p. 5.

Histograms

The histogram may be constructed as follows. We first find the range of the
data (i.e., the maximum minus the minimum value). Knowing the range, we
choose an interval width such that data can be divided into some number N
of groups. Consider, for example, the stopping distance data displayed as
Table 5.1. If the interval for this data is chosen to be 10 ft, a table can be
made up according to how many data points fall in each interval. This is
carried out in Table 5.2, with the data falling into seven intervals. A histogram,
referred to as a frequency diagram, may then be drawn as indicated in Fig. 5.1a.

In order to glean as much information from the data as possible, the
number of intervals into which the data are divided must be reasonable. If too
few intervals are used, as indicated in Fig. 5.1b, the nature of the distribution is
obscured by the lack of resolution. If the number is too large, as in Fig. 5.1c,
the large fluctuations in frequency hide the nature of the distribution. More
data points allow larger numbers of intervals to be used effectively, and result
in better representation of the distribution. Although there is no precise rule
for determining the optimum number of the intervals, the following rule of

TABLE 5.2 Frequency Table

Class interval, ft Tally Frequency
20-29 // 2
30-39 /10 11
40-49 VYA YV VAV Va4 16
50-59 A VYV Va4 20
60-69 VIV AN VYA 14
70-79 11777 7 6
80-89 / 1

Source: Erich Pieruschka, Principles of Reliability, © 1963, p. 5, with permission from
Prentice-Hall, Englewood Cliffs, NJ.
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Class width: 10 ft 50+ Class width: 23.3 ft Class width: 3.3 ft
. 20 40} 10
§ 16 30} :
e 12
E g 20} 4
4 101 —] 2
+ 0

1 | ! | } L L L 1 L 5
0o 20 40 60 80 9920 40 60 80 0 20 40 60 80

Stopping distance in ft Stopping distance in ft Stopping distance in f1
Proper Too few intervais Too many intervals
(a) (b) (c)

FIGURE 5.1 Effect of the choice of the number of class intervals. (From Eric Pieruschka,
Principles of Reliability, © 1963, p. 6, with permission from Prentice-Hall, Englewood Cliffs,
NJ)

thumb may be used.* If Nis the number of data points and ris the range of
the data, a reasonable interval width A is

~ 7[1 + 3.3 log,(N)]™". (5.1)

A crude method for observing how well a known distribution describes a
data set consists of plotting the analytical form of the distribution over the
histogram. But first, the frequency diagram must be normalized to approxi-
mate f(x), the PDF. This is accomplished by requiring that the histogram
satisfy the normalization condition Eq. 3.7.

Suppose that n;, n, . .. are the frequencies with which the data appear
in the various intervals, and n, + n, + ny ... = N. If we want to approximate
f(x) by f; in the i" interval, f; must be proportional to n;:

fi = an,, (5.2)

where a is the necessary proportionality constant. For the histogram to satisfy
Eq. 3.7, the normalization condition on the PDF, we must have

> fA=1 (5.3)
Combining the two equations yields
1=2an1A=aAZ n;= aAN. (5.4)
Hence a = I/(N A), and
SR 5.5)
JEAN ©-

The histogram that approximates f(x) for the stopping distance data is plotted
in Fig. 5.2. For comparison, we have plotted the PDF for a normal distribution;

* H. A. Sturges, ‘“The Choice of a Class Interval,” J. Am. Stat. Assoc., 21, 65-66 (1926); see also
E. Pieruschka, Principles of Reliability, Prentice-Hall, Englewood Cliffs, NJ, 1963.
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f(x)

0
0 10 20 30 40 50 60 70 80 90 100
Stopping distance, ft

FIGURE 5.2 Normal distribution and histo-
gram for the data in Table 5.1.

the values of w and o used in the distribution are estimated from nonparamet-
ric sample statistics, which we treat next.

Sample Statistics

The sample statistics treated here are estimates of random variable properties
that do not require the form of the underlying probability distribution to be
known. We consider estimates for the mean, variance, skewness, and kurtosis
defined in Chapter 3. Suppose we have a sample of size N of a random variable
x. Then the mean can be estimated with

l N
A= N; x; (5.6)
and the variance with
1 &
ot =52 (i w) (5.7)

if the mean is known. If the mean is not known, but must be estimated from
Eq. 5.6, then the variance is increased to

PN 1 S — )2
v DI Gy Ol (5.8)

The same technique which is applied to Eq. 3.20 may be employed to rewrite

the variance as
. N 1 \ 1 2
o= [NZ x3 <N§j x,) ) (5.9)

The estimators for the skewness and kurtosis are, respectively:
1< X 1 X

SN C a2k IR Chl

sk = — ku = -. (5.10)

1 ( 3/9’ 1 ‘
[NZ (x — n)Z] {NZ (x W]

i=1
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These sample statistics are said to be point estimators because they yield
a single number, with no specification as to how much in error that number
is likely to be. They are unbiased in the following sense. If the same statistic
is applied over and over to successive sets of N data points drawn from the
same population, the grand average of the resulting values will converge to
the true value as the number of data sets goes to infinity. In Section 5.4
the precision of point estimators is characterized by confidence intervals.
Unfortunately, with the exception of the mean, given by Eq. 5.6, confidence
intervals can only be obtained after the form of the distribution has been spec-
ified.

EXAMPLE 5.1

Calculated the mean, variance, skewness, and kurtosis of the stopping power data
given in Table 5.1

Solution These four quantities are commonly included as spread-sheet formulae.
The data in Table 5.1 is already in spread sheet format. Using Excel-4,* we simply
calculate the four sample quantities with the standard formulae as follows:

Mean: £ = AVERAGE (A1:G10) = 52.3

Variance: &° = VAR (A1:G10) = 168.47
Skewness: sk = SKEW (Al:G10) = 0.0814
Kurtosis: ku = KURT (A1:G10) = —0.268

Note that in applying the formulae to data in Table 5.1, all the data in the rectangle
with Column A row 1 on the upper left and Column G row 10 on the lower right
is included.

Rank Statistics

Often, the number of data points is too small to construct a histogram with
enough resolution to be helpful. Such situations occur frequently in reliability
engineering, particularly when an expensive piece of equipment must be
tested to failure for each data point. Under such circumstances rank statistics
provide a powerful graphical technique for viewing the cumulative distribution
function (i.e., the CDF). They also serve as a basis for the probability plotting
taken up in the following section.

To employ this technique, we first take the samplings of the random
variable and rank them; that is, list them in ascending order. We then approxi-
mate the CDF at each value of x;. With a large number N of data points the
CDF could reasonably be approximated by

F(x) =§, i=1,2,3,...N, (5.11)

where F(0) = 0 if the variable is defined only for x > 0.

* Excel is a registered trademark of the Microsoft Corporation.
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If Nis nota large number, say less than 15 or 20, there are some shortcom-
ings in using Eq. 5.11. In particular, we find that F(x) = 1 for values of x
greater than xy. If a much larger set of data were obtained, say 10N values,
it is highly likely that several of the samples would have larger values than xy.
Therefore Eq. 5.11 may seriously overestimate #'(x). The estimate is improved
by arguing that if a very large sample were to be obtained, roughly equal
numbers of events would occur in each of the intervals between the x;, and
the number of samples larger than xy would probably be about equal to the
number within one interval. From this argument we may estimate the CDF as

F(x) = i=1,2,3,...N. (5.12)

i
N+1’
This quantity can by derived from more rigorously statistical arguments; it is
known in the statistical literature as the mean rank. Other statistical arguments
may be used to obtain slightly different approximations for F(x). One of the
more widely used is the median rank, or

i— 0.3

NT 04 i=1,2,3,...N (5.13)

F(x;) =

In practice, the randomness and limited amounts of data introduce more

uncertainty than the particular form that is used to estimate F. For large values

of N, they yield nearly identical results for F(x) after the first few samples.

For the most part we shall use Eq. 5.12 as a reasonable compromise between
computational ease and accuracy.

EXAMPLE 5.2

The following are the times to failure for 14, six volt flashlight bulbs operated at 12.6
volts to accelerate rate the failure: 72, 82, 97, 103, 113, 117, 126, 127, 127, 139, 154,
159, 199, and 207 minutes. Make a plot of F(t), where ¢ is the time to failure.

Solution Table 5.3 contains the necessary calculations. The data rank ¢ is in
column A, and the failure times in column B. Column C contains /(14 + 1) (Columns
D and E are used for Example 5.5) for each failure time. F(t;) vs. t; (i.e., column C
vs. column B) is plotted in Fig. 5.3.

5.3 PROBABILITY PLOTTING

Probability plotting is an extremely useful technique. With relatively small
sample sizes it yields estimates of the distribution parameters and provides
both a graphical picture and a quantitative estimate of how well the distribution
fits the data. It often can be used with success in situations where too few
data points are available for the parameter estimation techniques discussed
in Section 5.4 to yield acceptably narrow confidence intervals. With larger
sample sizes probability plotting becomes increasingly accurate for the esti-
mate of parameters.
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TABLE 5.3 Spreadsheet for Weibull Probability Plot of Flashlight Bulb Data in

Example 5.4
A B C D E
1 i t F(t) = i/(N + 1) x = LN(1) y = LN(LN(1/(1 = F)))
2 1 72 0.0667 4.2767 —-2.6738
3 2 82 0.1333 4.4067 —-1.9442
4 3 97 0.2000 45747 —1.4999
5 4 103 0.2667 4.6347 —-1.1707
6 5 113 0.3333 4.7274 —-0.9027
7 6 117 0.4000 4.7622 —0.6717
8 7 126 0.4667 4.8363 —0.4642
9 8 127 0.5333 4.8442 -0.2716
10 9 127 0.6000 4.8442 -0.0874
11 10 139 0.6667 4.9345 0.0940
12 11 154 0.7333 5.0370 0.2790
13 12 159 0.8000 5.0689 0.4759
14 13 199 0.8667 5.2933 0.7006
15 14 207 0.9333 5.3327 0.9962

Basically, the method consists of transforming the equation for the CDF
to a form that can be plotted as

y = ax + b. (5.14)

Equation 5.12 is used to estimate the CDF at each data point in the resulting
nonlinear plot. A straight line is then constructed through the data and the
distribution parameters are determined in terms of the slope and intercept.

The procedure is best illustrated with a simple example. Suppose we want
to fit the exponential distribution

Flx) =1—¢" 0=<x=<o (5.15)

1.0

0.8 [~

F(t)

0.0 i |
0 100 200 300

t

FIGURE 5.3 Graphical estimate of failure time cumulative dis-
tribution.
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to a series of failure times x;. We can rearrange this equation by first solving
for 1/(1 — F) and then taking the natural logarithm to obtain

1 1
— == 5.16
ln[l—F(x)] 9" (5.16)
We next approximate F(x;) by Eq. 5.12 and plot the resulting values of
1 1 N+1
1-Fx) | __i N+1-i 617
N+1

on semilog paper versus the corresponding x;. The data should fall roughly
along a straight line if they were obtained by sampling an exponential distribu-
tions. Comparing Eqs. 5.14 and 5.16, we see that § = 1/a can be estimated
from the slope of the line. More simply, we note that the left side of Eq. 5.16
is equal to one when 1/(1 — F) = ¢ = 2.72, and thus at that point 6 = x.
Since the exponential is a one-parameter distribution, b, the y intercept is
not utilized.

EXAMPLE 5.3

The following failure time data is exponentially distributed: 5.2, 6.8, 11.2, 16.8, 17.8,
19.6, 23.4, 25.4, 32.0, and 44.8 minutes. Make a probability plot and estimate 6.

Solution Since N = 10, from Eq. 5.17 we have 1/[1 — F(¢)] = 11/(11 — i) or
1.1, 1.222, 1.373, 1.571, 1.833, 2.2, 2.75, 3.666, 5.5 and 11. In Fig. 5.4 these numbers

20

15

1/(1-F)

A O OONOOO

0 10 20 30 40 50
Time (min)
FIGURE 5.4 Probability plot of exponentially distributed data.
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have been plotted on semilog paper versus the failure times. After drawing a straight
line through the data we note that when 1/(1 — F) = 2.72, x = § = 21 min.

Two-parameter distributions require more specialized graph paper if the
plots are to be made by hand. The more common of such graph papers and
an explanation of their use is included as Appendix D. Approximate curve
fitting by eye that is required in the use of these graph papers, however, is
becoming increasingly dated, and may soon go the way of the slide rule. With
the power of readily available spread sheets, the straight line approximation
to the data can be constructed quickly and more accurately, by using least-
squares fitting techniques. These techniques, moreover, provide not only the
line that ‘“‘best’” fits the data, but also a measure of the goodness of fit.
Readily available graphics packages also display the line and data to provide
visualization of the ability of the distribution to fit the data. The value of these
techniques is illustrated for several distributions in examples that follow. First,
however, we briefly explain the least-squares fitting techniques. Whereas the
mathematical procedure is automated in spread sheet routines, and thus need
not be performed by the user, an understanding of the methods is important
for prudent interpretation of the results.

Least Squares Fit

Suppose we have N pairs of data points, (x;, y;) that we want to fit to a
straight line:

y=ax+ b, (5.18)
where a is the slope and b the y axis intercept as illustrated in Fig. 5.5. In the
least squares fitting procedure we minimize the mean value of the square
deviation of the vertical distance between the points (x;, y;) and the correspond-
ing point (x;, y) on the straight line:

1o
S=52 =9 (5.19)

<—b—>l

FIGURE 5.5 Least squares fit of data to the
function y = ax + b
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or using Eq. 5.18 to evaluate y on the line at x;, we have
1 N
=N v an— 0t (5.20)

To select the values of a and b that minimize S, we require that the partial
derivatives of Swith respect to the slope and intercept vanish: 3S/da = 0 and
4S/9b = 0. We obtain, respectively

W= al— k=0 (5.21)
and
y—ax—b=0, (5.22)

where we have defined the following averages:

_ -_lw
- 2”’ _NZ

(5.23)
S =_13, I
vaE x—N;&, NZ"
Equations 5.21 and 5.22 may be solved to yield the unknowns a and b,
a=Z—2 (5.24)
o — %2
and
b=7y— ax. (5.25)

If these values of @ and b are inserted into Eq. 5.20 the minimum value of S
is found to be

S= 1= -3, (5.26)

where 1% referred to as the coefficient of determination, is given by

S Rk ) (5.27)
(= %) (P~ )

The coefficient of determination is a good measure of how well the line is

able to represent the data. It is equal to one, if the points all fall perfectly on

the line, and zero, if there is no correlation between the data and a straight

line. Thus as the representation of the data by a straight line is improved, the

value of r* becomes closer to one.

The values of a, b, and 7> may be obtained directly as formulae on spread
sheets or other personal computer software. It is nevertheless instructive to
use a graphics program to actually see the data. If there are outliers, either
from faulty data tabulation or from unrecognized confounding of the experi-
ment from which the data is obtained, they will only be reflected in the tabular
results as decreased values of 7*. In contrast, offending points are highlighted

r
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on a graph. The value of visualization will become apparent with the examples
which follow.

Weibull Distribution Plotting

We are now prepared to employ the least-squares method in probability
plotting. We consider first the two-parameter Weibull distribution. The CDF
with respect to time is given by

F(t) =1 — exp[— (t/0)"], 0=t= o, (5.28)
The distribution is put in a form for probability plotting by first solving for
171 = F),

1 — m
T = exp(/6) (5.29)

and then taking the logarithm twice to obtain
In In 1 =mlnt— mln 0 (5.30)
1= F Q) mln 6. .

This can be cast into the form of Eq. 5.18 if we define

y=Inln [1_;}?(0} (6.31)

and

x = Int. (5.32)
We find that the shape parameter is just equal to the slope

m = a, (5.33)

whereas the scale parameter is estimated in terms of the slope and the inter-
cept by

6 = exp(—b/a). (5.34)
The procedure is best illustrated by providing a detailed solution of an exam-

ple problem.

EXAMPLE 5.4

Use probability plotting to fit the flashlight bulb failure times given in Example 5.2
to a two parameter Weibull distribution. What are the shape and scale parameters?

Solution The ranks of the failures, the failure times, and the estimates of F(t;)
are already given in columns A, B and C of Table 5.3. In column D we tabulate In(¢)
and in column E, In(In(1/(1 — F))). Then we plot column E versus column D and
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y=-16.951 + 3.4062x
RA2 = 0.961

-

y = in(In(1/(1

3 | | r 4 |
4.2 44 46 4.8 5.0 5.2 5.4

x = In(t)
FIGURE 5.6 Weibull probability plot of failure times.

calculate a, band 72 The result are shown in Fig. 5.6. Since @ = 3.41 and b = —16.95,
we have from Eqs. 5.33 and 5.34: 7 = 3.41 and § = exp(+16.95/3.41) = 144 min.

Extreme Value Distribution Plotting

The procedure for treating extreme-value distributions is quite similar to that
employed for Weibull distributions. For example, with the minimum extreme-
value distribution, the CDF is given by

F(x) = 1 — exp[—e* /9], —0 < x< ® (5.35)

in Eq. 3.101. If we solve for 1/(1 — F), and take the natural logarithm twice,
we obtain

Inln [1——1%5] = % x— . (5.36)
Thus we can make a linear plot with
1
y=Inln [—l——_F(_x)_:l (5.37)
The scale parameter is estimated in terms of the slope as
O=1/a (5.38)

and the location parameter as
4= —b/a, (5.39)
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respectively. Likewise, for the maximum extreme value CDF, given by
F(x) = exp[—e* /], —00 < x < (5.40)

an analogous procedure can be used to determine the rectified equation
InIn [L] S (5.41)
x

where the distribution parameters may be estimated in terms of the slope and
intercept to be

O=-1/a (5.42)
and

-b/a. (5.43)

B
I

EXAMPLE 5.5

Determine whether the failure data in Example 5.2 can be fitted more accurately with
a minimum extreme-value distribution than with a Weibull distribution. Estimate the
parameters in each case. Employ spread sheet slope, intercept and coefficient formulae.

Solution The necessary values of y; and x;, respectively, are already tabulated in
Table 5.3, columns E and B, for the minimum extreme value distribution and in
columns E and D for the Weibull distribution. Thus for the extreme-value distribution,
we obtain

r’ = RSQ(E2:E15, B2:B15) =0.88
a = SLOPE(E2:E15, B2:B15) =0.025
b= INTERCEPT(E2:E15, B2:B15) = —3.76.

Thus, from Egs. 5.38 and 5.39 the extreme value parameters are
® =1/a=1/0.025 = 40 min., and & = —b/a = 3.76/0.025 = 150.4 min.
For the Weibull distribution
r* = RSQ(E2:E15, D2:BD5) =0.96
a= SLOPE(E2:E15,D2:D15) =341
b= INTERCEPT (E2:E15, D2:D15) = —16.95

Not surprisingly, these are the same values exhibited in Fig. 5.6. From Eq.
5.33 and 5.34, the Weibull parameters are % = a = 3.4I; 6 = exp(—b/a) =
exp(16.9 5/3.41) = 144 min. The resulting value of 7 = 0.88 for the extreme-value
distribution is substantially smaller than that of 0.96 obtained with the Weibull distribu-
tion. Therefore the extreme value fit is poorer.
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Normal Distribution Plotting

Normal and lognormal distributions find frequent application. However, un-
like the Weibull and extreme value distributions they cannot be inverted to
obtain yin analytical form. Rather we must rely on inverse operator notation.
First consider the normal distribution with the CDF

F(x) = ® <f—_—ﬁ> (5.44)
o
We invert the standard normal distribution to obtain
_ 1 1
O NYF)=—x——p. (b.45)
o o

Thus the linear equation y = ax + b is obtained by taking

y = OI(F). (5.46)
The standard deviation estimate is then
o=1/a (5.47)
and the mean
L= —b/a (5.48)

The availability of the standardized normal distribution and its inverse as
spreadsheet formulae allows normal data to be analyzed with a minimum of
effort. This is illustrated in the following example.

EXAMPLE 5.6

An electronics manufacturer receives 50 * 2.5 ohm resistors from two suppliers. A
sample of 30 resistors is taken from each supplier. The resistance values are measured
and tabulated in rank order in columns B and C of Table 5.4. All of the resistance’s
are noted to fall within the specification limits of LSL = 47.5 ohm and USL = 52.5
ohms. Assume that the resistors are normally distributed and make probability plots
of the two samples. Evaluate the Taguchi loss function, assuming a loss of $1.00 per
out-of-specification resistor, and the process capability Cp for each supplier. Which
supplier should you choose if there were no difference in price?

Solution The estimates of F(x;) = i/ (N + 1) are tabulated in columns D and I
of Table 5.4. In columns E and J we use the Excel formula NORMSINV for the inverse
of the standard normal distribution to tabulate

y: = ®7I(F,) = NORMSINV(F)

from Eq. 5.46. The probability plots for suppliers #1 and #2 are shown in Fig. 5.7.
The mean and standard deviation of each sample can be calculated from the Eqs.
5.47 and 5.48. They are

2 =0592/1.19=49.7and o= 1/1.19 = 0.84 for #1
2 =31.4/0.627 = 50.1 and &= 1/0.627 = 1.59 for #2
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TABLE 5.4 Spreadsheet for Normal Probability Plot of Resistor Data in Example 5.6
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A B C D E F G H 1 J

1 i xi (#1) xi (#2) F(xi) yi i xi (#1) xi (#2) F(xi) yi
2 1 48.47 47.67 0.0323 —-1.85 16 49.75 50.75 0.5161 0.04
3 2 48.49 47.70 0.0645 —1.52 17 49.78 50.60 0.5484 0.12
4 3 48.66 48.00 0.0968 ~1.30 18 49.93 50.63 0.5806 0.20
5 4 48.84 48.41 0.1290 -1.13 19 49.96 50.90 0.6129 0.29
6 5 49.14 48.42 0.1613 -0.99 20 50.03 51.02 0.6452 0.37
7 6 49.27 48.44 0.1935 —0.86 21 50.06 51.05 0.6774 0.46
8 7 49.29 48.64 0.2258 -0.75 22 50.07 51.28 0.7097 0.55
9 8 49.30 48.65 0.2581 —0.65 23 50.09 51.33 0.7419 0.65
10 9 49.32 48.68 0.2903 -0.55 24 50.42 51.38 0.7742 0.75
11 10 49.39 48.85 0.3226 —0.46 25 50.44 51.43 0.8065 0.86
12 11 49.43 49.17 0.3548 -0.37 26 50.57 51.60 0.8387 0.99
13 12 49.49 49.72 0.3871 —0.29 27 50.70 51.70 0.8710 1.13
14 18 49.52 49.85 0.4194 —0.20 28 50.77 51.74 0.9032 1.30
15 14 49.54 49.87 0.4516 —-0.12 29 50.87 52.06 0.9355 1.52
16 15 49.69 50.07 0.4839 —0.04 30 51.87 52.33 0.9677 1.85

For the Taguchi Loss function is L, = $1.00 and A = (52.5 — 47.5) /2. = 2.5. Therefore
the coefficients given by Eq. 4.6 is k = $1.00/2.5* = $0.16. Hence, from Eq. 4.9, we

estimate

Inverse normal (F)

L = $0.16[0.84% + (49.7 — 50)%] = $0.13 for #1
L= $0.16[1.59 + (50.1 — 50)2] = $0.41 for #2.
1
== Supplier #1
yl =-59.189 + 1.1892x
o RA2 =0.962 —

|
—

T

|

—4— Supplier #2 ]

y2 =-31.371 + 0.62668x
RA2 =0.953
l l |
48 49 50 51 52 53
x = ohms

FIGURE 5.7 Normal probability plot of resistances.
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From Eq. 4.24 we estimate
C, = 2.5/(3 X 0.84) = 0.99 for #1
G, =25/(3 X 159) = 0.52 for #2.

Since the loss factor is smaller and the process capability higher, #1 is the prefera-
ble supplier.

Lognormal Distribution Plotting

Probability plotting with the normal and lognormal distributions is very similar.
From Eq. 3.65 we may write the CDF for the lognormal distribution as

F(i) =® [i—ln(t/to)]. (5.49)
We invert the standard normal distribution to obtain
) 11
O (F)==Int——Int,. (5.50)
) w

The required linear equation is obtained by once again taking
y = O®I(F), (5.51)
but with x = In . The estimates for the lognormal parameters are
w=1/a (5.52)

and

i, = exp(—b/a). (5.53)

EXAMPLE 5.7

The fatigue lives of 20 specimens, measured in thousands of stress cycles are found
to be 3.1, 6.1, 7.3, 10.4, 15.5, 20.9, 21.7, 21.89, 25.3, 30.5, 31.4, 32.7, 35.4, 35.9, 38.9,
39.6, 40.1, 65.5, 70.9, and 98.7. Use probability plotting to fit a lognormal distribution
to the data, and estimate the parameters and the goodness-ofit.

Solution The calculations are made in Table 5.5.

The data rank and the failure times are tabulated in columns A and B, the natural
logarithms of the failure times are tabulated in column C. In column D the estimates
of F(x;) = i/(N + 1) are tabulated. In column E we tabulate y, = & '(F) from Eq.
5.51. In Fig. 5.8 we have plotted column E versus column C and used leastsquares fit
to obtain the best straight line through the data. From Eqs. 5.52 and 5.53 we find the
parameters to be & = 1/a=1/1.01 = 099 and i, = exp(—b/a) = exp(3.22/1.01) =
94.2 thousand cycles. The fit is quite good with r* = 0.929.
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TABLE 5.5 Spreadsheet for Lognormal Probability Plot of
Data in Example 5.7

A B C D E

1 i ti In(ti) F(ti) vi
) 1 3.1 1.1314 0.0476 —1.6684
3 2 6.1 1.8083 0.0952 —~1.3092
4 3 7.3 1.9879 0.1429 -1.0676
5 4 10.4 2.3418 0.1905 —0.8761
6 5 15.5 2.7408 0.2381 —0.7124
7 6 20.9 3.0397 0.2857 —0.5659
8 7 21.7 3.0773 0.3333 —0.4307
9 8 21.8 3.0819 0.3810 ~0.3030
10 9 25.3 3.9308 0.4286 —0.1800
11 10 30.5 3.4177 0.4762 —0.0597
12 11 31.4 3.4468 0.5238 0.0597
13 12 39.7 3.4874 0.5714 0.1800
14 13 35.4 3.5667 0.6190 0.3030
15 14 35.9 3.5807 0.6667 0.4307
16 15 38.9 3.6610 0.7143 0.5659
17 16 39.6 3.6788 0.7619 0.7124
18 17 40.1 3.6014 0.8095 0.8761
19 18 65.5 4.1821 0.8571 1.0676
20 19 70.9 4.9613 0.9048 1.3092
2 20 98.7 4.5921 0.9524 1.6684

Inverse normal (F)
o

y=-3.2167 + 1.0051x

RA2 =0.929

|

FIGURE 5.8

3
Ln(t)

Lognormal probability plot of failure times.
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Goodness-of-Fit

The forgoing examples illustrate some of the uses of probability plotting in
the analysis of quality and reliability data. They also serve as a basis for the
extensive use of these methods made in Chapter 8 for the analysis of failure
data. With the computations carried out quite simply on a spread sheet or
other software, one is not limited to a single analysis. Frequently, it may be
advisable to try to fit more than one distribution to the data to determine the
best fit. Comparison of the values of 7* is the most objective criterion for this
purpose. Other valuable information is obtained from visual inspection of the
graph. Outliers may be eliminated, and if the data tends to fall along a curve
instead of a straight line it may provide a clue as to what other distribution
should be tried. For example, if normally distributed data is used to make an
exponential probability plot, the data will fall along a curve that is concave
upward. With some experience, such visual patterns become recognizable,
allowing one to estimate which other distribution may be more appropriate.

More formal methods for assessing the goodness-of-fit exist. These estab-
lish a quantitative measure of confidence that the data may be fit to a particular
distribution. The most accessible of these are the chi-squared test, which is
applicable when enough data is available to construct a histogram, and the
Kolmogorov—Smirnov (or K-S) test, which is applicable to ungrouped data.
These tests are presented in elementary statistics texts but are not directly
applicable to the analysis of much reliability data. In their standard form they
assume not only that a distribution has been chosen but that the parameters
are known; they establish only the level of confidence to which a specific
distribution with known parameters fits a given set of data. In contrast, in
probability plotting we are attempting both to estimate distribution parameters
and establish how well the data fit the resulting distribution.

Aside from the simple comparison of 7* values obtained from probability
plotting, establishing goodness-of-fit from estimated parameters requires the
use of more advanced maximum likelihood, moment, or other techniques
and often involves a significant amount of computation. Such techniques
are treated in advanced statistical texts and increasingly incorporated into
statistical software packages. The use of these techniques is often justified to
maximize the utility of reliability data. They are, however, beyond the scope
of what can be included in an introductory reliability text of reasonable length.
Instead, we focus next on an elementary treatment of confidence levels of
estimated parameters.

5.4 POINT AND INTERVAL ESTIMATES

The mean, variance, and other sample statistics introduced in Section 5.2
are referred to as nonparametric point estimators. They are nonparametric
because they may be evaluated without knowing the population distribution
from which the sample was drawn, and they are point estimators because they
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yield a single number. Point estimates can also be made for the parameters
of specific distributions, for example, the shape and scale parameters of a
Weibull distribution. The corresponding interval estimates, which provide
some level of confidence that a parameter’s true value lies within a specified
range of the point estimate, occupy a pivotal place in statistical analysis.

We begin our examination of interval estimates by expressing the sample
static properties in terms of the probability concepts developed in Chapter
3. Suppose we want to estimate a property 6, where 6 might be the mean,
variance, or skewness, or a parameter associated with a specific distribution.
The estimator 8 is itself a random variable with the sampling variability charac-
terized by a PDF, referred to as a sampling distribution. Let the sampling
distribution be denoted by f;(6). If we repeatedly form 6 from samples of size
N, and make a histogram of the values of 6, after many trials the sampling
distribution f;(6) will emerge. A sketch of a typical sampling distribution is
provided in Fig. 5.9a. If the estimator is unbiased, then E{@} = @, which is to
say that the mean value of the sampling distribution is the true value of 6

|" b6y ab=o. (5.54)

Along with the value of the point estimate 6, we would like to gain some
idea of its precision. For this we calculate a confidence interval as follows.
Suppose we pick a value 6 + A on the 6 axis in Fig. 5.9b such that the
probability that § < 6 + Ais 1 — a/2, where a is typically a small number
such as one or five percent. This condition may be written in terms of the
sampling distribution as

Ph=6+ A} = ff:‘f@(é) ab=1-a/2. (5.55)

As shown in Fig. 5.9b the area under the sampling distribution to the right
of 8 + Ais a/2. Rearranging the inequality on the left, we have

PH— A= 6) = ff:‘fg(é) dh=1-a/2. (5.56)

£3(6) £®

|
0 0

(@) (b)
FIGURE 5.9 Sampling distribution.

>
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Likewise, if we choose a value B such that the probability that 6=06- Bis
1 — a/2 we obtain

PlO=0-B= [ fi(hdb=1-as2 (5.57)

and as indicated in Fig. 5.9b, the area under the sampling distribution to the
left 8 — Bis also a/2. Rearranging the inequality on the left, we have

Plo=06+ B} = j:_Bf@(é) dh=1-a/2. (5.58)

The probability that § — B=< 6 and 6 = 6 + A is just the area 1 — o under
the central section of the sampling distribution, or

..P{é—A<esé+B}=f::fg<é) dh=1-a. (5.59)

The lower and upper confidence limits for estimates based on a sample size
N are defined as

A

Lypn=0—4 (5.60)

and
Uyon= 6+ B, (5.61)
respectively. Hence the 100(1 — a) percent two-sided confidence interval is
Pllysw=0=Uypy=1-a (5.62)

We must be specific about the preceding probability statements, for they
define the meaning of confidence intervals. Equation 5.62 may be understood
with the aid of Fig. 5.10 as follows. Suppose that a large number of samples
each of size N are taken, and 6, L., and U,y are calculated for each
sample. These three quantities are random variables and in general will be
different for each sample. In Fig. 5.10 we have plotted them for 10 such
samples. If L, yand U, y define the 90% confidence interval, then for 90%
of the samples of size N the true value of @ will lie within the intervals indicated
by the solid vertical lines. Conversely, there is an o = 0.1 risk that the true
value will lie outside of the confidence interval. For brevity we frequently
suppress the subscripts in Eq. 5.60 and 5.61 and denote the lower and upper
confidence limits by 8~ = L, 3 yand 8" = U, y.

For the foregoing methodology to be applied to the computation of the
confidence interval for a particular parameter, the properties of the corre-
sponding sampling distribution, fg(é), must be sufficiently well understood.
In this respect the situation is quite different for the mean variance, skewness,
and kurtosis, which may be defined for any distribution, and the specific
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FIGURE 5.10 Confidence limits for repeated estimates of a parameter.
See, for example K. C. Kapur and L. R. Lamberson, Reliability in Engi-
neering Design, Wiley, NY, 1977.

parameters appearing in the normal, lognormal, Weibull, or other distribu-
tion. If the parent distribution is not designated, then a confidence interval
can be determined only for the mean, «, and then only if the sample size is
sufficiently large, say N > 30. In this situation the sampling distribution be-
comes normal and, as shown in the following subsection, the confidence
interval can be estimated.

If the parent distribution is known, then the point and interval estimates
of the distribution parameters become the center of attention. Here, the
situation differs markedly depending on whether N, the sample size, is large.
For small or intermediate sample sizes taken from a normal distribution, the
Student’s-tand the Chi-squared sampling distributions can be used to estimate
the confidence interval for the mean and variance respectively. The proce-
dures are covered in elementary statistical texts. The more sophisticated proce-
dures required for other parent distributions are found in the more advanced
statistical literature, but are increasingly accessible though statistical software
packages. Large sample sizes, point estimates, and confidence intervals for
distribution parameters may be expressed in more elementary terms; then the
sampling distributions approach the normal form, enabling the confidence
intervals to be expressed in terms of the standard normal CDF. In subsequent
subsections, the results compiled by Nelson* are presented for point estimates
and confidence intervals of the normal, lognormal, Weibull, and extreme-
value parameters.

* W. Nelson, Applied Life Data Analysis, John Wiley & Sons, New York, NY, 1982.
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Estimate of the Mean

The sample mean given by Eq. 5.6, in addition to being the most ubiquitous
statistic, has a unique property. An interval estimate is associated with the
mean that is independent of the distribution from which the sample is drawn.
Provided the sample size is sufficiently large, say N > 30, the central limit
theorem provides a powerful result; the sampling distribution f;(&) for
becomes normal with a mean of u and variance of o?/N. Thus,

. VN N ]
fﬂ<u>——\/2—77exp[—§;,—2<u w?|. (5.63)

Replacing 6 with & in Eq. 5.59, we have

f w1 VN exp

w8\ e

or with the substitution { = \/N(,a - /o,
Ve 1

ey SPLITAE =1~ a (5.65)

Comparing this integral with the normal CDF given in standard form by Eq.
3.44, we see that

N o e
[— ot (A~ M)Z] ap=1-«a (5.64)

®(VNA/a) — D(—VNB/o) =1 —a. (5.66)

The standardized normal distribution is plotted in Fig. 5.11. Recall that
Ais chosen so that the area under the sampling curve to the right is a/2. We
designate z,/, to be the value of the reduced variate for which this condition
holds. Thus the area to the left of z,, is given by

D(z400) =1 — /2. (5.67)

The symmetry of the normal distribution results in the condition given by
Eq. 3.45. Consequently, we also have

D(—242) = /2. (5.68)
Thus Eq. 5.66 is satisfied if we take
A= B=z,0/VN. (5.69)
(1-a)
ol2 al2
“Zal2 0 2ar2 z

FIGURE 5.11 Standard normal distribution.
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If we combine these conditions with Eqgs. 5.60 and 5.61, and estimate o
from the sample variance given by Eq. 5.9, the 100(1 — «) percent two-sided
confidence interval for u is given by

o
Lojon= & — Zap —\/—]_\7 (5.70)
and
N o
Uppon= 0+ 2479 W\] (5.71)

Some of the more commonly used confidence intervals are 80, 90, 95,
and 99%. These correspond to risks of @ = 20, 10, 5 and 1% respectively.
The corresponding values of z,, may be found from the CDF for the normal
distribution tabulated in Appendix C. They are, respectively:

201 — ]28, Zoos = 1648, 20095 — 1.96 20005 — 258

EXAMPLE 5.8

Find the 90% and the 95% confidence interval for the mean of the 70 stopping power
data given in Table 5.1

Solution The sample mean and variance obtained in Example 5.2 are o = 52.3
and &2 = 168.47. Thus the standard deviation is & = 12.98. For two-sided 90 percent
confidence z,,, = 1.645. Thus za/2¢‘7/\/Xf= 1.645 X 12.98/8.367 = 2.55 and thus from
Egs. 5.70 and 5.71, o = 52.3 * 255 with 90 percent confidence. Likewise, for 95
percent confidence, z,» = 1.960 and zﬂ/gb'/\/ﬁ= 1.960 X 12.98/8.367 = 3.04. Thus
&= 52.3 * 3.04 with 95 percent confidence.

To recapitulate, the interval estimate for the mean, u, is nonparametric
in that the distribution from which the sample of N derives need not be
normal. The two-sided confidence limits can be used for any distribution so
long as the variance exists, and N is sufficiently large, usually greater than
N = 30. In Eq. 2.86 we applied this result to estimate the confidence interval
of the mean of the binomial distribution for a sufficiently large sample size.
No distribution-free confidence intervals exist for the variance, skewness or
other properties.

Normal and Lognormal Parameters

Since the two parameters appearing in the normal distribution are just the
mean and the standard deviation (i.e., the square root of the variance) the
unbiased point estimators are given by Eqs. 5.6 and 5.8. For N > 30 the central
limit theorem is applicable to the mean, and therefore the confidence interval
is given by Eqgs. 5.70 and 5.71. The 100(1 — a) percent two-sided confidence
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limits are thus

o
W=z ——. (5.72)
"VN
The confidence interval for the standard deviation for N > 30, may be esti-
mated as

o

e, 5.73
V2(N—1) ( )

a =6‘iza/2

EXAMPLE 5.9

Find the point estimate and the 90% confidence interval for the mean and the standard
deviation for the population of resistors coming from supplier 1 in Example 5.6.

Solution We first obtain the mean and the variance, applying the spread sheet
formula to Table 5.4

. = AVERAGE (B3:B17, G3:G17) = 49.77
&2 = VAR(B3:B17, G3:G17) = 0.5732
V0.5732 = 0.7571

Since there are 30 data points, we may use the expressions for large sample size. For
the mean we use Eq. 5.72 to obtain

o= 49.77 = 1.645 X 0.7571/V30 = 49.77 = 0.23

lig

For the standard deviation we use Eq. 5.73 to obtain
o= 0.757 = 1.645 X 0.7571/V2 X 29 = 0.757 = 0.164

Note that the point estimate of the variance is not identical to that obtained from
probability plotting in Example 5.6. The result from plotting, however, does lie within
the 90% confidence limit.

The CDF of a random variable y that is lognormally distributed is directly
related to the standard normal distribution through the relationship x =
In(y) yielding the CDF

1
F(y) =® [5 In(y/y,) ] (5.74)
Here, In y,, the log mean, is estimated by
.1
Inj, = —A—[Z Iny,, (5.75)
or solving for j, and simplifying

1/N
5, = (H yi> : (5.76)
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Likewise we may write

w:xgg[gz myy—< Zhw)] (5.77)

The 100(1 — «) percent two-sided confidence limits are similarly obtained
by transforming Egs. 5.72 and 5.73

¥ = 5, exp(Eza0®ON %), (5.78)

and

0}
— 5.79
V2(N—1) ( )

Extreme Value and Weibull Parameters

Point estimates for the parameters appearing in extreme value and Weibull
distributions can also be made. Determining the confidence intervals that can
be associated with these parameters is more problematical. In cases where
the sample size is not large, say less than 30, tedious and sometimes iterative
procedures are employed that are beyond the scope of what space allows us
to consider here. For larger sample sizes, rough estimates of the confidence
interval are obtainable using the relationships recommended by Nelson.* It
is these that appear in what follows.

Extreme value distributions In Eqs 3.92 and 3.93 the mean and the variance
of the maximum extreme value distribution are given in terms of the shape
and location parameters. If we invert these equations, the ® and u parameters
can be given in terms of the mean and variance:

V6

0= ?0' (5.80)
and
u=,u,—~'y¥0'. (5.81)

Accordingly, we may replace w and o on the right of these equations by
the sample mean and variance; we obtain the following point estimates of
the parameters:

®=3§a (5.82)
m
and
d=ﬂ—y%§& (5.83)

*W. Nelson, Applied Life Data Analysis, Wiley, New York, 1982, Ch. 6.
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Since ® in the minimum extreme value distribution is also related to the
variance by Eq. 5.82, we may estimate ® for both minimum and maximum
extreme value distributions. As indicated in Chapter 3 the maximum extreme
value distribution w, u, and ¢ are related by

u=p,+'y?o: (5.84)

Hence replacing u and o by their point estimators the parameters yields

V6

d=ﬂ+’y—-7;_“6'. (5.85)

For large values of the sample size, say N > 30, Nelson provides the following
confidence limit estimates:

@t

O exp(£1.049 z,,N"72) (5.86)
i+ 1.018 2, ,ON"2 (5.87)

I

+
us

The two-parameter Weibull distribution is obtained from the minimum
extreme value distribution by making the transformation x = In y, whereas
in Egs. 3.106 and 3.107 the Weibull parameters are given in terms of the
corresponding minimum extreme-value parameters as § = ¢ and m = 1/0.
These relationships may be combined with the estimators for u and 0, given
by Eqgs. 5.82 and 5.83, to yield

T
m= 5.88
Voo (>-88)
and
6= exp <ﬁ, + ’y? 6'). (5.89)

For the Weibull distribution, however, the transformation x = In y must also
be applied to the definitions of the mean and the variance. Thus we now
have the log mean and log variance

1
and
N 1 1 2
fo 1 Ve [ .
o N—II:N Ei (Iny,) (N E,; 1ny,> ] (6.91)

With these definitions, & can by eliminated from Eq. 5.89 to yield

1/N
6= (H yi) exp <’y¥ &). (5.92)
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Approximate confidence intervals for the Weibull parameters can also
be obtained by applying the transforms of Eqs. 3.106 and 3.107 to Egs. 5.86
and 5.87. The result are the following estimates for m and 6 confidence
intervals, which are applicable for sufficiently large sample size:

m* = mexp(*£1.049 z,,N~'"?) (5.93)
and
6" = 0 exp(£1.018 z,0m 'N7'7?), (5.94)

where the z,, are determined as before.

EXAMPLE 5.10

The data points in Table 5.6a for voltage discharge are thought to follow a Weibull
distribution. Make point estimates of the Weibull shape and scale parameters and
determine their 90% confidence limits.

Solution We tabulate the natural logarithms of the 60 voltage discharges in Table
5.6b. We calculate the log mean and log variance, Eqs. 5.90 and 5.91, from the data
in Table 5.6b:

o = AVERAGE (A1:C20) = 4.101
0% = VAR(A1:C20) = 0.0056

TABLE 5.6 Voltage Discharge Data for
Example 5.10

A B C

1 63 65 62

2 72 67 70

3 66 68 59

4 75 63 63

5 61 72 69

6 63 70 73

7 70 64 61

8 57 58 66

9 68 68 55

10 74 57 68
11 70 68 64
12 63 64 68
13 64 57 59
14 72 74 69
15 66 72 63
16 62 57 73
17 72 64 66
18 69 64 65
19 64 66 66

20 63 62 65
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TABLE 5.7 Natural Logarithms of Voltage
Discharge Data

A B C
1 4.1431 4.1744 4.1271
2 4.2767 4.2047 4.2485
3 4.1897 4.2195 4.0775
4 4.3175 4.1431 4.1431
5 4.1109 4.2767 4.2341
6 4.1431 4.2485 4.2905
7 4.2485 4.1589 4.1109
8 4.0431 4.0604 4.1897
9 4.2195 4.2195 4.0073
10 4.3041 4.0431 4.2195
11 4.2485 4.2195 4.1589
12 4.1431 4.1589 4.2195
13 4.1589 4.0431 4.0775
14 4.2767 4.3041 4.2341
15 4.1897 4.2767 4.1431
16 4.1271 4.0431 4.2905
17 4.2767 4.1589 4.1897
18 4.2341 4.1589 4.1744
19 4.1589 4.1897 4.1897
20 4.1431 4.1271 4.1744

and hence & = 0.075. Thus from Eqgs. 5.88 and 5.89 the shape and scale point estimates
are

m=3.141/(2.449 X 0.075) = 17.1

6= exp(4.101 + 0.5772 X 2.449 X 0.075/3.141) = 62.5
For the 90 percent confidence interval, z,, = 1.645. Thus from Eq. 5.93:

m* = 17.1 exp(=1.049 X 1.645/V/60)
orm"=2l.4and m™ = 13.7.
From Eq. 5.94:
6* = 62.5 exp(*+1.018 X 1.645/17.1\/@)
or " = 63.3and 0~ = 61.7

5.5 STATISTICAL PROCESS CONTROL

Thus far we have dealt with the analysis of complete sets of data. In a number
of circumstances, however, it is necessary to take data in time sequence and
advantageous to analyze that data at the earliest possible time. One example
is in life testing where a number of items are tested to failure. Since the time
to the last failure may be excessive, it is often desirable to glean information
from the times of the first few failures, or even from the fact that there have
been none, if that is the situation. We take up the analysis of such tests in
Chapter 8.
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A second circumstance, which we treat briefly here, arises in statistical
process control or SPC. Usually, in initiating the process and bringing it under
control, a data base is established to demonstrate that the process follows a
normal distribution. Then, as discussed in Chapter 4, it is desirable to ensure
that the variability is due only to random, short-term, part-to-part variation.
If systematic changes cause the process mean to shift, they must be detected
as soon as possible so that corrective actions can be taken and the number
of out-of-specification items that are produced is held to a minimum.

One approach to the forgoing problem consists of collecting blocks of
data of say 50 to 100 measurements, forming histograms, and calculating the
sample mean and variance. This, however, is very inefficient, for if a mean
shift takes place many out-of-tolerance items would be produced before the
shift could be detected. At the other extreme each individual measurement
could be plotted, as has been done for example in Fig. 5.12a and b. In Fig
5.12a all of the data are distributed normally with a constant mean and
variance. In Fig. 5.12b, however, a shift in the mean takes place at run number
50. Because of the large random component of part-to-part variability the
shift is difficult to detect, particularly after relatively few additional data points
have been entered.

More effective detection of shifts in the distribution is obtained by averag-
ing over a small number of measurements, referred to as a rational subgroup.
Such averaging is performed over groups of ten measurements in Fig. 5.13.
The noise caused by the random variations is damped, making changes in
mean more easily detected. At the same time, the delays caused by the group-
ing are not so large as to cause unacceptable numbers of out-of-tolerance
items to escape detection before corrective action can begin. Note that
upper- and lower-control limit lines are included to indicated at what point
corrective action should be taken. From this simple example it is clear that
in setting up a control chart to track a particular statistic, such as the mean
or the variance, one must determine (a) the optimal number N of measure-
ments to include in the rational subgroup, and (b) the location of the con-
trol limits.

Averaging over rational subgroups has a number of beneficial effects. As
discussed in section 5.4, the central limit theorem states that as the number
of units, N, included in an average is increased, the sampling distribution will
tend toward being normal even though the parent distribution is nonnormal.
Furthermore the standard deviation of the sampling distribution will be the
o/ \/Xf, where o is the standard deviation of the parent distribution. Typically
values of N between 4 and 20 are used, depending on the parent distribution.
If the parent distribution is close to normal, N = 4 may be adequate, for the
sampling distribution will already be close to normal. In general, smaller
rational subgroups, say N = 4, 5, or 6, are frequently used to detect larger
changes in the mean while larger subgroups, say 10 or more, are needed to
find more subtle deviations. A substantial number of additional considerations
come into play in specifying the rational subgroup size. These include the
time and expense of making the individual measurements, whether every unit
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is to be measured, or only periodic samplings are to be made, and the cost
of producing out of tolerance units, which must be reworked or scrapped.

The specification of the control limits also involves tradeoffs. If they are
set too tightly about the process mean, there will be frequent false alarms in
which the random part-by-part variability causes a limit to be crossed. In the
hypothesis-testing sense these are referred to as Type I errors; they indicate
that the distribution is deviating from the in-control distribution, when in fact
it is not. Conversely, if the control limits are set too far from the target value,
there will be few if any false alarms, but significant changes in the mean may
go undetected. These are then Type Il errors, for they fail to detect differences
from the base distribution.

Control limits are customarily set only when the process is known to be
in control and when sufficient data has been taken to determine the process
mean and standard deviation with reasonable accuracy. Probability plotting
or the chi-squared test may be used to determine how nearly the data fits a
normal distribution. The upper- and lower-control limits (UCL and LCL) may
then be determined from

VN VN

where u and o are the mean and standard deviation of the process, and o/
VN is the standard deviation of the rational subgroup. The coefficient of
three is most often chosen if only part-to-part variation is present. With this

UCL=p+3 LCL=p— 3 (5.95)
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value, 0.26% of the sample will fall outside the control limits in the absence
of long-term variations. This level of 26 false alarms in 10,000 average computa-
tions is considered acceptable.

Note that the LCL and UCL are not related to the lower- and upper-
specification limits (the LSL and USL) discussed the Chapter 4. Control charts
are based only on the process variance and the rational control group size,
N, and not on the specifications that must be maintained. Their purpose is
to ensure that the process stays in control, and that any problems causing a
shift in u are recognized quickly so that corrective actions may be taken.

EXAMPLE 5.11

A large number of *5% resistors are produced in a well-controlled process. The
process mean is 50.0 ohms and a standard deviation is 0.84 ohms. Set up a control
chart for the mean. Assume a rational subgroup of N = 6.

Solution From Eq. 5.95 we obtain UCL = 50 + 3 X 0.84/\/6 = 51.0 ohms
LCL = 50 — 3 X 0.84/V6 = 49.0 ohms. Note that the =5% specification limits
USL = 52.5 and LSL = 47.5 are quite different.

The chart discussed thus far is referred to as a Shewhart x chart. Often,
it is used in conjunction with a chart to track the dispersion of the process
as measured by o, the process standard deviation. In practice, bootstrap meth-
ods may be used to estimate the process standard deviation by taking the
ranges of a number of small samples. One then calculates the average range
and uses it in turn to estimate o. Likewise, statistical process control charts
may also be employed for attribute data, and a number of more elaborate
sampling schemes employing moving averages and other such techniques are
covered in texts devoted specifically to quality control.
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Exercises

5.1 Consider the following response time data measured in seconds.*

1.48
1.34
1.59
1.66
1.55
1.61
1.52
1.80
1.64
1.46
1.38
1.56
1.62
1.30
1.56
1.27
1.37

1.46
1.42
1.59
1.58
1.60
1.67
1.37
1.55
1.55
1.57
1.66
1.38
1.49
1.58
1.48
1.30
1.68

1.49
1.70
1.61
1.43
1.29
1.36
1.66
1.46
1.65
1.65
1.59
1.57
1.26
1.43
1.53
1.72
1.77

Data and Distributions

1.42
1.56
1.25
1.80
1.51
1.50
1.44
1.62
1.54
1.59
1.46
1.48
1.53
1.33
1.59
1.48
1.62

(a) Compute the mean and the variance.

1.35
1.58
1.31
1.32
1.48
1.47
1.29
1.48
1.53
1.47
1.61
1.39
1.43
1.39
1.40
1.66
1.33
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(b) Use the Sturges formula to make a histogram approximating f(x).

5.2 Fifty measurements of the ultimate tensile strength of wire are given in
the accompanying table.

(a) Group the data and make an appropriate histogram to approximate

the PDF.

(b) Calculate & and &2 for the distribution from the ungrouped data.

(c) Using o and & from part b, draw a normal distribution through
the histogram.

Ultimate Tensile Strength

103,779
102,906
104,796
103,197
100,872

97,383
101,162

98,110
104,651

102,325
104,651
105,087
106,395
100,872
104,360
101,453
103,779
101,162

102,325
105,377
104,796
106,831
105,087
103,633
107,848

99,563
105,813

103,799
100,145
103,799
103,488
102,906
101,017
104,651
103,197
105,337

* Data from A. E. Green and A. J. Bourne, Reliability Technology, Wiley, NY, 1972.
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5.3

5.4

5.5

5.6

5.7

5.8

Introduction to Reliability Engineering

Ultimate Tensile Strength (continued)

102,906 102,470 108,430 101,744
103,633 105,232 106,540 106,104
102,616 106,831 101,744 100,726
103,924 101,598

Source: Data from E. B. Haugen, Probabilistic Mechanical Design,
Wiley, NY, 1980.

For the data in Example 5.3:

(a) Calculate the sample mean, variance, skewness, and kurtosis.

(b) Analytically determine the variance, skewness, and kurtosis for an
exponential distribution that has a mean equal to the sample mean
obtained in part a.

(c) What is the difference between the sample and analytic values of
the variance, skewness, and kurtosis obtained in parts a and b?

The following are sixteen measurements of circuit delay times in micro-
seconds: 2.1, 0.8, 2.8, 2.5, 3.1, 2.7, 4.5, 5.0, 4.2, 2.6, 4.8, 1.6, 3.5, 1.9, 4.6,
and 2.1.

(a) Calculate the sample mean, variance, and skewness.
(b) Make a normal probability plot of the data.

(c) Compare the mean and variance from the probability plot with the
results from part a.

Make a Weibull probability plot of the data in Example 5.7 and determine
the parameters. Is the fit better or worse than that using a lognormal
distribution as in Example 5.7? What criterion did you use to decide
which was better?

The following failure times (in days) have been recorded in a proof test
of 20 units of a new product: 2.6, 3.2, 3.4, 3.9, 5.6, 7.1,8.4, 8.8, 8.9, 9.5,
9.8, 11.8, 11.8, 11.9, 12.3, 12.7, 16.0, 21.9, 22.4, and 24.2.

(a) Make a graph of F(¢) vs. &

(b) Make a Weibull probability plot and determine the scale and
shape parameters.

(c) Make a lognormal plot and determine the two parameters.

(d) Determine which of the two distributions provides the best fit to
the data, using the coefficient of determination as a criterion.

Calculate the sample mean, variance, skewness, and kurtosis for the data
in Exercise 5.6

Make a least-squares fit of the following (x, y) data points to a line of
the form y = ax + b, and estimate the slope and y intercept:

x: 0.54, 0.92, 1.27, 1.35, 1.38, 1.56, 1.70, 1.91, 2.15, 2.16, 2.50, 2.75,
2.90, 3.11, 3.20

y: 28.2, 30.6, 29.1, 24.3, 27.5, 25.0, 23.8, 20.4, 22.1, 17.3, 17.1, 18.5,
16.0, 14.1, 15.6
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5.10

5.11

5.12

5.13

5.14

5.15

5.16
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Make a normal probability plot for the data in Example 5.6 using Eq.
5.13 instead of 5.12. Compare the means and the standard deviations
to the values obtained in Example 5.6.

(a) Make a normal probability data plot from Exercise 5.1.

(b) Estimate the mean and the variance, assuming that the distribution
is normal.

(c) Compare the mean and variance determined from your plot with
the values calculated in part a of Exercise 5.1.

Make a lognormal probability plot of the data in Example 5.3 and deter-
mine the parameters. How does the value or r* compare to that obtained
when a Weibull distribution is used to fit the data?

Make a lognormal probability plot for the voltage discharge data in
Example 5.10 and estimate the parameters.

Make a normal probability plot for the data in Exercise 5.2 and estimate
the mean, the variance and 72

Calculate the skewness from the voltage data in Example 5.10. If it is
positive (negative) make a maximum (minimum) extreme value plot
and estimate the parameters.

The times to failure in hours on four compressors are 240, 420, 630,
and 1080.

(a) Make a lognormal probability plot.
(b) Estimate the most probable time to failure.

Redo Example 5.3 by making the probability plot with a spread sheet,
and compare your estimate of 6 with Example 5.3.

5.17 Use Egs. 5.72 and 5.73 to estimate the 90% and the 95% confidence

5.18

5.20

intervals for the mean and for the variance obtained in Exercise 5.2.

The following times to failure (in days) result from a fatigue test of 10
flanges:

1.66, 83.36, 25.76, 24.36, 334.68, 29.62, 296.82, 13.92, 107.04, 6.26.

(a) Make a lognormal probability plot.
(b) Estimate the parameters.

(c) Estimate the factor to which the time to failure is known with
90% confidence.

Suppose you are to set up a control chart for testing the tensile strength
of one of each 100 specimens produced. You are to base your calculations
on the data given in Exercise 5.2. Calculate the lower and upper control
limits for a rational subgroup size of N = 5.

Find the UCL and LCL for the control chart in Example 5.12 if the
rational subgroup is taken as (a) N =4, (b) N = 8.



CHAPTER ©6

Reliability and
Rates of Failure

Have you beard (f‘ the wono/ezy/z)/ one—hoss sﬁay,
That was buill in such a f)gf(?a/ way

Yt ran a hundred years lo a day,
And then, cy/ a sudden, il—"

Oliver @ezzo/e// SHolmes
The Deacon s %s/erpiece

6.1 INTRODUCTION

Generally, reliability is defined as the probability that a system will perform
properly for a specified period of time under a given set of operating condi-
tions. Implied in this definition is a clear-cut criterion for failure, from which
we may judge at what point the system is no longer functioning properly.
Similarly, the treatment of operating conditions requires an understanding
both of the loading to which the system is subjected and of the environment
within which it must operate. Perhaps the most important variable to which
we must relate reliability, however, is time. For it is in terms of the rates of
failure that most reliability phenomena are understood.

In this chapter we examine reliability as a function of time, and this leads
to the definition of the failure rate. Examining the time dependence of failure
rates allows us to gain additional insight into the nature of failures—whether
they be infant mortality failures, failures that occur randomly in time, or
failures brought on by aging. Similarly, the time—dependence of failures can
be viewed in terms of failure modes in order to differentiate between failures
caused by different mechanisms and those caused by different components
of a system. This leads to an appreciation of the relationship between failure
rate and system complexity. Finally, we examine the impact of failure rate

138
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on the number of failures that may occur in systems that may be repaired
or replaced.

6.2 RELIABILITY CHARACTERIZATION

We begin this section by quantitatively defining reliability in terms of the PDF
and the CDF for the time-to-failure. The failure rate and the mean-time-to-
failure are then introduced. The failure rate is discussed in detail, for its
characteristic shape in the form of the so-called bathtub curve provides sub-
stantial insight into the nature of the three classes of failure mechanisms:
infant mortality, random failures, and aging.

Basic Definitions

Reliability is defined in Chapter 1 as the probability that a system survives for
some specified period of time. It may be expressed in terms of the random
variable t, the time-to-system-failure. The PDF, f(¢), has the physical meaning

probability that failure
fty At=P{t<t=t+ At} = { takesplaceatatime . (6.1)
between tand t + At

for vanishingly small Az. From Eq. 3.1 we see that the CDF now has the meaning

probability that failure
F(t) = P{t =t} = { takes place at a time less ¢. (6.2)
than or equal to ¢

We define the reliability as

probability that a system
R(t) = P{t > (} = { operates without failure ¢. (6.3)
for alength of time ¢

Since a system that does not fail for t = ¢ must fail at some t > ¢, we have

R(t) = 1 — F(1), (6.4)
or equivalently either
R =1- L:f(t’) dt' (6.5)
or
R(1) = f " ar. (6.6)

From the properties of the PDF, it is clear that

R(0) = 1 (6.7)



140  Introduction to Reliability Engineering

and
R(o0) = 0. (6.8)

We see that the reliability is the CCDF of ¢, that is, R(¢) = F(t). Similarly,
since F(t) is the probability that the system will fail before t = ¢, it is often
referred to as the unreliability or failure probability; at times we may denote
the unreliability as

R(t) =1 — R(t) = F(1). (6.9)

Equation 6.5 may be inverted by differentiation to give the PDF of failure
times in terms of the reliability:

__4d
Sty = = R(0). (6.10)

Insight is normally gained into failure mechanisms by examining the
behavior of the failure rate. The failure rate, A(t), may be defined in terms of
the reliability or the PDF of the time-to-failure as follows. Let A(¢) At be the
probability that the system will fail at some time t < ¢ + A¢ given that it has
not vet failed at t = . Thus it is the conditional probability

A At= Pt < t+ At|t> ¢ (6.11)
Using Eq. 2.5, the definition of a conditional probability, we have

P{t>n N (t<t+ A}
P{t>t} ’

Pit<t+At|t>1= (6.12)
The numerator on the righthand side is just an alternative way of writing the
PDF; that is,

Pla>n N t<t+Ap}t=Pi<t<it+ A= f(1) At.  (6.13)

The denominator of Eq. 6.12 is just R(¢), as may be seen by examining Eq.
6.3. Therefore, combining equations, we obtain

)

A(D) = ﬂ—— 6.14

(1) R() (6.14)

This quantity, the failure rate, is also referred to as the hazard or mortality rate.
The most useful way to express the reliability and the failure PDF is in

terms of the failure rate. To do this, we first eliminate f({) from Eq. 6.14 by

inserting Eq. 6.10 to obtain the failure rate in terms of the reliability,

1 d
Aty = ——=—— . .
() == 55 2 FO (6.15)
Then multiplying by dt, we obtain
_dR(?)

A(D) dt = (6.16)

R(t) -
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Integrating between zero and ¢ yields
J;/\(t’) dt' = —In[R(1)] (6.17)

since R(0) = 1. Finally, exponentiating results in the desired expression for
the reliability

R(t) = exp ‘:—J;/\(t') dt']. (6.18)

To obtain the probability density function for failures, we simply insert Eq.
6.18 into Eq. 6.14 and solve for f(1):

f(t) = A1) exp[ fA(t)dt] (6.19)

Probably the single most-used parameter to characterize reliability is the
mean time to failure (or MTTF). It is just the expected or mean value E{t} of
the failure time ¢. Hence

MTTF = j "y (6.20)

The MTTF may be written directly in terms of the reliability by substituting
Eq. 6.10 into Eq. 6.20 and integrating by parts:

MTTF——J t—dt— Ry | +
0

f: R(s) dt (6.21)

Clearly, the ¢tR(¢) term vanishes at ¢ = 0. Similarly, from Eq. 6.18, we see that
R(¢) will decay exponentially or faster, since the failure rate A(f) must be
greater than zero. Thus tR(f) — 0 as ¢t — . Therefore, we have

MTTF = j "R dt (6.22)

EXAMPLE 6.1

An engineer approximates the reliability of a cutting assembly by
(1 — t/1)?, 0=t<t,,
R(t) =
1= 4.
(@) Determine the failure rate.

(b) Does the failure rate increase or decrease with time?
(¢) Determine the MTTF.

Solution (a) From Eq. 6.10,

f(t)=——U£(1—t/t0)2=g(l—t/to), 0=1t<t,.
dt to
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and from Eq. 6.14,

§iti) 2
A == ———
O =R "W -
(b) The failure rate increases from 2/, at ¢t = 0 to infinity at t = ¢,
(¢) From Eq. 6.22

0=1t<y.

MTTF = fﬂ A1 = t/ 1) = 1,/ 3.

The Bathtub Curve

The behavior of failure rates with time is quite revealing. Unless a system has
redundant components, such as those discussed in Chapter 9, the failure rate
curve usually has the general characteristics of a “‘bathtub’ such as shown in
Fig. 6.1. The bathtub curve, in fact, is an ubiquitous characteristic of living
creatures as well as of inanimate engineering devices, and much of the failure
rate terminology comes from demographers’ studies of human mortality distri-
butions. In the biomedical community, for example, reliability is referred to
as the survivability and denoted as S$(¢). Moreover, comparisons of human
mortality and engineering failures add insight into the three broad classes of
failures that give rise to the bathtub curve.

The short period of time on the left-hand side of Fig. 6.1 is a region of
high but decreasing failure rates. This is referred to as the period of infant
mortality, or early failures. Here, the failure rate is dominated by infant deaths
caused primarily by congenital defects or weaknesses. The death rate decreases
with time as the weaker infants die and are lost from the population or their
defects are detected and repaired. Similarly, defective pieces of equipment,
prone to failure because they were not manufactured or constructed properly,
cause the high initial failure rates of engineering devices. Missing parts, sub-
standard material batches, components that are out of tolerance, and damage
in shipping are a few of the quality weaknesses that may cause excessive failure
rates near the beginning of design life.

A(t)

t

FIGURE 6.1 A ‘‘bathtub’ curve representing a time-
dependent failure rate.
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Early failures in engineering devices are nearly synonymous with the
“‘product noise” quality loss stressed in the Taguchi methodology. As discussed
in Chapter 4, the preferred method for eliminating such failures is through
design and production quality control measures that will reduce variability
and hence susceptibility to infant mortality failures. If such measures are
inadequate, a period of time may be specified during which the device under-
goes wearin.* During this time loading and use are controlled in such a way
that weaknesses are likely to be detected and repaired without failure, or so
that failures attributable to defective manufacture or construction will not
cause inordinate harm or financial loss. Alternately, in environmental stress
screening and in proof-testing products are stressed beyond what is expected
in normal use so that weak units will fail before they are sold or put in service.

The middle section of the bathtub curve contains the smallest and most
nearly constant failure rates and is referred to as the useful life. This flat
behavior is characteristic of failures caused by random events and hence
referred to as random failures. They are likely to stem from unavoidable loads
coming from without, rather than from any inherent defect in the device or
system under consideration. Consequently, the probability that failure will
occur in the next time increment is independent of the system’s age. In
human populations, deaths during this part of the bathtub curve are likely
to be due to accidents or to infectious disease. In engineering devices, the
external loading may take a wide variety of forms, depending on the type of
system under consideration: earthquakes, power surges, vibration, mechanical
impact, temperature fluctuations, and moisture variation are some of the
common causes. In the Taguchi quality methodology such loads are referred
to as ‘‘outer noise.”

Random failure can be reduced by improving designs: making them more
robust with respect to the environments to which they are subjected. As
discussed in detail in Chapter 7 this may be accomplished by increasing the
ratio of components capacities relative to the loads placed upon them. The
net outcome may be visualized as in Fig. 6.2, where for an assumed operating
environment, the failure rate decreases as the component load is reduced.
This procedure of deliberately reducing the loading is referred to as derating.
The terminology stems from the deliberate reduction of voltages of electrical
systems, but it is also applicable to mechanical, thermal, or other classes of
loads as well. Conversely, the chance of component failure is decreased if the
capacity or strength of the component is increased.

On the right of the bathtub curve is a region of increasing failure rates.
During this period of time aging failures become dominant. Again, with an
obvious analogy to the loss of bone mass, arterial hardening, and other aging
effects found in human populations, the failures tend to be dominated by
cumulative effects such as corrosion, embrittlement, fatigue cracking, and
diffusion of materials. The onset of rapidly increasing failure rates normally
forms the basis for determining when parts should be replaced and for speci-

* Also referred to as burnin or runin depending on the device under consideration.
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FIGURE 6.2 Time-dependent failure rates at different levels of load-
ing: 4, > b, > 1.

fying the system’s design life. Design with more durable components and
materials, inspection and preventive maintenance, and control of deleterious
environmental stresses are a few of the approaches in the enduring battle to
produce longer-lived products. In the Taguchi methodology the causes of
deterjoration are referred to as “‘inner noise.”

Although Fig. 6.1 displays the general features present in failure rate
curves for many types of devices, one of the three mechanisms may be predomi-
nant for a particular class of system. Examples of such curves are given in Fig.
6.3. The curve in Fig. 6.3a is representative of much computer and other
electronic hardware. In particular, after a rather inconspicuous wearin period,
there is a long span of time over which the failure rate is essentially constant.
For systems of this type, the primary concerns are with random failures,
and with methods for controlling the environment and external loading to
minimize their occurrence.

The failure rate curve in Fig. 6.3b is typical of valves, pumps, engines,
and other pieces of equipment that are primarily mechanical in nature. Their
initial wearin period is followed by a long span of time with a monotonically
increasing failure rate. In these systems, for which the primary failure mecha-
nisms are fatigue, corrosion, and other cumulative effects, the central concern
is in estimating safe and economical operating lives, and in determining
prudent schedules for preventive maintenance and for replacing parts.

Thus far we have not discussed the reliability consequences of logical
errors or oversights committed in the design of complex systems. These, for
example, may take the form of circuitry errors imbedded in microprocessor

g g
- ,
t t
(a) Electronic hardware. (b) Mechanical equipment.

FIGURE 6.3 Representative fallure rates for different classes of
systems.
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chips, bugs in computer software, or even equation mistakes in engineering
reference books. Prototypes normally undergo extensive testing to find and
eliminate such errors before a product is put into production. Nevertheless,
it may be impossible—or at least impractical—to test a device against all
possible combinations of inputs to assure that the correct output is produced
in every case. Thus there may exist untested sets of inputs that will cause the
system to malfunction. In general, the resulting malfunctions may be expected
to occur randomly in time, contributing to the time-independent component
of the failure rate curve.

There is sometimes confusion with regard to failure rate definitions for
computer software. This results from the common practice of finding and
correcting bugs after, as well as before, the software is released for use. Such
bugs tend to occur less and less frequently, giving rise to the notion of a
decreasing failure rate. But that is not a failure rate in the sense in which it
is defined here. In debugging, the software design is modified after each
failure, whereas the definition used here is only valid for a product of fixed
design. Hardware and software reliability growth attributable to test-fix debug-
ging processes is taken up in Chapter 8.

In the following sections models for representing failure rates with one,
or at most a few parameters, are discussed. These are particularly useful when
most of the failures are caused by early failures, by random events, or by aging
effects. Even when more than one mechanism contributes substantially to the
failure rate curve, however, these models can often be used to represent the
combined failure modes and their interactions.

6.3 CONSTANT FAILURE RATE MODEL

Random failures that give rise to the constant failure rate model are the most
widely used basis for describing reliability phenomena. They are defined by
the assumption that the rate at which the system fails is independent of its
age. For continuously operating systems this implies a constant failure rate,
whereas for demand failures it requires that the failure probability per demand
be independent of the number of demands.

The constant failure rate approximation is often quite adequate even
though a system or some of its components may exhibit moderate early failures
or aging effects. The magnitude of early-failure effects is limited by strict
quality control in manufacture and installation and may be further reduced
by a wearin period before actual operations are begun. Similarly, in many
systems aging effects can be sharply limited by careful preventive maintenance,
with timely replacement of the parts or components in which the wear effects
are concentrated. Conversely, if components are replaced as they fail, the
overall failure rate of a many-component system will appear nearly constant,
for the failure of the components will be randomly distributed in time as will
the ages of the replacement parts. Finally, even though the system’s failure
rate may vary in time, we can use a constant failure rate that envelops the
curve; this rate will be moderately pessimistic.
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In the following sections we first consider the exponential distribution.
It is employed when constant failure rates adequately describe the behavior
of continuously operating systems. We then examine two demand failure
models, one in which the demands take place at equal time intervals and the
other in which the demands are randomly distributed in time. Both may be
represented as constant failure rates. Finally, we formulate a composite model
to describe the behavior of intermittently operating systems that may be subject
to both operating and demand modes of failure.

The Exponential Distribution

The constant failure rate model for continuously operating systems leads to
an cxponential distribution. Replacing the time-dependent failure rate A(f)
by a constant A in Eq. 6.19 yields, for the PDF,

f(t) = de M. (6.23)
Similarly, the CDF becomes
F(ry=1-¢&", (6.24)
and from Eq. 6.18 the reliability may be written as
R(t) = ™. (6.25)

Plots of f(t), R(¢), and A(¢) (the failure rate) are given in Fig. 6.4. With the
constant failure rate model, the resulting distributions are described in terms
of a single parameter, A. The MTTF and the variance of the failure times are
also given in terms of A. From Eq. 6.22 we obtain

MTTF = 1/A, (6.26)
and the variance is found from Eq. 3.16 to be
ot =1/ (6.27)

A device described by a constant failure rate, and therefore by an exponen-
tial distribution of times to failure, has the following property of ‘‘memoryless-
ness’: The probability that it will fail during some period of time in the future
isindependent of its age. This is easily demonstrated by the following example.

& = 1
L I ] | ¢ | l L
/A 2/\ 3/x 1/x 72 NI TN /X 2/ 3/x
(a) Time to failure PDF (b) Reliability (c) Failure rate

FIGURE 6.4 The exponential distribution.
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EXAMPLE 6.2

A device has a constant failure rate of A = 0.02/hr.

(a) What is the probability that it will fail during the first 10 hr of operation?

(b) Suppose that the device has been successtully operated for 100 hr. What is the
probability that it will fail during the next 10 hr of operation?

Solution (a) The probability of failure within the first 10 hr is
Pit=10}= f:’ f(8) dt=F(10) = 1 — £ =0.181.

(b) From Eq. 2.5, the conditional probability is
P{(t=110) N (t>100)} P{100=t= 100}

P{t=100]t>100} =

P{t> 100} Pit > 100}
_ [no f(o) di
100 1 — F(100)
B J’lm 0.027"% qg
~Jwl - 1+ exp(—0.02 X 100)

_ exp(—=0.02 X 100) ~ exp(=0.02 X 110)
exp(—0.02 X 100)

=1~ exp(—0.02 X 10) = 0.181.

That the probability of failure within a specified time interval is indepen-
dent of the age of the device should not be surprising. Random failures are
normally those caused by external shocks to the device; therefore, they should
not depend on past history. For example, the probability that a satellite will
fail during the next month owing to meteor impact would not depend on
how long the satellite had already been in orbit. It would depend only on the
frequency with which meteors pass through the orbit.

Demand Failures

The constant failure rate model has thus far been derived for a continuously
operating system. It may also be shown to be applicable to a system exposed
to a series of demands or shocks, each one of which has a small probability
of causing failure. Suppose that each time a demand is made on a system,
the probability of survival is 7, giving a corresponding probability of failure of

p=1-r. (6.28)

The term demand here is quite general; it may be the switching of an electric
relay, the opening of a valve, the start of an engine, or even the stress on a
bridge as a truck passes over it. Whatever the application, there are two salient
points. First, we must be able to count or at least infer the number of demands;
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and second, the probability of surviving each demand must be independent
of the number of previous demands.

We define the reliability R, as the probability that the system will still be
operational after » demands. Let X, signify the event of success in the nth
demand. Then, if the probabilities of surviving each demand are mutually
independent, R, is given by Eq. 2.13 as

R, = P{X}P{X} P{Xs} . .. P{X,}, (6.29)
or since P{X,} = rfor all n,
R, = 1" (6.30)
Then, using Eq. 6.28, we obtain
R, = (1 - p" (6.31)

We may put this result in a more useful approximate form. First, note that
the exponential of

In R, =In(1—p)"=1In( - p) (6.32)
is
R, = exp[nIn(l — p)]. (6.33)
If the probability for failure on demand is small, we may make the approxi-
mation
In(l — p) = —p (6.34)
for p << 1, yielding
R, =¢m (6.35)
Since p <<l is often a good approximation, we see that the reliability decays
exponentially with the number of demands. If the rate at which demands are

made on the system is roughly constant, we may express the number of
demands occurring before time ¢ as

n=yi, (6.36)

where v is the frequency at which demands arrive. Thus if they arrive at time
intervals Az we have y = 1/A¢ We may then calculate the reliability R(t),
defined as the probability that the system will still be operational at time ¢, as

R(t) = ™. (6.37)
where the failure rate A is now given by
A= yp. (6.38)

Equation 6.35 indicates that the exponential distribution arises for systems
that are subjected to many independent shocks or demands, each of which
creates only a small probability of failure. If we drop the assumption that the
demands appear at equal time intervals A¢, and assume that the shocks arrive
at random intervals, the same result is obtained without assuming that the
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probability p of failure per shock is small. Let y represent the mean number
of demands per unit time. Then

W=yt (6.39)
is the mean number of demands over a time interval ¢. If the demands appear
randomly in time obeying a Poisson process, we may represent the probability

that there will be n demands per unit time with the Poisson probability mass
function given in Eq. 2.59:

oy = L e (6.40)

Since the reliability after n independent demands is just 7", the reliability
at time ¢ will just be the expected value of 7" at & Using Eq. 2.32 for the
expected value we have

R(t) = >, r"f(n), (6.41)
n=0
which yields in combination with Eq. 6.40:

M0=ZQ%XWK (6.42)

n=0

We next note that upon moving ¢ outside the sum, we obtain a power series
for ¢”". Thus the reliability simplifies to

R(t) = expl(r — D)vil, (6.43)
and upon inserting Eq. 6.28 we again obtain
R(t) = e, (6.44)

where the failure rate is given by Eq. 6.38.

EXAMPLE 6.3

A telecommunications leasing firm finds that during the one-year warrantee period,
6% of its telephones are returned at least once because they have been dropped and
damaged. An extensive testing program earlier indicated that in only 20% of the drops
should telephones be damaged. Assuming that the dropping of telephones in normal
use is a Poisson process, what is the MTBD (mean time between drops)? If the tele-
phones are redesigned so that only 4% of drops cause damage, what fraction of the
phones will ke returned with dropping damage at least once during the first year
of service?

Solution (@) The fraction of telephones not returned is R = ¢ or 0.94 =
72! Therefore

1 1
Y= 62—>ﬁ In <m> = 0.3094/year,

MTBD = - = 3.23 year.

R |
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(b) For the improved design R = ¢ 7 = ¢ *3Wx008x1 = () 9877 Therefore the fraction
of the phones returned at least once is

1 — 0.9877 = 1.23%.

Time Determinations

Careful attention must be given to the determination of appropriate time
units. Is it operating time or calendar time? A warrantee of 100,000 miles or
ten years, for example, includes both, since the 100,000 miles is converted to
an equivalent operating time. Two failure rates are then relevant, one for
when the vehicle is operating, and another presumably smaller one for when
it is not. A third consideration is the number of startstop cycles that the
vehicle is likely to undergo, for the related stress and thermal cycling may
aggravate some failure mechanisms. Whatever the situation, we must clearly
state what measure of time is being used. If the reliability is to be expressed
in calendar time rather than operating time the duty cycle or capacity factor
¢, defined as the fraction of time that the engine is running, must also enter
the calculations.

Consider as an example a refrigerator motor that runs some fraction ¢
of the time; the failure rate is A, per unit operating time. The contribution
to the total failure rate from failures while the refrigerator is operating will
then be cA, per unit calendar time. If the demand failure is also to be taken
into account, we must know how many times the motor is turned on. Suppose
that the average length of time that the motor runs when it comes on is Z.
Then the average number of times that the motor is turned on per unit
operating time is 1/¢. The average number of times that it is turned on per
unit calendar time is m = ¢/1,. To obtain the total failure rate, we add the
demand and operating failure rates. Consequently, the composite failure rate
to be used in Eqgs. 6.23 through 6.27 is

A= %p + cho. (6.45)
0

In the foregoing development we have neglected the possibility that the motor
may fail while it is not operating, that is, while it is in a standby mode. Often
such failure rates are small enough to be neglected. However, for systems that
are operated only a small fraction of the time, such as an emergency generator,
failure in the standby mode may be quite significant. To take this into account,
we define A, as the failure rate in the standby mode. Since the system in our
example is in the standby mode for a fraction 1 — ¢ of the time, we add a
contribution of (1 — ¢)A, to the composite failure rate in Eq. 6.45:

A:.t—cp+ Ao+ (1= 0)A.. (6.46)
0

EXAMPLE 6.4

A pump on avolume control system at a chemical process plant operates intermittently.
The pump has an operating failure rate of 0.0004/hr and a standby failure rate of



Reliability and Rates of Failure 151

0.00001/hr. The probability of failure on demand is 0.0005. The times at which
the pump is turned on ¢, and turned off ¢, over a 24-hr period are listed in the
following table.

L, 0.78 1.69 2.89 3.92 4.71 5.97 6.84 7.76
ty 1.02 - 2.11 3.07 4.21 5.08 6.31 7.23 8.12
t, 8.91 9.81 10.81 11.87 12.98 13.81 14.87 15.97

t 9.14 10.08 11.02 12.14 13.18 14.06 15.19 16.09
t, 16.69 17.71 18.61 19.61 20.56 21.49 22.58 23.61
ty 16.98 18.04 19.01 19.97 20.91 21.86 22.79 23.89

Assuming that these data are representative, (a) Calculate a composite failure rate for
the pump under these operating conditions. (b) What is the probability of the pump’s
failing during any l-month (30-day) period?

Solution (a) From the data given we first calculate

M

M
3 1,=301.50 and 4= 29436,
=1 =1

where M = 24 is the number of operations. The average operating time 1, of the
pump is estimated for the data to be

B 1 M 1 M M
to:I\_/IE (Lo — tu) =-1T/I 2%‘“2 bui
P i=1 i1
= 511 (301.50 — 294.36) = 0.2975 hr.

Then the capacity factor is

_ Mi, 24 X0.2975 _
=57 = 54 =0.2975.

Thus the failure rate from Eq. 6.46 is

A= gggZi X 0.0005 + 0.2075 X 0.0004 + (1 — 0.2975) X 0.00001

=6.26 X 10"*hr™".

(b) The reliability is
R = exp(—A X 24 X 30) = exp(—0.4507) = 0.637,
yielding a 30-day failure probability of
1 — R = 0.363.

6.4 TIME-DEPENDENT FAILURE RATES

A variety of situations in which the explicit treatment of early failures or aging
effects, or both, require the use of time-dependent failure rate models. This
may be illustrated by considering the effect of the accumulated operating
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time 7; on the probability that a device can survive for an additional time +.
Suppose that we define R(¢| T;) as the reliability of a device that has previously
been operated for a time T,. We may therefore write

R(t|Ty) = P{t' > T, + t|t' > Ty}, (6.47)
where ¢ = T, + tis the time elapsed at failure since the device was new.
From the definition given in Eq. 2.5, we may write the conditional probability as
P{(t > Ty+ ) Nt >T,)}

Pt >T,+ 1

Pt > Ty +t|t' > Ty} = (6.48)

However, since (t' > T, + ) N (' > T)) =t > T, + ¢ we may combine
equations to obtain

P{t' > T, + ¢}

RUIT) = —prrs (6.49)
The reliability of a new device is then just
R(t) = R(t| T, = 0) = P{t’' > 1}, (6.50)
and we obtain
R(t|Ty) = E(I—;(;‘—O?l (6.51)
Finally, using Eq. 6.18, we obtain
R(t| Ty) = exp [— f:T“A(z') dt’]. (6.52)

The significance of this result may be interpreted as follows. Suppose that we
view T; as a wearin time undergone by a device before being put into service,
and ¢ as the service time. Now we ask whether the wearin time decreases or
increases the service life reliability of the device. To determine this, we take
the derivative of R(t| T;) with respect to the wearin period and obtain

J
aT,

R(t|Ty) = —=[M(Ty) = MTy + 1R(t| Ty). (6.53)

Increasing the wearin period thus improves the reliability of the device only
if the failure rate is decreasing [i.e., A(Ty) > A(Ty + #)]. If the failure rate
increases with time, wearin only adds to the deterioration of the device, and
the service life reliability decreases.

To model early failures or wear effects more explicitly, we must turn to
specific distributions of the time to failure. In contrast to the exponential
distribution used for random failures, these distributions must have at least
two parameters. Although the normal and lognormal distributions are fre-
quently used to model aging effects, the Weibull distribution is probably the
most universally employed. With it we may model early failures and random
failures as well as aging effects.
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The Normal Distribution

To describe the time dependence of reliability problems, we write the PDF
for the normal distribution given by Eq. 3.38 with ¢ as the random variable,

__1 [ -
) = \/Q_Ea_exp I 502 ], (6.54)

where w is now the MTTF. The corresponding CDF is

_ (v 1 ERGETON P
F(1) = LQ vorsad I } dr’, (6.55)

or in standardized normal form,
F(l) = ® (ﬁ_—“) (6.56)
o4
From Eq. 6.4 the reliability for the normal distribution is found to be
R=1-® (——t ;“) (6.57)

and the associated failure rate is obtained by substituting this expression into

Eq. 6.14:
_ 1 RGEON Y
Al = _.27Ta_exp [ Py ][1 (i) < p >] . (6.58)

The failure rate along with the reliability and the PDF for times to failure
are plotted in Fig. 6.5. As indicated by the behavior of the failure rate, normal
distributions are used to describe the reliability of equipment that is quite
different from that to which constant failure rates are applicable. It is useful
in describing reliability in situations in which there is a reasonably well-defined
wearout time, w. This may be the case, for example, in describing the life of
a tread on a tire or the cutting edge on a machine tool. In these situations
the life may be given as a mean value and an uncertainty. When normal
distribution is used, the uncertainty in the life is measured in terms of intervals

1.0 4/01_
~ o - 3e|—
= & < 2s|
1/0 —
I | l ¢ l I t 0 L { :
u—20 u p+2 u—20 p pt+20 p—20 u pt2o
(a) Time to failure PDF (b) Reliability (c)Failurerate

FIGURE 6.5 The normal distribution.
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in time. For instance, if we say that there is a 90% probability that the life
will fail between, u — At and u + At, then

Plu — At=t=pu + At} = 0.9. (6.59)

If the times to failures are normally distributed, it is equally probable that the
failure will take place before w — At or after uw + At Moreover, we can
determine the failure distribution time from the standardized curve. Equation
6.59 implies that

At = 1.6450. (6.60)

Therefore, o can be determined. The corresponding values for several other
probabilities are given in Table 6.1. Once w and o are known, the reliability
can be determined as a function of time from Eq. 6.57.

EXAMPLE 6.5

A tire manufacturer estimates that there is a 90% probability that his tires will wear
out between 25,000 and 35,000 miles. Assuming a normal distribution, find u and o.

Solution Assume that 5% of failures are at fewer than 25 X 10° miles and 5% at
more than 35 X 10° miles:

35— pu

() = 0.05, 2, = 25; B ®(z) =095,z =

From Appendix C, z; = —1.65, z, = +1.65. Hence
—1.650 = 25 — u, + 1.650 = 35 — p,

and the solutions are u = 30 thousand miles, o0 = 8.03 thousand miles.

The Lognormal Distribution

As we have indicated, the normal distribution is particularly useful for describ-
ing aging when we can specify a time to failure along with an uncertainty, At.
The lognormal is a related distribution that has been found to be useful in

TABLE 6.1 Confidence Intervals for a
Normal Distribution

Standard Confidence
deviations interval, %
*0.50 0.3830
*+1.00 0.6826
*1.50 0.8664
*2.00 0.9544
*2.50 0.9876

+3.00 0.9974
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describing failure distributions for a variety of situations. It is particularly
appropriate under the following set of circumstances. If the time to failure
is associated with a large uncertainty, so that, for example, the variance of
the distribution is a large fraction of the MTTF, the use of the normal distribu-
tion is problematical. However, it still may be possible to state a failure time
and to estimate with it the probability that the time to failure lies within some
factor, say n, of this value. For example, if it is known that 90% of the failures
are within a factor of n of some time ,

t
P{is = nto} =0.9. (6.61)

Asindicated in Chapter 3, the lognormal distribution describes such situations.
The PDF for the time to failure is then

1 1 t 2}
1) = ———|In{~- , 6.62
S V?ﬂwtexp{ 2602[ (to)] (662)
and the corresponding CDF

F(t) = ® [i ln(t/to)]. (6.63)

Now, however, 4 is not the MTTF; rather, they are related as indicated in
Chapter 3, by

MTTF = u = t, exp(w?/2). (6.64)
Similarly, the variance of f(t) is not equal to ®?, but rather to
o? = t exp(w?) [exp(w?) — 1]. (6.65)

When the time to failure is known to within a factor of n, ¢ and @ may be
determined as follows. If it is assumed that 90% of the failures occur between

t. = t,/nand t_ = t,/n, then ¢, is the geometric mean,
L= [t X ]2 (6.66)
and
®= ! In n (6.67)
1.645 ’ ’
/
10 4/ —
o = = 3o
= = T
'\\ 1.0 Vo 0.5 10
AT . | Is: o ,
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(a) Timeto failure PDF (b) Reliability (c)Failure rate

FIGURE 6.6 The lognormal distribution.
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The PDF for the time to failure, reliability, and failure rate A(¢) for the
lognormal distribution are plotted in Fig. 6.6. Note that the failure rate can
be increasing or decreasing depending on the value of w. The lognormal
distribution is frequently used to describe fatigue and other phenomena
caused by aging or wear and results in failure rates that increase with time.

EXAMPLE 6.6

It is known that 90% of the truck axles of a particular type will suffer fatigue failure
between 120,000 and 180,000 miles. Assuming that the failures may be fit to a lognor-
mal distribution,

(@) To what factor n is the fatigue life known with 90 percent confidence?

(b) What are the parameters ¢, and w of the lognormal distribution?

(¢) What is the MTTF?

Solution (a) For 90% certainty, t,n = 180 and #/n = 120. Taking the quotients
of these equations yields

o= 180
120
n=1.2247

(b

~

Taking the products of #n and {/n, we have

13 =180 % 120

to = 146.97 X 10° miles.
For 90% confidence Eq. 6.67 gives

1oy = In(1:2247)

“ = 1645 o4 01232

(¢) From Eq. 6.64,
MTTF = 146.97 X exp(3 X 0.1232?) = 148.09 X 10° miles.

The Weibull Distribution

The Weibull distribution is one of the most widely used in reliability calcula-
tions, for with an appropriate choice of parameters a variety of failure rate
behaviors can be modeled. These include, as a special case, the constant
failure rate, in addition to failure rates modeling both wearin and wearout
phenomena. The Weibull distribution may be formulated in either a two- or
a three-parameter form. We treat the two-parameter form first.

The two-parameter Weibull distribution, introduced in Chapter 3, as-
sumes that the failure rate is in the form of a power law:
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milt m—1
Ay =—1-}) . 6.68
0= ( 0) (6.68)
From this failure rate we may use Eq. 6.19 to obtain the PDF:

f() = -’g (—2) exp [— (7’)) ] (6.69)

Then, integrating over the time variable from zero to #, we obtain the CDF
to be

F(5) =1 — exp[—(t/0)"] (6.70)
and since R = 1 — F, the reliability is
R(t) = exp[—(t/0)"]. (6.71)
The mean and the variance of the Weibull distribution may be shown to be
pw=00(+1/m) (6.72)
and
o= @A +2/m —TQA+1/m?. (6.73)

In these expressions the complete gamma function I (v) is given by the integral
of Eq. 3.78 where a graph is also provided.

Figure 6.7 shows the properties of A(), f(t) and R(t) for a number of
values of m. From these figures and the foregoing equations it is clear that
the Weibull distribution provides a good deal of flexibility in fitting failure
rate data. When m = 1, the exponential distribution corresponding to a
constant failure rate is obtained. For values of m < 1 failure rates are typical
of wearin phenomena decrease, and for m > 1 failure rates are typical of
aging effects and increase. Finally, as m becomes large, say m > 4, a normal
PDF is approximated.

A m=4 2
m=4
3/6
4 = < e [
178 m=1
S m=205
0573 - ——— . ‘ > ¢
0 [ 26 36 0 [ 26 36 0 [ 26 36
(e) Time to failure PDF (b) Reliability (c)Failurerate

FIGURE 6.7 The Weibull distribution.

EXAMPLE 6.7

A device has a decreasing failure rate characterized by a two-parameter Weibull distribu-
tion with § = 180 years and m = . The device is required to have a design-life reliability
of 0.90.
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(@) What is the design life if there is no wearin period?

(b) What is the design life if the device is first subject to a wearin period of one month?

Solution  (a) R(T) = exp [—(T/0)"]. Therefore, T = 6{In[1/R(T)]}"™. Then
T = 180[In(1/0.9)]% = 2.00 years.

(#) The reliability with wearin time 7 is given by Eq. 6.51. With the Weibull distribution

it becomes
B <t+ TO) "
exp )

]

Setting ¢ = T, the design life, we solve for T,

T=611 L |y <T“)m o T,
1M R 9 0
1 l 1/2 |2 l
= 180 [m (0.9) * (12 X 180) ] 12

= 2.81 years.

R(t|T) =

Thus a wearin period of 1 month adds nearly 10 months to the design life.

The three-parameter Weibull distribution is useful in describing phenom-
ena for which some threshold time must elapse before there can be failures.
To obtain this distribution, we simply translate the origin to the right by an
amount ¢, on the time axis. Thus we have

P

0, 1<ty
A =3mt— t\™" ,
AN t=h
( 0, t< 1,
f(t) =9 —7_7_1 t— t() m=1 _ t— t() " (=1 ’ (674)
AN *p 0 —h
Y
( 0, 1<t
F(t) = [ (t—to>"‘] )
1—exp|— t= 1
L 9

The variance is the same as for the two-parameter distribution given in Eq.
6.73, and the mean is obtained simply by adding # the right-hand side of
Eq. 6.72.
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6.5 COMPONENT FAILURES AND FAILURE MODES

In Sections 6.3 and 6.4 the quantitative behavior of reliability is modeled for
situations with constant and time-dependent failure rates, respectively. In real
systems, however, failures occur through a number of different mechanisms,
causing the failure rate curve to take a bathtub shape too complex to be
described by any single one of the distributions discussed thus far. The mecha-
nisms may be physical phenomena within a single monolithic structure, such
as the tread wear, puncture, and defective sidewalls in an automobile tire. Or
physically distinct components of a system, such as the processor unit, disk
drives, and memory of a computer may fail. In either case it is usually possible
to separate the failures according to the mechanism or the components that
caused them. It is then possible, provided that the failures are independent,
to generalize and treat the system reliability in terms of mechanisms or compo-
nent failures. We refer to these collectively as independent failure modes.

Failure Mode Rates

Whether we refer to component failure or failure modes—and the distinction
is sometimes blurred—we may analyze the reliability of a system in terms of the
component or mode failures provided they are independent of one another.
Independence requires that the probability of failure of any mode is not
influence by that of any other mode. The reliability of a system with M different
failure modes is

R =PXiN XN ...N0 Xy, (6.75)

where X, is the event in which the i® failure mode does not occur before
time ¢ If the modes are independent we may write the system reliability as
the product of the mode survival probabilities:

R(t) = P{Xl}P{XQ} T P{XM}- (6.76)
where the mode ¢ reliability is
R.(1) = P{X}, (6.77)
yielding
R =[] R(0). (6.78)
Naturally, if mode i is the failure of component i, then R;(#) is just the
component reliability.
For each mode we may define a PDF for time to failure, f(7), and an

associated failure rate, A;(¢). The derivation is exactly the same as in Section
6.2 yielding

Ri(t) =1~— f;ﬁ(t') dt’, (6.79)
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A) = ;;(—(tt)) (6.80)
R.(1) =exp[—f;/\i(t') dz’] (6.81)
and
£ = A0 exp[—f;A,(t') dt’]. (6.82)
Combining Eq. 6.76 and 6.77 with Eq. 6.81 then yields:
R(t) = exp [— f;A(t') dt’], (6.83)
where
A =2 Ai(0). (6.84)

Thus, to obtain the system reliability, we simply add the mode failure rates.

Consider a system with a failure rate that results from the contributions
of independent modes. Suppose some modes are associated with failure rates
that decrease with time, while the failure rates of others are either constant
orincrease with time. Weibull distributions are particularly useful for modeling
such modes. If we write

f(:/\(t’) ' = (é)m + (é) "y (;t) (6.85)

and take 0 < m, < 1, m, = 1, and m, > 1, the three terms correspond,
respectively, to contributions to the failure-rate contributions that decrease,
remain flat, and increase with time. These are associated with early failures,
random failures, and wear failures, respectively. Thus the shape of the bathtub
curve can be expressed as a superposition of Weibull failure rates. It is not
valid to think of these individual terms as arising from Eqs. 6.78 through 6.84
unless each of them results from independent failure modes or the failures
of different components. When they arise as the result of a single cause, the
contributions from infant mortality, random and aging effects are strongly
interactive. In these cases Eq. 6.85 may be a useful empirical representation
of the failure rate curve so long as the individual terms are not identified
uniquely with infant mortality, random, or aging failures. We shall consider
the interactions which give rise to the bathtub curve in more detail in Chapter
7, where they are related to loading and capacity.

For situations in which independent failure modes may be approximated
by constant failure rates, A,(f) — A;, the reliability is given by Eq. 6.25 with

A= z A (6.86)
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and Eq. 6.26 may be used to determine the system’s mean time to failure. If
we define the mode mean time to failure as

MTTF,; = 1/A,;, (6.87)

the system mean time to failure is related by

1 1
MTTF 2 MTTF; (6.88)

Component Counts

The ability to add failure rates is most widely applied in situations in which
each failure mode corresponds to a component or part failure. Often, failure
rate data may be available at a component level but not for an entire system.
This is true, in part, because several professional organizations collect and
publish failure rate estimates for frequently used items, whether they be diodes,
switches, and other electrical components; pumps, valves, and similar mechani-
cal devices; or a number of other types of components. At the same time the
design of a new system may involve new configurations and numbers of such
standard items. The foregoing equations then allow reliability estimates to be
made before the new design is built and tested. In this chapter we consider
only systems without redundancy. Consequently, failure of any component
implies system failure. In systems with redundant components, the idea of a
failure mode is still applicable in a more general sense. We reserve the treat-
ment of such systems to Chapter 9.

When component failure rates are available, the most straightforward,
but crudest, estimate of reliability comes from the parts count method. We
simply count the number n; of parts of type j in the system. The system’s
failure rate is then

A= mA (6.89)
J
where the sum is over the part types in the system.

EXAMPLE 6.8

A computer-interface circuit card assembly for airborne application is made up of
interconnected components in the quantities listed in the first column of Table 6.2.
If the assembly must operate in a 50°C environment, the component failure rates are
given in column 2 of Table 6.2. Calculate

(a) the assembly failure rate,
(&) the reliability for a 12-hr mission, and
(¢) the MTTF.

Solution (a) We have calculated the total failure rate n;A; for each component
type with Eq. 6.89 and listed them in the third column of Table 6.2. For a
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nonredundant system the assembly failure rate is just the sum of these numbers,
or, as indicated, A = 21.6720 X 1075/hr.

(b) The 12-hr reliability is calculated from R = ¢™* to be
R(12) = exp(—21.672 X 12 X 107%) = 0.9997.

(¢) For constant failure rates the MTTF is

MTTF=1=—li=4614zhr
A 21.672 ’ )

TABLE 6.2 Components and Failure Rates for Computer
Circuit Card*

Failure Total failure

Component type Quantity rate/10° hr rate/10° hr
Capacitor tantalum 1 0.0027 0.0027
Capacitor ceramic 19 0.0025 0.0475
Resistor ) 0.0002 0.0010
J—K, M—S flip flop 9 0.4667 4.2003
Triple Nand gate 5 0.2456 1.2286
Diff line receiver 3 0.2738 0.8214
Diff line driver 1 0.3196 0.3196
Dual Nand gate 2 0.2107 0.4214
Quad Nand gate 7 0.2738 1.9166
Hex invertor 5 0.3196 1.5980
8-bit shift register 4 0.8847 3.5388
Quad Nand buffer 1 0.2738 0.2738
4-bit shirt register 1 0.8035 0.8035
And-or-inverter 1 0.3196 0.3196
PCB connector 1 4.3490 4.3490
Printed wiring board 1 1.5870 1.5870
Soldering connections 1 0.2328 0.2328

Total 67 21.6720 <«

* Reprinted from ‘Mathematical Modelling’ by A. H. K. Ling, Reliability and Maintainability
of Electronic Systems, edited by Arsenault and Roberts with the permission of the publisher
Computer Science Press, Inc., 1803 Research Boulevard, Rockville, Maryland 20850, USA.

The parts count method, of course, is no better than the available failure
rate data. Moreover, the failure rates must be appropriate to the particular
conditions under which the components are to be employed. For electronic
equipment, extensive computerized data bases have been developed that allow
the designer to take into account the various factors of stress and environment,
as well as the quality of manufacture. For military procurement such proce-
dures have been formalized as the parts stress analysis method.

In parts stress analysis each component failure rate, A;, is expressed as a
base failure rate, A,, and as a series of multiplicative correction factors:

)\,‘ = /\bHEHQ [ HN (690)
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The base failure rate, A,, takes into account the temperature at which the
component operates as well as the primary electrical stresses (i.e., voltage,
current, or both) to which it is subjected. Figure 6.8 shows qualitatively the
effects these variables might have on a particular component type.

The correction factors, indicated by the Ils in Eq. 6.90, take into account
environmental, quality, and other variables that are designated as having a
significant impact on the failure rate. For example, the environmental factor
II; accounts for environmental stresses other than temperature; it is related
to the vibration, humidity, and other conditions encountered in operation.
For purposes of military procurement, there are 11 environmental categories,
as listed in Table 6.3. For each component type there is a wide range of values
of [l for example, for microelectronic devices I1;ranges from 0.2 for ““Ground,
benign” to 10.0 for ‘“Missile launch.”

Similarly, the quality multiplier I, takes into account the level of specifica-
tion, and therefore the level of quality control under which the component
has been produced and tested. Typically, II, = 1 for the highest levels of
specification and may increase to 100 or more for commercial parts procured
under minimal specifications. Other multiplicative corrections also are used.
These include II, the application factor to take into account stresses found
in particular applications, and factors to take into account cyclic loading,
system complexity, and a variety of other relevant variables.

6.6 REPLACEMENTS

Thus far we have considered the distribution of the failure times given that
the system is new at ¢ = 0. In many situations, however, failure does not
constitute the end of life. Rather, the system is immediately replaced or
repaired and operation continues. In such situations a number of new pieces
of information became important. We may want to know the expected number

Stress level 3

Stress level 2

Stress level 1

Ap

Temperature

FIGURE 6.8 Failure rate versus temperature for different levels of
applied stress (power, voltage, etc.).
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TABLE 6.3 Environmental Symbol Identification and Description

7, 7,
Environment symbol Nominal environmental conditions value’
Ground, benign Gy Nearly zero environmental stress with optimum engi- 0.2
neering operation and maintenance.
Space, flight Sk Earth orbital. Approaches G conditions without ac- 0.2
cess for maintenance. Vehicle neither under pow-
ered flight nor in atmospheric reentry.
Ground, fixed Gy Conditions less than ideal: installation in perma- 1.0
nent racks with adequate cooling air, mainte-
nance by military personnel, and possible installa-
tion in unheated buildings.
Ground, mobile Gy Conditions less favorable than those for Gy, mostly 4.0
(and portable) through vibration and shock. The cooling air sup-
ply may be more limited and maintenance less
uniform.
Naval, sheltered N; Surface ship conditions similar to Gy but subject to 4.0
occasional high levels of shock and vibration.
Naval, Ny Nominal surface shipborne conditions but with re- 5.0
unsheltered petitive high levels of shock and vibration.
Airborne, A, Typical cockpit conditions without environmental 4.0
inhabited extremes of pressure, temperature, shock and vi-
bration.
Airborne, Ay Bomb-bay, tail, or wing installations, where extreme 6.0
uninhabited pressure, temperature, and vibration cycling may
be aggravated by contamination from oil, hydrau-
lic fluid, and engine exhaust.
Missile, launch M, Severe noise, vibration, and other stresses related to 10.0

missile launch, boosting space vehicles into orbit,
vehicle reentry, and landing by parachute. Condi-
tions may also apply to installation near main
rocket engines during launch operations.

"Values for monolithic microelectronic devices.

Source: From R. T. Anderson, Reliability Design Handbook RDH-376, Rome Air Development Center, Griffiss Air Force Base,

NY, 1976.

of failures over some specified period of time in order to estimate the costs
of replacement parts. More important, it may be necessary to estimate the
probability that more than a specific number of failures N will occur over a
period of time. Such information allows us to maintain an adequate inventory
of repair parts.

In modeling these situations, we restrict our attention to the constant
failure rate approximation. In this the failure rate is often given in terms of
the mean time between failures (MTBF), as opposed to the mean time to failure,
or MTTF. In fact, they are both the same number if, when a system fails it is
assumed to be repaired immediately to an as-good-as-new condition. In what
follows we use the constant failure rate model to derive p,(t), the probability
of there being n failures during a time interval of length ¢ The derivation
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leads again to the Poisson distribution introduced in Chapter 2. From it we
can calculate numbers of failures and replacement requirements.

We first consider the times at which the failures take place, and therefore
the number that occur within any given span of time. Suppose that we let n
be a discrete random variable representing the number of failures that take
place between ¢ = 0 and a time ¢ Let

pu(t) = Pln = n|t} (6.91)

be the probability that exactly n failures have taken place before time ¢. Clearly,
if we start counting failures at time zero, we must have

po(0) =1, (6.92)
£.(0) =0, n=1,2,3,...,c. (6.93)

In addition, at any time

Z pa(t) = 1. (6.94)

For small Ag, let failure A A¢ be the probability that the (n + 1)th failure
will take place during the time increment between ¢ and ¢ + At, given that
exactly n failures have taken place before time t Then the probability that
no failure will occur during A¢is 1 — A At. From this we see that the probability
that no failures have occurred before ¢ + A¢ may be written as

po(t + Aty = (1 — XAy po(8). (6.95)

Then noting that

d o bt AD = pu(8)
it = P ©90
we obtain the simple differential equation
d
Zl’o(t) = —Apo(0). (6.97)
t
Using the initial condition, Eq. 6.92, we find
po(t) = e (6.98)
With p,(t) determined, we may now solve successively for p,(¢), n = 1,
2, 3,.... in the following manner. We first observe that if n failures have

taken place before time ¢, the probability that the (n + 1) th failure will take
place between tand ¢ + Atis A At. Therefore, since this transition probability
is independent of the number of previous failures, we may write

palt+ Al = AALp, (1) + (1 = A A)p(2). (6.99)

The last term accounts for the probability that no failure takes place during
At. For sufficiently small Atz we can ignore the possibility of two or more
failures taking place.
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Using the definition of the derivative once again, we may reduce Eq. 6.99
to the differential equation

d%l?n(t) = =Ap, () + Ap,a (D). (6.100)

This equation allows us to solve for p,(#) in terms of pa1(t). To do this we
multiply both sides by the integrating factor exp(At). Then noting that

d At Al d
— = — + 101
[ P(0] = =2 pu(D) AP (D) |, (6.101)
we have
d At = Al
L] = Apir (D (6.102)
Multiplying both sides by dt and integrating between 0 and ¢, we obtain
A0 = pu(0) = A [ po() e (6.103)
But, since from Eq. 6.93 p,(0) = 0, we have
po(t) = Ae ™ J;p,,,l(t')e“' di'. (6.104)

This recursive relationship allows us to calculate the p, successively. For
1, insert Eq. 6.98 on the righthand side and carry out the integral to obtain

() = Ate ™. (6.105)
Repeating this procedure for n = 2 yields
2

pa() = ——()‘;) e, (6.106)

and so on. It is easily shown that Eq. 6.104 is satisfied for all » = 0 by

pa(t) = (An* e, (6.107)

n!

and these quantities in turn satisfy the initial conditions given by Eqs. 6.92
and 6.93.

The probabilities p,(¢) are the same as the Poisson distribution f(n),
provided that we set u = At. We may therefore use Eqs. 2.27 through 2.29 to
determine the mean and the variance of the number n of events occurring
over a time span t. Thus the expected number of failures during time ¢ is

W = E{n} = At, (6.108)
and the variance of 7 is

ol = AL (6.109)
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Of course, since p,(t) are the probability mass functions of a discrete variable
n, we must have, according to Eq. 2.22,

iof’"(t) =1. (6.110)

The number of failures can be related to the mean time between failures by

t
Ko = MTBF

We have derived the expression relating w, and the MTBF assuming a constant
failure rate. It has, however, much more general validity.* Although the proof
is beyond the scope of this book, it may be shown that Eq. 6.111 is also valid
for time-dependent failure rates in the limiting case that ¢ >> MTBF. Thus,
in general, the MTBF may be determined from

(6.111)

MTRF = 1—2 (6.112)

where 7, the number of failures, is large.
We may also require the probability that more than N failures have
occurred. It is

Pn>Nj= 3 ("‘) (6.113)

n=N+1

Instead of writing this infinite series, however, we may use Eq. 6.110 to write

N n
Pn>Nt=1-> % e M (6.114)
n=0 .

EXAMPLE 6.9

In an industrial plant there is a dc power supply in continuous use. It is known to
have a failure rate of A = 0.40/year. If replacement supplies are delivered at 6-month
intervals, and if the probability of running out of replacement power supplies is to be
limited to 0.01, how many replacement power supplies should the operations engineer
have on hand at the beginning of the 6-month interval.

Solution  First calculate the probability that the supply will have more than =
failures with ¢t = 0.5 year,

At =04 X 05 = 0.2 e = 0.819.
Now use Eq. 6.114
Pln>0}=1-¢%=0.181,
Pln>1}=1- "1+ At) = 0.018,
Pin>2}=1- M1+ At+5(A)% = 0.001.

* See, for example, R. E. Barlow and F. Proschan, Mathematical Theory of Reliability, Wiley, New
York, 1965.
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There is less than a 1% probability of more than two power supplies failing. Therefore,
two spares should be kept on hand.
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Exercises
6.1 The PDF for the time-to-failure of an appliance is

82
=gy 0

where tis in years

(a) Find the reliability of R(t).
(b) Find the failure rate A(t).
(¢) Find the MTTF.

6.2 The reliability of a machine is given by
R(t) = exp[—0.04¢t — 0.008 ¢*] (¢in years).

(a) What is the failure rate?

(b) What should the design life be to maintain a reliability of at least
0.90?

6.3 The failure rate for a high-speed fan is given by
A = (2 X 107" + 3 X 107%) /hr,
where tis in hours of operation. The required design-life reliability is 0.95.

(a) How many hours of operation should the design life be?

(b) If, by preventive maintenance, the wear contribution to the failure
rate can be eliminated, to how many hours can the design life
be extended?

(c) By placing the fan in a controlled environment, we can reduce the
constant contribution to A(t) by a factor of two. Then, without
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6.5

6.6

6.7

6.8

6.9
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preventive maintenance, to how many hours may the design life
be extended?

(d) What is the extended design life when both reductions from (5)
and (¢) are made?

If the CDF for times to failure is

100

F(t)zl—m

(a) Find the failure rate as a function of time.
(b) Does the failure rate increase or decrease with time?

Repeat Exercise 6.3, but fix the design life at 100 hr and calculate the
design-life reliability for conditions (a), (), (¢), and (d).

An electronic device is tested for two months and found to have a
reliability of 0.990; the device is also known to have a constant failure rate.

(a) What is the failure rate?

(b) What is the mean-time-to-failure?

(c) What is the design life reliability for a design life of 4 years?
(d) What should the design life be to achieve a reliability of 0.950?

A logic circuit is known to have a decreasing failure rate of the form
A(t) = g5t7V3/year,

where t1is in years.

(a) If the design life is one year, what is the reliability?

(b) If the component undergoes wearin for one month before being put
into operation, what will the reliability be for a one-year design life?

A device has a constant failure rate of 0.7/year.

(a) What is the probability that the device will fail during the second
g
year of operation?

(b) If upon failure the device is immediately replaced, what is the proba-
bility that there will be more than one failure in 3 years of operation?

The failure rate on a new brake drum design is estimated to be
A(f) = 1.2 X 107% exp(1074)

per set, where ¢ is in kilometers of normal driving. Forty vehicles are
each test-driven for 15,000 km.

(a) How many failures are expected, assuming that the vehicles with
failed drives are removed from the test?
(b) What is the probability that more than two vehicles will fail?
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6.16
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The failure rate for a hydraulic component is given empirically by
A() = 0.001(1 + 2672 + /%) /year

where ¢t is in years. If the system is installed at ¢ = 0, calculate the
probability that it will have failed by time . Plot your results for 40 years.

A home computer manufacturer determines that his machine has a
constant failure rate of A = 0.4 year in normal use. For how long should
the warranty be set if no more than 5% of the computers are to be
returned to the manufacturer for repair?

What fraction of items tested are expected to last more than 1 MTTF if
the distribution of times-to-failure is

(a) exponential,

(b) normal,

(c) lognormal with @ = 2,

(d) Weibull with m = 2?

A one-year guarantee is given based on the assumption that no more

than 10% of the items will be returned. Assuming an exponential distribu-
tion, what is the maximum failure rate that can be tolerated?

There is a contractual requirement to demonstrate with 90% confidence
that a vehicle can achieve a 100-km mission with a reliability of 99%.
The acceptance test is performed by running 10 vehicles over a 50,000-
km test track.

(a) What is the contractual MTTF?

(b) What is the maximum number of failures that can be experienced
on the demonstration test without violating the contractual require-
ment? (Note: Assume an exponential distribution, and review Sec-
tion 2.5.)

The reliability for the Rayleigh distribution is
R(t) = ",
Find the MTTF in terms of 6.

Suppose the CDF for time to failure is given by

{1 —at?.  t1<1/Va
R(1) = .
@ 0, t>1/Va

Determine the following:

(a) the PDF f(¢),
(b) the failure rate,
(c¢) the MTTF.
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Suppose that amplifiers have a constant failure rate of A = 0.08/month.
Suppose that four such amplifiers are tested for 6 months. What is the
probability that more than one of them will fail? Assume that when they
fail, they are not replaced.

A device has a constant failure rate with a MTTF of 2 months. One
hundred of the devices are tested to failure.

(a) How many of the devices do you expect to fail during the second
month?

(b) Of the devices which survive two months, what fraction do you
expect to fail during the third month?

(c) If you are allowed to stop the test after 80 failures, how long do you
expect the test to last?

A manufacturer determines that the average television set is used 1.8
hr/day. A one-year warranty is offered on the picture tube having a
MTTF of 2000 hr. If the distribution is exponential, what fraction of the
tubes will fail during the warranty period?

Ten control circuits are to undergo simultaneous accelerated testing to

study the failure modes. The accelerated failure rate has previously been

estimated to be constant with a value of 0.04 days™'.

(a) What is the probability that there will be at least one failure during
the first day of the test?

(b) What is the probability that there will be more than one failure
during the first week of the test?

The reliability of a cutting tool is given by
(1—-0.267% 0=si¢<5,
R(t) =

0, t>5,
where tis in hours.

(a) What is the MTTF?

(b) How frequently should the tool be changed if failures are to be held
to no more than 5%?

(c) Is the failure rate decreasing or increasing? Justify your result.

A motor-operated valve has a failure rate A, while it is open and A, while
it is closed. It also has a failure probability p, to open on demand and
a failure probability p, to close on demand. Develop an expression for
the composite failure rate similar to Eq. 6.46 for the valve.

A failure PDF for an appliance is assumed to be a normal distribution
with u = 5 years and o = 0.8 years. Set the design life for

(a) a reliability of 90%,

(b) a reliability of 99%.
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A designer assumes a 90% probability that a new piece of machinery
will fail at some time between 2 years and 10 years.

(a) Fit a lognormal distribution to this belief.
(b) What is the MTTF?

The life of a rocker arm is assumed to be 4 million cycles. This is known
to a factor of two with 90% probability. If the reliability is to be 0.95,
how many cycles should the design life be?

Two components have the same MTTF; the first has a constant failure
rate A, and the second follows a Rayleigh distribution, for which

[aay ar == 2

. (t") dt' = 5

(a) Find 6 in terms of A,.

(b) If for each component the design-life reliability must be 0.9, how

much longer (in percentage) is the design life of the second (Ray-
leigh) component?

Night watchmen carry an industrial flashlight 8 hr per night, 7 nights
per week. It is estimated that on the average the flashlight is turned on
about 20 min per 8-hr shift. The flashlight is assumed to have a constant
failure rate of 0.08/hr while it is turned on and of 0.005/hr when it is
turned off but being carried.

(a) In working hours, estimate the MTTF of the light.
(b) What is the probability of the light’s failing during one 8-hr shift?

(c) What is the probability of its failing during one month (30 days) of
8-hr shifts?

Consider the two components in Exercise 6.26.

(a) For what design-life reliability are the design lives of the two compo-
nents equal?

(b) On the same graph plot reliability versus time for the two compo-
nents.

The two-parameter Weibull distribution with m = 2 is known as the
Rayleigh distribution. For a nonredundant system made of N compo-
nents, each described by the same Rayleigh distribution, find the system
MTTF in terms of N and the component 6.

If waves hit a platform at the rate of 0.4/min and the “memoryless”

failure probability is 107%/wave, estimate the failure rate in days™.

The one-month reliability on an indicator lamp is 0.95 with the failure
rate specified as constant. What is the probability that more than two
spare bulbs will be needed during the first year of operation? (Ignore
replacement time.)
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6.32 A part for a marine engine with a constant failure rate has an MTTF of
two months. If two spare parts are carried,

(a) Whatis the probability of surviving a six-month cruise without losing
the use of the engine as a result of part exhaustion?

(b) What is the result for part a if three spare parts are carried?

6.33 In Exercise 6.27, suppose that there are three watchmen on duty every
night for 8 hr.

(a) How many flashlight failures would you expect in one year?

(b) Assuming that the failures are not caused by battery or bulb wearout
(these are replaced frequently), how many spare flashlights would
be required to be on hand at the beginning of the year, if the
probability of running out of spares is to be less than 10%?

6.34 An electronics manufacture mixes 1,000 capacitors with an MTTF of 3
months and 2,000 capacitors with an MTTF of 6 months. Assuming that
the capacitors have constant failures rates:

(a) What is the PDF for the combined population?

(b) Use Eq. 6.15 to derive an expression for the failure rate of the
combined population.

(c) What is the failure rate at t = 0?
(d) Does the failure rate increase or decrease with time?
(e) What is the failure rate at very long times?

6.35 A servomechanism has an MTBF of 2000 hr. with a constant failure rate.

(a) What is the reliability for a 125-hr mission?

(b) Neglecting repair time, what is the probability that more than one
failure will occur during a 125-hr mission?

(c) That more than two failures will occur during a 125-hr mission?

6.36 Assume that the occurrence of earthquakes strong enough to be damag-
ing to a particular structure is governed by the Poisson distribution. If
the mean time between such earth quakes is twice the design life of
the structure:

(a) What is the probability that the structure will be damaged during
its design life?

(b) What is the probability that it will suffer more than one damaging
earthquake during its design life?

(c) Calculate the failure rate (i.e., damage rate due to earthquakes).

6.37 A relay circuit has an MTBF of 0.8 yr. Assuming random failures,

(a) Calculate the probability that the circuit will survive one year with-
out failure.
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(b) What is the probability that there will be more than two failures in
the first year?
(c) What is the expected number of failures per year?

6.38 Demonstrate that Eq. 6.106 satisfies Eq. 6.104.

6.39 The MTBF for punctures of truck tires is 150,000 miles. A truck with 10
tires carries 1 spare.

(a) What is the probability that the spare will be used on a 10,000-
mile trip?

(b) What is the probability that more than the single spare will be
required on a 10,000-mile trip?

6.40 Widgets have a constant failure rate with MTTF = 5 days. Ten widgets
are tested for one day.

(a) What is the expected number of failures during the test?

(b) What is the probability that more than one will fail during the test?

(c) For how long would you run the test if you wanted the expected
number of failures to be five?



CHAPTER 7

Loads, Capacity,
and Reliability

“Now in the 5111/04}@ 0/[ chaises, I lell you whal,
There is a/ways, somewhere, a weakes! spof,—
In hub, fire, /fe//oe, in spring or thilll

In panel, or crossbar, or /f/oor, or silll

In screw, boll, /Aorouyﬁérace,—-ﬁzré[ny, still
Find it somewhere you mus! and will—

TAbove or below; or within or without,—

And that’s the reason, 5eyon0/ a doubt,

That a chaise breabs down, but doesn! wear oul.”

Oliver ZQ)enJe// Holmes
The Deacons’s %zs/erpiece

7.1 INTRODUCTION

In the preceding chapters failure rates were used to emphasize the strong
dependence of reliability on time. Empirically, these failure rates are found
to increase with system complexity and also with loading. In this chapter we
explore the concepts of loads and capacity and examine their relationship to
reliability. This examination allows us both to relate reliability to traditional
design approaches using safety factors, and to gain additional insight into the
relations between failure rates, infant mortality, random failures and aging.

Safety factors and margins are defined in the following way: Suppose we
define [ as the load on a system, structure, or piece of equipment and c¢ as

175



176  Introduction to Reliability Engineering

the corresponding capacity. The safety factor is then defined as
c
=-. 7.1
V=g (7.1)

Alternately, the safety margin may be used. It is defined by
m=c¢— L (7.2)

Failure then occurs if the safety factor falls to a value less than one, or if the
safety margin becomes negative.

The concepts of load and capacity are employed most widely in structural
engineering and related fields, where the load is usually referred to as stress
and the capacity as strength. However, they have much wider applicability.
For example, if a piece of electric equipment is under consideration, we may
speak of electric load and capacity. A telecommunications system load and
capacity may be measured in terms of telephone calls per unit time, and for
an energy conversion system thermal units for load and capacity may be used.
The point is that a wide variety of applications can be formulated in terms of
load and capacity. For a given application, however, ! and ¢ must have the
same units.

In the traditional approach to design, the safety factor or margin is made
large enough to more than compensate for uncertainties in the values of both
the load and the capacity of the system under consideration. Thus, although
these uncertainties cause the load and the capacity to be viewed as random
variables, the calculations are deterministic, using for the most part the best
estimates of load and capacity. The probabilistic analysis of loads and capacities
necessary for estimating reliability clarifies and rationalizes the determination
and use of safety factors and margins. This analysis is particularly useful for
situations in which no fixed bound can be put on the loading, for example,
with earthquakes, floods and other natural phenomena, or for situations n
which flaws or other shortcomings may result in systems with unusually small
capacities. Similarly, when economics rather than safety is the primary criteria
for setting design margins, the trade-off of performance versus reliability can
best be studied by examining the increase in the probability of failure as load
and capacity approach one another.

The expression for reliability in terms of the random variables 1 and ¢
comes from the notion that there is always some small probability of failure
that decreases as the safety factor is increased. We may define the failure
probability as

p= Pl =c} (7.3)
In this context the reliability is defined as the nonfailure probability or
r=1-p, (7.4)
which may also be expressed as

r=P{1< ch (7.5)
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In treating loads and capacities probabilistically, we must exercise a great
deal of care in expressing the types of loads and the behavior of the capacity.
If this is done, we may use the resulting formalism not only to provide a
probabilistic relation between safety factors and reliability, but also to gain a
better understanding of the relations between loading, capacities, and the time
dependence of failure rates as exhibited, for example, in the bathtub curve.

In Section 7.2 we develop reliability expressions for a single loading and
then, in section 7.3, relate the results to the probabilistic interpretation of
safety factors. In Section 7.4 we take up repetitive loading to demonstrate
how the time-dependence of failure rate curves stems from the interactions
of variable loading with capacity variability and deterioration. In Section 7.5
a failure rate model for the bathtub curve in synthesized in which variable
capacity, variable loading, and capacity deterioration, respectively, are related
to infant mortality, random failures and aging.

7.2 RELIABILITY WITH A SINGLE LOADING

In this section we derive the relations between load, capacity, and reliability
for systems that are loaded only once. The resulting reliability does not depend
on time, for the reliability is just the probability that the system survives the
application of the load. Nevertheless, before the expressions for the reliability
can be derived, the restrictions on the nature of the loads and capacity must
be clearly understood.

Load Application

In referring to the load on a system, we are in fact referring to the maximum
load from the beginning of application until the load is removed. Figure 7.1
indicates the time dependence of several loading patterns that may be treated
as single on loading /, provided that appropriate restrictions are met.

Figure 7.1a represents a single loading of finite duration. Missiles during
launch, flashbulbs, and any number of other devices that are used only once
have such loadings. Such one-time-only loads are also a ubiquitous feature of
manufacturing processes, occurring for instance when torque is applied to a
bolt or pressure is applied to a rivet. Loading often is not applied in a smooth
manner, but rather as a series of shocks, as shown in Fig. 7.15. This behavior
would be typical of the vibrational loading on a structure during an earthquake
and of the impact loading on an aircraft during landing. In many situations,
the extreme value of many short-time loadings may be treated as a single
loading provided that there is a definite beginning and end to the disturbance
giving rise to it.

The duration of the load in Figs. 7.1a and b is short enough that no
weakening of the system capacity takes place. If no decrease in system capacity
is possible, the situations shown in Figs. 7.1¢ and 4 may also be viewed as
single loadings, even though they are not of finite duration. The loading
shown in Fig. 7.1¢ s typical of the dead loads from the weight of structures;
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FIGURE 7.1 Time-dependent loading patterns.

these increase during construction and then remain at a constant value. This
formulation of the loading is widely used in structural analysis when the load-
bearing capacity not only may remain constant, but may in some instances
increase somewhat with time because of the curing of concrete or the work-
hardening of metals.

Subject to the same restrictions, the patterns shown in Fig. 7.1d may be
viewed as a single loading. Provided the peaks are of the same magnitude,
the system will either fail the first time the load is applied or will not fail at
all. Under such cyclic loading, however, the assumption that the system capac-
ity will not decrease with time should be suspect. Metal fatigue and other
wear effects are likely to weaken the capacity of the system gradually. Similarly,
if the values of peak magnitudes vary from cycle to cycle, we must consider
the time dependence of reliability explicitly, as in Section 7.4.

Thus far we have assumed that a system is subjected to only one load
and that reliability is determined by the capacity of the system as a whole to
resist this load. In reality, a system is invariably subjected to a variety of different
loads; if it does not have the capacity to sustain any one of these, it will fail.
An obvious example is a piece of machinery or other equipment, each of whose
components are subjected to different loads; failure of any one component will
make the system fail. A more monolithic structure, such as a dam, is subject
to static loads from its own weight, dynamic loads from earthquakes, flood
loadings, and so on. Nevertheless, the considerations that follow remain appli-
cable, provided that the loads are considered in terms of the probability of
a particular failure mode or of the loading of a particular component. If the
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failure modes can be assumed to be approximately independent of one an-
other, the reliability of the overall system can be calculated as the product of
the failure mode reliabilities, as discussed in Chapter 6.

Definitions

To derive an expression for the reliability, we must first define independent
PDFs for the load, 1, and for the capacity, c. Let

filh dl=P{i<1< [+ dl} (7.6)
be the probability that the load is between /and [ + dl Similarly, let
fu(e) de = P{c< ¢ < ¢+ dc} (7.7

be the probability that the capacity has a value between ¢ and ¢ + dc. Thus
£i(1) and f.(¢c) are the necessary PDFs; we include the subscripts to avoid any
possible confusion between the two. The corresponding CDFs may also be
defined. They are

Fi(c) = j;fc(c’) de', (7.8)

R = [y ar. (7.9)

We first consider a system with a known capacity ¢ and a distribution of
possible loads, as shown in Fig. 7.2a. For fixed ¢, the reliability of the system
is just the probability that 1 < ¢, which is the shaded area in the figure. Thus

r(c) = j;f,(l) dl (7.10)

The reliability, therefore, is just F(c¢), the CDF of the load evaluated at c.
Clearly, for a system of known capacity, the reliability is equal to one as ¢ —
o, and to zero as ¢ — 0.

Now suppose that the capacity also involves uncertainty; it is described
by the PDF f.(c). The expected value of the reliability is then obtained from

IA0)]
fe(c)

r(c)

9% i 7

1 0 . c

(a) (b)
FIGURE 7.2 Area interpretation of reliability: () variable load, fixed capacity; () vari-
able capacity, fixed load.

0
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averaging over the distribution of capacities:
r= f: r(c) f(c) de.

Substituting in Eq. 7.10, we have
=] [J;ﬁ(l) dl] file) de.
The failure probability may then be determined from Eq. 7.4 to be
p=1-]; [f;ﬁm dl] £i(0) de
Alternately, we may substitute the condition on the load PDF,
[ pw a=1~ " j a

into Eq. 7.12. Then, using the condition

[0 gt ae=1,

we obtain for the failure probability

p=1; Ufﬁ(n dz] Ji(e) de

(7.11)

(7.12)

(7.18)

(7.14)

(7.15)

(7.16)

As shown in Fig. 7.3, the probability of failure is loosely associated with the
overlap of the PDFs for load and capacity in the sense that if there is no

overlap, the failure probability is zero and r = 1.

A1) fe(e)

lLie

0
FIGURE 7.3 Graphical reliability interpretation with variable
load and capacity.
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EXAMPLE 7.1

The bending moment on a match stick during striking is estimated to be distributed
exponentially. It is found that match sticks of a given strength break 20% of the time.
Therefore, the manufacturer increases the strength of the matches by 50%. What
fraction of the strengthened matches are expected to break as they are struck?

Solution Assume that the strength (capacity) is known; then for the standard
matches we have

08 =r= [ f) di=[(Aetdl=1- e

Therefore, ¢* = 0.2 or Ac = —In(0.2), where A is the unknown parameter of the
exponential loading distribution. For the strengthened matches

, 150 15 .
4 :jo A dl:fo AeMdl=1— g5

p=1—1 =exp[+ 15X 1In(0.2)] = 0.2 = 0.089.

Thus about 9% of the strengthened matches are expected to break.

Another derivation of r and p is possible. Although the derivation may
be shown to yield results that are identical to Eqs. 7.12 and 7.13, the intermedi-
ate results are useful for different sets of circumstances. To illustrate, let us
consider a system with known load but uncertain capacity represented by the
distribution f.(c). The reliability for this system with known load is then given
by the shaded area in Fig. 7.26.

() = [7 file) do (7.17)
or equivalently,
() =1- J;fc(c) de. (7.18)

For a system in which the load is also represented by a distribution, the
expected value of the reliability is obtained by averaging over the load distri-
bution,

r=[" g a (7.19)

or more explicitly
r= f: fi(D [jl“ £(0) dc] dl. (7.20)
Similarly, we may consider the variation of the capacity first in deriving

an expression for the failure probability. For a system with a fixed load the
failure probability will be the unshaded area under the curve in Fig. 7.24:
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P = [ fite) de (7.21)

Then, averaging over the distribution of loads, we have

b= fo 170, [f;fc(c) dc] dL. (7.22)

It is easily shown that Eqs. 7.12 and 7.20 are the same. First write Eq.
7.12 as the double integral

= [f;fc(c)ﬁ(l) dl] de, (7.29)

where the shaded domain of integration appears in Fig. 7.4. If we reverse the
order of integration, taking the ¢ integration first, we have

r= f: [ﬁ"fc(c)ﬁ(n dc] dl. (7.24)

Putting fi(!) outside the integral over ¢, we obtain Eq. 7.20.

To recapitulate, Egs. 7.12 and 7.20 may be shown to be identical, as may
Egs. 7.16 and 7.22. However, the intermediate results for r(c), p(c), 7({), and
p(1) are useful when considering systems whose capacity varies little compared
to their load, or vice versa.

7.3 RELIABILITY AND SAFETY FACTORS

In the preceding section reliability for a single loading is defined in terms of
the independent PDFs for load and capacity. Similarly, it is possible to define

0
FIGURE 7.4 Domain of integration for reliability

calculation.
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safety factors in terms of these distributions. Two of the most widely accepted
definitions are as follows. In the central safety factor the values of load and
capacity in Eq. 7.1 are taken to be the mean values

[= f "R dL (7.25)
= J " o) de (7.26)

Thus the safety factor is
v=171 (7.27)

There is a second alternative if we express the safety factor in terms of the
most probable values [, and ¢, at the load and capacity distributions. The
safety factor in Eq. 7.1 is then

v = C()/l(). (728)

These definitions are naturally associated with loads and capacities repre-
sented in terms of normal or of lognormal distributions, respectively. Then
the reliability can be expressed in terms of the safety factor along with measures
of the uncertainty in load and capacity. Other distributions may also be used
in relating reliability to safety factors. Such is the case with the extreme-value
distribution. With such analysis the effects of design changes and quality
control can be evaluated. Design determines the mean, ¢, or most probable
value, ¢;, of the capacity, whereas the degree of quality control in manufacture
or construction influences primarily the variance of f(¢) about the mean.
Similarly, the conditions under which operations take place determine the
load distribution f£({) as well as the mean value L

Normal Distributions

The normal distribution is widely used for relating safety factors to reliability,
particularly when small variations in materials and dimensional tolerances
and the inability to determine loading precisely make capacity and load uncer-
tain. The normal distribution is appropriate when variability in loads, capacity,
or both is caused by the sum of many effects, no one of which is dominant.
An appropriate example is the load and capacity of an elevator large enough
to carry several people. Since the load is the sum of the weights of the people,
the variability of the weight is likely to be very close to a normal distribution
for the reasons discussed in Chapter 3. The variability in the weight of any
one person is unlikely to have an overriding effect on the total load. Similarly,
if the elevator cable is made up of many independent strands of wire, its
capacity will be the sum of the strengths of the individual strands. Since the
variability in strength of any one strand will not have much effect on the cable
capacity, the normal distribution may be used to model the cable capacity.
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Suppose that the load and capacity are represented by normal distribu-
tions,

_ 1 [ 1<z—7>2]
(1) = — 7.29
M= Vore P L (729
and
_ 1 [ (c—)?
]{C(C)——\/§7—T.0'Cexp_ 2 a'f :|, (730)

where the mean values of the load and capacity are denoted by land ¢, and
the corresponding standard deviations are o,and o.. Substituting these expres-
sions into Eq. 7.12, we obtain for the reliability

e 1 1 (e—2)?
’"”f~w\/2—wf"p[z o! ]

| (1—2)‘2] }
X xp | —8—>| dl} de
{J‘wVQﬂU,e p[ ' ool g

This expression* for the reliability may be reduced to a much simpler
form involving only a single normal integral. To accomplish this, however,
involves a significant amount of algebraic manipulation. We begin by trans-
forming variables to the dimensionless quantities

(7.31)

x=(c—¢) /0o, (7.82)
y=(—=10/o. (7.33)

Equation 7.31 may then be rewritten as
= 21_77 [ { [T expl—biat + )] dy} dx. (7.34)

This double integral may be viewed geometrically as an integral over the
shaded part of the x — y plane shown in Figure 7.5. The line demarking the
edge of the region of integration is determined by the upper limit of the y
integration in Eq. 7.34:

y=—1—(a'rx+ t—1). (7.85)
gy

By rotating the coordinates through the angle 6, we may rewrite the
reliability as a single standardized normal function. To this end we take
x' = xcos 8+ ysin 0 (7.36)

* Note that we have extended the lower limits on the integrals to — in order to accommodate
the use of normal distributions. The effect on the result is negligible for ¢ >> o, and [ >> 0.



Loads, Capacity, and Reliability 185

/

FIGURE 7.5 Domain of integration for normal load and capacity.

and
y = —xsin  + ycos 6. (7.37)
It may then be shown that
x? + g2 = X2+ oy (7.38)
and
dx dy = dx' dy', (7.39)
allowing us to write the reliability as
==§; fw{ffwexp[—é(xﬂ-+y@]c@'}dmc (7.40)

The upper limit on the y’ integration is just the distance 8 shown in Fig. 7.5.

With elementary trigonometry, 8 may be shown to be a constant given by
i—1

(T + o)™

B= (7.41)

The quantity B is referred to as the safety or reliability index. Since B is a
constant, the order of integration may be reversed. Then, since

\/Jzsz e dx = () = 1, (7.42)
7T o

the remaining integral, in y', may be written as a standardized normal CDF
to yield the reliability in terms of the safety index @:

r= ®(B). (7.48)

The results of this equation may be put in a more graphic form by
expressing them in terms of the safety factor, Eq. 7.27. A standard measure
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FIGURE 7.6 Standard normal distribution: (a) probability density function PDF, () cumula-
tive distribution function (CDF).

of the dispersion about the mean is the coefficient of variation, defined as
the standard deviation divided by the mean:

p=a/p. (7.44)
Thus we may write

p.=o0,/¢ (7.45)
and

p = o/l (7.46)

With these definitions we may express the safety index in terms of the central
safety factor and the coefficients of variation:

v—1

R 740

B
In Figure 7.6 the standardized normal distribution is plotted. The area
under the curve to the left of 8 is the reliability r; the area to the right is the
failure probability p. In Fig. 7.65 the CDF for the normal distribution is plotted.
Thus, given a value of 8, we can calculate rand p. Conversely, if the reliability
is specified and the coefficients of variation are known, we may determine
the value of the safety factor. In Figure 7.7 the relation between safety factor
and probability of failure is indicated for some representative values of the
coefficients of variation.

EXAMPLE 7.2

Suppose that the coefficients of variation are p, = 0.1 and p, = 0.15. If we assume
normal distributions, what safety factor is required to obtain a failure probability of
no more than 0.005?

Solution p = 0.005; r = 0.995; r = ®(B) = 0.995. Therefore, from Appendix C,
B = 2.575. We must solve Eq. 7.47 for v. We have

Bpv +ph) = (v=1) o (1= BpHvi—2vt (1 - B} =0.



Loads, Capacity, and Reliability 187

1076 107~
107° 107
] o p.=0.20
2 2 p,= 0.10 and
8107t £ 1074
k] S
2 2
= p.=0.10 =
5 103 oy= 0.10 and | 1073
] 0.30 €
a a
102} 102 |
107! | I ] | ) ] 107!
1.0 18 2.6 34 4.2 1.0 1.8 2.6 34 4.2
= mean capacity _ i p = mean capacity _L
= meantoad T T T meantoad 7

FIGURE 7.7 Probability of failure for normal load and capacity (From Gary C. Hart, Uncer-
lainty Analysis, Loads, and Safety in Structural Engincering, © 1982, p. 107, with permission
from Prentice-Hall, Englewood Cliffs, NJ.)

Solving this quadratic equation in v, we have

2 [4—4(1 - Bp}) (1 — BEpH)] 2
YT 2(1 - )

or

_229(1 — 0.8508 X 0.9337)1* _ 1+ 0.4534
v 9 % 0.9336 0.9337

= 1.56,

since the second solution, 0.5853, will not satisfy Eq. 7.47.

In using Eqs. 7.43 and 7.47 to estimate reliability, we assume that the
load and capacity are normally distributed and that the means and variances
can be estimated. In practice, the paucity of data often does not allow us to
say with any certainty what the distributions of load and capacity are. In these
situations, however, the sample mean and variance can often be obtained.
They can then be used to calculate the reliability index defined by Eq. 7.47;
often the reliability can be estimated from Eq. 7.43. Such approaches are
referred to as second-moment methods, since only the zero and second mo-
ments of the load and capacity distributions need to be estimated.

Second-moment methods* have been widely employed, for they represent
the logical next step beyond the simple use of safety factors in that they also
account for the variance of the distributions. Such methods must be employed
with care, however, for when the distributions deviate greatly from normal

* C. A. Cornell, ““Structural Safety Specifications Based on Second-Moment Reliability,”” Symposium
of the International Association of Bridge and Structural Engineers, London, 1969; see also A. H.-S.
Ang, and W. H. Tang, Probability Concepts in Engineering Planning and Design, Vol. 2, Wiley, New
York, 1984.
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distributions, the resulting formulas may be in serious error. This may be seen
from the different expressions for reliability when lognormal or extreme-value
distributions are employed.

Lognormal Distributions

The lognormal distribution is useful when the uncertainty about the load, or
capacity, or both, is relatively large. Often it is expressed as having 90%
confidence that the load or the capacity lies within some factor, say two, of
the best estimates [, or ¢. In Chapter 3 the properties of the lognormal
distribution were presented. As indicated there, the lognormal distribution
is most appropriate when the value of the variable is determined by the
product of several different factors. For load and capacity, we rewrite Eq. 3.63
for the PDFs as

1 1 [, [\
= - - << 7.
50 = gameso g ()]} o<r== aw

and

r 2
(o) =72_—17;;—Cexp{—2%§- In <;co>] }, 0<c< oo, (7.49)

If Egs. 7.48 and 7.49 are substituted into Eq. 7.12, the resulting expression
for the reliability is

el (4]

2 (7.50)
(o - [ ()]} ) a
0 277’(01[ 2(0% l() )
Note, however, that with the substitutions
1 l
=y 7.51
T <l> (751)
and
, c
we obtain
_ L % (1/a) [0 x+n(¢/1)] g \
" og f-w {jw exp[—3(x* +y%)] dy} dx. (7.53)

The forms of the reliability in Eq. 7.34 and in this equation are identical if
in the upper limit of the y integration we substitute w; and w, for o; and o,
respectively, and replace ¢ — 1 with In(¢y/ k). Thus the reliability still has the
form of a standardized normal distribution given by Eq. 7.43. Now, however,
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the argument 8 is given by

8= In (co/ )

= T (7.54)

EXAMPLE 7.3

Suppose that both the load and the capacity on a device are known within a factor of
two with 90% confidence. What value of the safety factor, ¢/, must be used if the
failure probability is to be no more than 1.0%?

Solution For ®(B) = r=1 — p = 0.99 we find from Appendix C that 8 = 2.33.
From Eq. 3.73 for 90% confidence with a factor of » = 2 uncertainty, we have for
both load and capacity w, = 0, = w = (1/1.645) In(n) = (1/1.645) In(2) = 0.4214.
Solve Eq. 7.54 for ¢/ Iy

2 explB(w? + 0] = exp(BV20)

)

=exp(2.33 X 1.414 X 0.4214) = 4.01. 4

Combined Distributions

In general, it is difficult to evaluate analytically the expressions given for
reliability when the load and capacity are given by different distributions.
However, when the load or capacity is given by an extreme value distribution
and the other by a normal distribution, both analytical results and some insight
can be obtained.

Consider first a system whose capacity is approximated by the minimum
extreme-value distribution introduced in Chapter 3, but about whose loading
there is only a small amount of uncertainty. This situation is depicted in Fig.
7.8a. We assume that /, the mean value of the load, is much smaller than the

10 f(©
it < ¢
1 fe(©) AD

L\
0 Le O Le

(a) (b)

FIGURE 7.8 Graphical representations of reliability: (¢) minimum extreme-value
distribution for capacity, (») maximum extreme-value distribution for loading.




190  Introduction to Reliability Engineering

mean, ¢ = u — @+, of the minimum extreme-value distribution that represents
the capacity: /<< z For known loading the reliability is given by Eq. 7.18.
Thus using CDF from Eq. 3.101, we have

r(l) = exp[—e"/®], (7.55)
which for small enough values of I (i.e., | << u) becomes
l—u
r(l) =1 —exp ( ® ) (7.56)

Now suppose that we want to take into account some natural variation in the
loading on the system. If this is represented by a distribution with small
variance of the load about the mean, Eq. 7.19 may be employed to express
the reliability as

l—u

r=1- [ A exp (—®—> di. (7.57)

Again, it must be assumed that the variance of the load is not large, o, <<
¢ — 1 so that the expansion, Eq. 7.56, is valid over the entire range of / where
£i(1) is significantly greater than zero. We obtain for the reliability

r=1-— exp [% (%)2] exp <Z—(:)u>’ (7.57)

where u = 7 + Oy >> 1 and v is Euler’s constant.

In the converse situation the capacity has only a small degree of uncer-
tainty, whereas the loading is represented by a maximum extreme-value distri-
bution, again with the stipulation that ¢ >> L This situation is depicted in
Fig. 7.8b. The reliability at known capacity is first obtained by substituting the
maximum extreme-value distribution from Eq. 3.99 into Eq. 7.10,

r(c) = F(c) = exp[—e“/*], (17.58)

or for large ¢,
r(c) =1 — elve, (7.59)

Thus, from Eq. 7.11, we have

y= f: £(0) [1 ~ exp (—’%)] de, (7.60)

provided that the variance in f;(¢) is small enough that Eq. 7.59 is valid. The
resulting reliability is

r=1 —exp[—%(%{)?} exp (ugf) (7.61)

where u = [ — @y << 7 and v is Euler’s constant.
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7.4 REPETITIVE LOADING

We have considered time only implicitly, or not at all, in conjunction with
load-capacity interference theory. Load has been represented as the maximum
load over the life of the device or system. Therefore with longer lives the load
distribution in Fig. 7.3, would shift to the right, causing the reliability to
decrease. Likewise, aging effects have been taken into account only in the
conservatism in which the capacity distribution is chosen; it should take weak-
ening with age into account.

Time, however, is arguably the most important variable in many reliability
considerations. The bathtub curve representation of failure rate curve pictured
in Fig. 6.1 is ubiquitous in characterizing the reliability losses that cause infant
mortality, random failures and aging. In this and the following section we
demonstrate how load and capacity interact under repetitive loading and
result in these three failure mechanisms. Specifically, infant mortality is closely
associated with capacity variability, random failures with loading variability,
and aging with capacity deterioration. These associations provide a rational
for the bathtub shapes of failure rate curves and clarify the relationship
between the three failure classes and the corresponding causes of quality loss
enumerated by Taguchi: product noise, outer noise, and inner noise.

Loading Variability

Consider a system subject to repetitive loading, and assume that the magnitude
of each load is determined by a random variable 1, described by a probability
density fi(1). Suppose, for now, that we specify a system with a known capacity
¢(t) at time ¢. The probability that a load occurring at time ¢ will cause system
failure is then just the probability that I > ¢(¢), or

p=1[" 1w (7.62)

Repetitive loading may occur at either equal or random time intervals,
as pictured in Figs. 7.9a or 7.9b respectively. The model that follows is based
on random intervals, although when the mean time between loads becomes
small the two models yield nearly identical results. We model the random
times at which the loads occur by specifying that during a vanishingly small
time increment, A, the probability of load occurrence is 7y At, where At is so
small that y Az << 1. The probability of a load occurring at any time is then
independent of the time at which the last loading occurred; the loading is
then said to be Poisson distributed in time with a frequency y. The probability
of a load that is large enough to cause failure occurring between ¢ and ¢ +
Atis thus py At or, using Eq. 7.62,

vﬁz”ﬁ(l) dl At. (7.63)

The system, however, can fail only once. Thus it will fail between ¢ and
¢ + At only if it has survived to time ¢ and the failing load occurs during At.
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Load

Load

Time Time
(a) Periodic loading (b) Loading at random intervals

FIGURE 7.9 Repetitive loads of random magnitudes. (a) Periodic loading, (b) Loading at
random intervals.

But R(?), the reliability, is just the probability that the system has survived to
t. Thus the failure probability during A¢is R(#)py At. Likewise the reliability
at t + At s just the probability that the system survived to ¢ and that no failure
load occurred during At. Since we take the and to represents independent
events, we may write

R(t+ At) = [1 - 'yﬁ:')ﬁ(l) dlAt] R(1). (7.64)
Rearranging terms yields
R+ AZ— R@) _ _ yj:l)f,(z) dLR(1). (7.65)
Taking the limit as At — 0 then yields the same form as Eq. 6.15,
A(t) = — R—zt;?j_tR(t)’ (7.66)

where the failure rate is given in terms of the load distribution as
AL) = 'yf:') fi(D) dl. (7.67)
This equation clearly indicates that if the capacity of the system is time-

independent, so that ¢(t) — ¢, then time also disappears from the failure
rate, yielding the constant failure rate model

A= yf:f,(n di (7.68)

and the common exponential distribution R() = exp(—At) results.

EXAMPLE 7.4

A microwave transmission tower is to be constructed at a location where an average
of 15 lightning strikes per year are expected. The mean value of the peak current is
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estimated to be 20,000 amperes, and the peak currents are modeled by an exponential
distribution. The MTTF is to be no less than 10 years.

(@) What value of the failure rate is acceptable?

(b) For what peak amperage must the protection system be designed?

Solution (a) For a constant failure rate phenomena we have
A= 1/MTTF = 1/10 = 0.1 yr!

(b) From Eq. 3.88 we may write the exponential load distribution as Fy(/)
1 — ¢ where the mean load 7 = 20,000 and y = 15/yr. Using the relationship
between f,({) and F,({) we may write Eq. 7.68 as

A=y ["f) di= 11 = F(a)] = yexp(=a/T).
Since MTTF = 1/A we have
MTTF = % exp{c/ 1)

or inverting,
(¢,/T) = In (yMTTF) = In (15-10) = 5.0
or

¢ = 20,000 - 5.0 = 100,000 Amperes

Aging is present if the capacity decreases with time. We represent this
deterioration as

o(t) = o — g(t), (7.69)

where ¢, is the initial capacity, at ¢ = 0, and g(¢) is a monotonically increasing
function of time, with g(0) = 0. Clearly, if the capacity decreases as time
elapses, the failure rate will grow, since the lower limit on the integral in Eq.
7.67 then moves toward zero. The rate at which the failure rate increases,
however, will be sensitive to the loading distribution as well as to ¢().

Once the failure rate is known, the reliability can be obtained from Eq.
6.18. Thus

R(t|e) = exp I:—J’:) dt’ yj:tl) (D) dl], (7.70)
where ¢(t) is given by Eq. 7.69.

EXAMPLE 7.5

Assume that the capacity of the microwave tower in Example 7.4 deteriorates at a
constant rate of 1% per year.

(@) What is the 10 year % decrease in capacity?

(b) What is the 10 year % increase in failure rate?
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(¢) What is the probability that a damaging lightning strike will take place in the first
10 years without deterioration, and

(d) with deterioration?

Solution (a) Letc(t) = ¢(1 — at), where o = 0.01/yr. After 10 years the capacity
decrease is 0.01 X 10 = 10%.

() Replacing ¢, by ¢(¢) in Example 7.4 we have
At) = y expl—c(1 — at)/T] = A(0)exp(atc,/ D).
Since at = 0.1 and (¢,/7) = 5.0, we have
A(10) = A(0) "0 = 1.65 A(0).

Thus the increase is 65%.
(¢) 1 — R(10) =1 — M0 =1 — %10 = () 632

(d) ﬂ})l(t/) dt’ = A(0) j; ol gyt = A(0) (acg/f)"(e"”o/.’-— 1)

ﬁf/\(t') A’ = 0.1(0.01 X 5.0)" (059 — 1) = 1.3

1-R10)=1—-exp|— ["A@) dt')=1—- 1 =0.727
p 0

Variable Capacity

We next consider situations where not every unit of a system or device has
exactly the same initial capacity. In reality they would not, since variability in
manufacturing processes inevitably leads to some variability in capacity. We
model this variability by letting ¢, become a random variable which is described
by the probability density function f,(¢). We next consider the ensemble of
such units, each with its own capacity. The system reliability is then an ensemble
average over ¢

R(t) = [7 deof (@) R(t| ). (7.71)

Inserting Eq. 7.70 then yields

R(t) = J': deyf.(co) exp [— Lt) dt’ ‘)’f:t,)fz(l) dl]. (7.72)

To focus on the effect of variable capacity on failure rates, we ignore
deterioration for the moment by setting ¢(f) = ¢ and assume some fraction,
say p,, of the systems under consideration are flawed in a serious way. This
situation may be modeled by writing the PDF of capacities in terms of the
Dirac delta functions as

fle) = (1 — pyb(cy — ¢;) + pud(cy — co)- (7.73)
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The first term on the righthand side corresponds to the probability that the
system will be a properly built system with target design capacity of ¢. By
using the Dirac delta function, we are assuming that the capacity variability
of the properly built systems can be ignored. The second term corresponds
to the probability that the system will be defective and have a reduced capacity
¢; < ¢. Such a situation might arise, for example, if a critical component
were to be left out of a small fraction of the systems in assembly, or if, in
construction, members were not properly assembled with some probability .

The reliability is obtained by first substituting Eq. 7.73 into 7.72 and using
the Dirac delta function property given in Eq. 3.56 to evaluate the integrals,

R(t) = (1 = pa) exp(—A0) + paexp(—Aat), (7.74)
where for brevity, we have defined the failure rates
A7=yjiﬁu)ﬂ (7.75)
and
M:yﬁﬂhd (7.76)

Since the failure rate must increase with decreased capacity, A, < A,. We now
use the definition of the time-dependent failure rate given in Eq. 7.66 to
obtain, after evaluating the derivative,

1+ [7(1 )\d

P exp— (A= A1)

_ - pd /\1

(D) = A, . (7.77)

1 fdpdexphm— A0

The decreasing failure rate associated with infant mortality may be seen
to appear as a result of the presence of the units with substandard capacities.
For clarity we consider the extreme example of a system for which the probabil-
ity of defective construction is small, p, << 1, but for which the defect greatly
increases the failure rate, A, >> A,. In this case Eq. 7.77 reduces to

At) = A,(l + pd%’e‘*ﬂ) (7.78)

Thus the failure rate decreases from a value of =~ A, + p,A, at zero time to
the value of A, for the unflawed systems that remain after all defective units
have failed.

EXAMPLE 7.6

A servomechanism is designed to have a constant failure rate and a design-life reliability
0f 0.99, in the absence of defects. A common manufacturing defect, however, is known
to cause the failure rate to increase by a factor of 100. The purchaser requires the
design-life reliability to be at least 0.975.
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(@) What fraction of the delivered servomechanisms may contain the defect if the
reliability criterion is to be met?

(&) If 10% of the servomechanisms contain the defect, how long must they be worn
in before delivery to the purchaser?

Solution (a) Without the defect, the failure rate A, = A(¢;) may be found in
terms of the design life T by Ry(T) = ¢*'; then

1 1
A T=In [R( T)] =In (E) = 0.01005.

To determine p, the acceptable fraction of units with defects, solve Eq. 7.74; with
t = Tfor p,:

1= R(T) exp[+A,T]
T l—exp[— (A, — A)TT

d

With A, = A(¢;) = 100 A,, R(T) = 0.975, and A, T = 0.01005,
1 — 0.975€+0'010()5

d —99x
1 — g %x0.01005

= 0.024.

() Recall the definition for reliability with wearin from Eq. 6.51 Combining Eq. 7.74
with this expression, we have, for a wearin period T,;

(1 = po) exp{—A(T+ T,)] + peexpl—A(T+ T,)]

R(T|T,) = (1 = pa) exp(=A,T,) + paexp(—A,T,)

Solve for T,:

S U B R(T|T,) exp(—A,T)
" A=A, [ 1—piexp(=A0) = R(T|T,)’

With R(T|T,) = 0.975, p, = 0.1, A,T = 0.01005, and A,T = 1.005,

T 0.1 0.975 — ¢ 100x001005
T.,= Eln <1 — 0.1 %005 _ g g75 )

= 0.015T or 15% of the design life.

7.5 THE BATHTUB CURVE—RECONSIDERED

The preceding examples illustrate the constant failure rate that results from
loading variability, the increasing failure rates resulting from the combined
effects of loading variability and product deterioration, and the decreasing
failure rates from loading and initial capacity variability. We next look at the
three classes of failure individually and in combination to show how the
bathtub curve arises. Table 7.1 lists the eight combinations that may be consid-
ered. We next write a general expression for the failure rate that includes all
three modes. Since the failure rate is defined in terms of the reliability by
Eq. 7.66, we may insert Eq. 7.72 for the reliability and perform the derivative
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TABLE 7.1 Failure Modes and Their Interactions

Case 1 2 3 4 5 6 7 8
1. Infant Mortality no no no yes no yes yes yes
1I. Random Failures no no yes no yes no yes yes
Il. Aging no yes no no yes yes no yes
to yield

y [ deof () [, (D) diexp [—yﬁ) a [ S dl]

A = (7.79)

[ dafie exp[—y [Lar j:mf,(z) dl]

Equations 7.69, 7.72 and 7.79 constitute a reliability model in which infant
mortality, random failures, and aging are represented explicitly in terms of
capacity variability, loading variability, and capacity degradation.

The relationships are summarized in the first two columns of Table 7.2.
Any phenomenon may be eliminated from consideration as indicated in the
third column. The fourth column exhibits the particular load and capacity
distributions used in the numerical examples that follow. These are normal
distributions of load and capacity; in these, we use v = 1.5 for the safety factor,
with p, = 0.15 and p. = 0.10 for the load and capacity coefficients of variation.
We examine the failure modes and their interactions by considering individu-
ally each of the eight combinations enumerated in Table 7.1. For each case,
load and capacity are plotted versus time in Fig. 7.10 for schematic realizations
of the stochastic loading process. The normal distribution plotted on the
vertical axis is used to denote cases with variable capacity; the vertical lines
denote loading magnitudes at random time intervals.

Single Failure Modes

Of the eight cases, the first is trivial since, as indicated in Fig. 7.10, the absence
of both variability and aging leads to a vanishing failure rate and a reliability

TABLE 7.2 Failure Mode Characterization

Failure Governing Mode Mode*
mode property absent present
I. Infant Mortality (o) fla) = 8(¢y— @) fla) = Dl{co— @)/ 0o.]
(variable capacity)
II. Random Failures filh fly =801-1) Sl =olu-1/0l
(variable load)
1II. Aging g(t) g()y=0 g(t) = aco(t/ to)"

(deteriorating capacity)

*p(u) = (2m) 7 exp(—hu)
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FIGURE 7.10 Load and capacity realizations vs. time for failure mode combinations.
(I-infant mortality, II-random, [ll-aging)
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equal to one. In cases two and three there is no capacity variability, and
therefore Egs. 7.72 and 7.79 reduce to Egs. 7.70 and 7.67. In case two only
mode 111, aging, is present. Thus the loading is represented by the Dirac delta
function, and we may further reduce the Egs. 7.67 and 7.70 to

0, <t
M) = . (7.80)
Y t> tf
where ¢, = g'(¢ — ). Thus,
1, <ty
R(t) = : (7.81)
Paials >t

This system does not fail before time ¢, but at the first loading thereafter,
causing the rapid exponential decay in the reliability. In case three, where
only mode 1I, random failure, due to load variability is present, we replace
¢(t) by ¢ in Eq. 7.70 to obtain a constant failure rate and the characteristic
exponential decay of the reliability.

In case four where only mode I, infant mortality, caused by variable
capacity, is present the situation is somewhat more complex. Setting ¢(?) equal
to ¢ and using the Dirac delta function for loading in Egs. 7.72 and 7.79,
we obtain

R =1~ (1= e [ fe) dey (7.82)

and a corresponding failure rate of

ye j : fe(c) de

i) = (7.83)

1= -] fiw do

In this situation the fraction of the system population for which ¢ < 1 fails
at the first loading, causing the reliability to drop sharply and then stabilize;
the failure rate decreases exponentially at a very rapid rate.

In each of the preceding three cases only one failure mode is present.
The modes are compared through the schematic diagrams of reliability and
failure rate given in Fig. 7.11a and 7.115. The failure rate curves, in particular,

1 | 1 —
1 } I
|
= N\ IIT = !
g05 | < | |
! - \ il !
0 : o\ :
t tf t tf
(a) (k)

FIGURE 7.11 Effects of single failure modes: (a) reliability, (b) failure rate.
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are instructive since they show that the cases of pure infant mortality, random
failures and aging failures to some extent resemble the bathtub curve. The
differences, however, are striking. The infant mortality contribution drops
quickly to zero, since if the system does not fail at the first loading it does
not fail at all. Unlike bathtub curves, the failure rate from aging is zero until
4; at which time it jumps to a value of 7y, causing the reliability to drop sharply
to zero. Thus it is clear that simple superposition of the failure rates depicted
in Fig. 7.11 do not accurately represent the bathtub curve. To obtain realistic
results we must also examine the interactions between failure modes.

Combined Failure Modes

Next, we consider combinations of two failure modes. Equations 7.70 and
7.67 describe case five, which combines random failures and aging, modes II
and IIL. Aging is modcled by a power law

g(t) = 0.1 (t/ )", (7.84)

where we take y#, = 100. In Fig. 7.12 the failure rate is shown to be increasing
with time with a behavior which is closely correlated to exponent m in the
aging model.

In case six, infant mortality and aging modes I and III, occur together
in the absence of random failures. The reliability and failure rate are obtained
by replacing the load PDF in Egs. 7.72 and 7.79 by a Dirac delta function.
The reduced expressions are

THg(n

RO =1= (1= [ fie) da— [ 1 = 06D () dey (7.85)

!

0.010

>
= 0.005—
<

o'OOOO 20 40 60 80 100

y(t)

FIGURE 7.12 Combined random and aging failure rates (modes II & III)
vs. time for several values of m.
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FIGURE 7.13 Combined infant mortality and aging failure rates (modes
I & II) vs. time.

for the reliability and

ye [f ey de [T 0 ) d]
(7.86)

1= (1= o) [ fila) dey= [ Q0= ene DY £ de,
for the failure rate. The failure rate is plotted in Fig. 7.13. This situation
resembles that encountered frequently in fatigue testing, where the loading
magnitude is carefully controlled. After that fraction of the population for
which the initial capacity is less than the load is removed at the first loading,
the failure rate is vanishingly small until the effects of aging become significant.

In case seven infant mortality and random failures, modes I and II, are
present in the absence of aging. Results obtained by setting ¢(f) = ¢, in Eqgs.

A1) =

0.010 [ , ,

0.005

Aty

0.000
0 20 40 60 80 100

y(1)

FIGURE 7.14 Combined infant mortality and random failure rates
(modes I & II) vs. time for several values of p..
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FIGURE 7.15 Failure rates vs. time for various combinations of failure
modes.

7.72 and 7.79 are shown in Fig. 7.14. The interaction of infant mortality
and random failure modes causes the characteristic decreasing failure rate
frequently observed in electronic equipment.

Finally, we consider the eighth case where all three failure modes are
present, using Eqs. 7.72 and 7.79 for reliability and failure rate. The bathtub
curve characteristics are shown in Fig. 7.15 where we have also included curves
for various combinations of two failure modes. These are obtained by removing
one failure mode, but keeping the remaining parameters fixed. These results
illuminate the origins of the three failure modes: infant mortality with capacity
variability, random failures with loading variability, and aging with capacity
deterioration. Moreover, while changes in load or capacity distribution often
have large effects on the quantitative behavior of the failure rate cures, the
qualitative behavior remains essentially the same. The model indicates, how-
ever, that the interactions between the three modes are very important in
determining the failure rate cure. Thus only if the three failure modes arise
from independent failure mechanisms or in different components is it legiti-
mate simply to sum the failure rate contributions.
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Exercises

7.1

7.2

7.3

7.4

A design engineer knows that one-half of the lightning loads on a surge
protection system are greater than 500 V. Based on previous experience,
such loads are known to follow the PDF:

floy =vyer, O0=v<oo

(a) Estimate vy per volt.
(b) What is the mean load?

(c) For what voltage should the system be designed if the failure proba-
bility is not to exceed 5%?

Given the following distributions of capacity and load, determine the
failure probability:

flo =5 0<c¢<]1
=0 otherwise
fill) =2 0<1<1/2
=0 otherwise
Suppose that the PDFs for load and capacities are
A =yeh  0=i=o,
0, 0=s=c¢c<a.
fui(o) =3 /a, a< c<2aq,
0, 20 < ¢< o,
Determine the reliability; evaluate all integrals.

The impactloading on a railroad coupling is expressed as an exponential
distribution:

A = BePl

The coupling is designed to have a capacity ¢ = ¢,. However, because
of material flaws, the PDF for the capacity is more accurately expressed
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7.5

7.6

7.7

7.8

7.9

7.10

Introduction to Reliability Engineering

as

aeac
filo = exp(ac,) — 1’
0, > Cp.

0sc=cg,,

(a) Determine the reliability for a single loading, assuming that the
flaws can be neglected.

(b) Recalculate ausing the capacity distribution with the flaws included.
(c) Show that the result of b reduces to that of a as o« — .
(d) Show that for a = 0, the reliability is

r=1-— BLC,” [1— ePu].
It is estimated that the capacity of a newly designed structure is ¢ =
10,000 kips, o, = 6000 kips, normally distributed. The anticipated load
on the structure will be 7 = 5000 kips, with an uncertainty of o, = 1500
kips, also normally distributed. Find the unreliability of the structure.

A structural code requires that the reliability index of a cable must have
a value of at least 8 = 5.0. If the load and capacity may be considered
to be normally distributed with coefficients of variation of p, = 0.2 and
p. = 0.1 respectively, what safety factor must be used?

Steel cable strands have a normally distributed strength with a mean of
5000 1b and a standard deviation of 150 1b. The strands are incorporated
into a crane cable that is proof-tested at 50,000 Ib. It is specified that
no more than 2% of the cables may fail the proof test. How many strands
should be incorporated into the cable, assuming that the cable strength
is the sum of the strand strengths?

Substitute the normal distributions for load and capacity, Egs. 7.29 and
7.30, into the reliability expression, Eq. 7.20. Show that the resulting
integral reduces to Egs. 7.41 and 7.43.

The twist strength of a standard boltis 23 N - m with a standard deviation
of 1.3 N - m. The wrenches used to tighten such bolts have an uncertainty
of o= 2.0 N - m in their torsion settings. If no more than 1 bolt in 1000
may fail from excessive tightening, what should the setting be on the
wrenches? (Assume normal distributions.)

Suppose that a car hits potholes spaced at random distances at a rate
of 20/hour. The loading on the wheel bolts caused by these potholes is
exponentially distributed.

fi(l) = 0.6 exp(—0.61), 0sl=sox

What will the failure rate be if the bolt capacity is designed to be exactly
eight times the mean value of the pothole loading?
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Suppose that both load and capacity are known to a factor of two with
90% confidence. Assuming lognormal distributions, determine the safety
factor ¢,/ [, necessary to obtain a reliability of 0.995.

Show in detail that Eq. 7.61 follows from Egs. 7.30 and 7.60.

The loading on industrial fasteners of fixed capacity is known to follow
an exponential distribution. Thirty percent of the fasteners fail. If the
fasteners are redesigned to double their capacity, what fraction will be
expected to fail?

Consider a pressure vessel for which the capacity is defined as p, the
maximum internal pressure that the vessel can withstand without burst-
ing. This pressure is given by p = 7,0,/2R, where 7, is the unflawed
thickness, o, is the stress at which failure occurs, and R is the radius.
Suppose that the vessel thickness is 7(=7), but the distribution crack
depths are the same as those given in Exercise 3.9.

(a) Show that the PDF for capacity is

2R 1 2R TOn

_— _ < Hhp< —

o, &7 — 1exp (yamp>, 0<p SR’
Rp) =

O >Ta'm
’ P> SR

(b) Normalize to 70,/2R = 1, then plot f,(p) fory = 7,0.57, and 0.17.
(c) Physically interpret the results of your plots.

In Exercise 7.14, suppose that the vessel is proof-tested at a pressure of
p = 70,/4R. What is the probability of failure if

(a) y = 0.57?
(b) v =0.17

A system under a constant load, /, has a known capacity that varies with
time as ¢(¢) = ¢(1 — 0.02 t). The safety factor at t = 0 is 2.

(a) Sketch R(t)
(b) What is the MTTF?
(c) What is the variance of the time to failure?

Suppose that steel wire has a mean tensile strength of 1200 Ib. A cable
is to be constructed with a capacity of 10,000 1b. How many wires are
required for a reliability of 0.999

(a) if the wires have a 2% coefficient of variation?

(b) If the wires have a 5% coefficient of variation?

(Note: Assume that the strengths are normally distributed and that the
cable strength is the sum of the wire strengths.)
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Consider a chain consisting of N links that is subjected to M loads. The
capacity of a single link is described by the PDF f.(c). The PDF for any
one of the loads is described by f£({). Derive an expression in terms
of f.(¢) and fi(I) for the probability that the chain will fail from the
M loadings.

Suppose that the CDF for loading on a cable is

E(l) =1—exp [— <ﬁ>],

where [is in pounds. To what capacity should the cable be designed if
the probability of failure is to be no more than 0.5%?

Suppose, that the design criteria for a structure is that the probability
of an earthquake severe enough to do structural damage must be no
more than 1.0% over the 40-year design life of the building.

(a) Whatis the probability of one or more earthquakes of this magnitude
or greater occurring during any one year?

(b) What is the probability of the structure being subjected to more
than one damaging earthquake over its design life?

Assume that the column in Exercise 3.21 is to be built with a safety factor
of 1.6. If the strength of the column is normally distributed with a 20%
coefficient of variation, what is the probability of failure?

Prove that Eqs. 7.72 and 7.79 reduce to Eqgs. 7.82 and %83 under the
assumptions of constant loading and no capacity deterioration.

The impact load on a landing gear is known to follow an extreme-value
distribution with a mean value of 2500 and a variance of 25 X 10* The
capacity is approximated by a normal distribution with a mean value of
15,000 and a coefficient of variation of 0.05. Find the probability of
failure per landing.

Prove that Eqgs. 7.72 and 7.79 reduce to Eqs. 7.85 and 7.86 under the
assumption of constant loading.

A dam is built with a capacity to withstand a flood with a return period
(i.e. mean time between floods) of 100 years. What is the probability that
the capacity of the dam will be exceeded during its 40-year design life?

Suppose that the capacity of a system is given by

1 1 _
ﬂ(C) :\/Q—EUCCXP{_T'?[C_ C(t)]2},

where
ot) = (1 — ap).
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If the system is placed under a constant load /,

7.27

7.28

7.29

(a) Find f(t), the PDF for time to failure.
(b) Put f(¢) into a standard normal form and find o, and the MTTF.

A manufacturer of telephone switchboards was using switching circuits
from a single supplier. The circuits were known to have a failure rate
of 0.06/year. In its new board, however, 40% of the switching circuits
came from a new supplier. Reliability testing indicates that the switch-
boards have a composite failure rate that is initially 80% higher than it
was with circuits from the single supplier. The failure rate, however,
appears to be decreasing with time.

(a) Estimate the failure rate of the circuits from the new supplier.
(b) What will the failure rate per circuit be for long periods of time?

(c) How long should the switchboards be worn in if the average failure
rate of circuits should be no more than 0.1/year?
Note: See Example 7.6

Suppose that a system has a time-independent failure rate that is a linear
function of the system capacity ¢,

M) = Aol + ble, — 0],  b5>0,

where ¢, is the design capacity of the system. Suppose that the presence
of flaws causes the PDF or capacity of the system to be given by f.(¢) in
Exercise 7.4.

(a) Find the system failure rate.
(b) Show that it decreases with time.

The most probable strength of a steel beam is given by 24N~"% Kips,
where Nis the number of cycles. This value is known to within 25% with
90% confidence.

(a) How many cycles will elapse before the beam loses 20% of its
strength?

(b) Suppose that the cyclic load on the beam is 10 kips. How many
cycles can be applied before the probability of failure reaches 10%?

Note: Assume a lognormal distribution.



CHAPTER 8

Reliability Testing

“One must learn 5y O/Olhy a /A]hy,' /[or /Aouqﬁ you think you tnow 1,
you have nof certainly unti/ you Iry. "

CSOPAOC/QJ‘

8.1 INTRODUCTION

Reliability tests employ a number of the statistical tools introduced in Chapter
5. In contrast to Chapter 5, where emphasis was placed on the more fundamen-
tal nature of the statistical estimators, here we examine more closely how the
gathering of data and its analysis is used for reliability prediction and verifica-
tion through the various stages of design, manufacturing, and operation. In
reality, the statistical methods that may be employed are often severely re-
stricted by the costs of performing tests with significant sample sizes and by
restrictions on the time available to complete the tests.

Reliability testing is constrained by cost, since often the achievement of
a statistical sample which is large enough to obtain reasonable confidence
intervals may be prohibitively expensive, particularly if each one of the prod-
ucts tested to failure is expensive. Accordingly, as much information as possible
must be gleaned from small statistical samples, or in some cases from even a
single failure. The use of failure mode analysis to isolate and eliminate the
mechanism leading to failure may result in design enhancement long before
sufficient data is gathered to perform formal statistical studies.

Testing is also constrained by the time available before a decision must
be made in order to proceed to the next phase of the product development
cycle. Frequently, one cannot wait the life of the product for it to fail. On
specified dates, designs must be frozen, manufacturing commenced and the
product delivered. Even where larger sample sizes are available for testing,
the severe constraints on testing time lead to the prevalence of censoring and
acceleration. In censoring, a reliability test is terminated before all of the

208
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units have failed. In acceleration, the stress cycle frequency or stress intensity
is increased to obtain the needed failure data over a shorter time period.

These costand time restrictions force careful consideration of the purpose
for which the data is being obtained, the timing as to when the results must
be available, and the required precision. These considerations frequently lead
to the employment of different methods of data analysis at different points
in the product cycle. One must carefully consider what reliability characteris-
tics are important for determining the adequacy of the product. For example,
the time-to-failure may be measured in at least three ways:

1. operating time
2. number of on-off cycles
3. calendar time.

If the first two are of primary interest, the test time can be shortened by
applying compressed time accelerations, whereas if the last is of concern then
intensified stress testing must be used. These techniques are discussed in
detail in Section 8.5.

During the conceptual and detailed design stages, before the first proto-
type is built, reliability data plays a crucial role. Reliability objectives and the
determination of associated component reliability requirements enter the
earliest conceptual design and system definition. The parts count method,
treated in Chapter 6, and similar techniques may be used to estimate reliability
from the known failure rate characteristics of standard components. Compari-
sons to similar existing systems and a good deal of judgment also must be
used during the course of the detailed design phase.

Tests may be performed by suppliers early in the design phase on critical
components even before system prototypes are built. Thus aircraft, automo-
tive, and other engines undergo extensive reliability testing before incorpora-
tion into a vehicle. On a smaller scale, one might decide which of a number
of electric motor suppliers to utilize in the design of a small appliance by
running reliability tests on the motors. Depending on the design requirement
and the impact of failure, such tests may range from quite simple binomial
tests, in which one or more of the motors is run continuously for the antici-
pated life of the machine, to more exhaustive statistical analysis of life test-
ing procedures.

Completion of the first product prototypes allows operating data to be
gained, which in turn may be used to enhance reliability. At this stage the
test-fix-test-fix cycle is commonly applied to improve design reliability before
more formal measures of reliability are applied. As more prototypes become
available, environmental stress testing may also be employed in conjunction
with failure mode analysis to refine the design for enhanced reliability. These
reliability enhancement procedures are discussed in Section 8.2.

As the design is finalized and larger producﬁ‘ sample sizes become avail-
able, more extensive use of the life testing/procedures discussed in Sections 8.3
through 8.6 may be required for design/v%riﬁcation. During the manufacturing
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phase, qualification and acceptance testing become important to ensure that
the delivered product meets the reliability standards to which it was designed.
Through aggressive quality improvement, defects in the manufacturing pro-
cess must be eliminated to insure that manufacturing variability does not give
rise to unacceptable numbers of infant-mortality failures. Finally, the collection
of reliability data throughout the operational life of a system is an important
task, not only for the correction of defects that may become apparent only with
extensive field service, but also for the setting and optimization of maintenance
schedules, parts replacement, and warranty policies.

Data is likely to be collected under widely differing circumstances ranging
from carefully controlled laboratory experiments to data resulting from field
failures. Both have their uses. Laboratory data are likely to provide more
information per sample unit, both in the precise time to failure and in the
mechanism by which the failures occur. Conversely, the sample size for field
data is likely to be much larger, allowing more precise statistical estimates to
be made. Equally important, laboratory testing may not adequately represent
the environmental condition of the field, even though attempts are made to
do so. The exposures to dirt, temperature, humidity, and other environmental
loading encountered in practice may be difficult to predict and simulate in
the laboratory. Similarly, the care in operation and quality of maintenance
provided by consumers and field crews is unlikely to match that performed
by laboratory personnel.

8.2 RELIABILITY ENHANCEMENT PROCEDURES

Reliability studies during design and development are extremely valuable, for
they are available at a time when design modifications or other corrections
can be made at much less expense than later in the product life cycle. With
the building of the first prototypes hands-on operational experience is gained.
And as the limitations and shortcomings of the analytical models used for
design optimization are revealed, reliability is enhanced through experimen-
tally-based efforts to eliminate failure modes. The number of prototype models
is not likely to be large enough to apply standard statistical techniques to
evaluate the reliability, failure rate, or related quantities as a function of time.
Even if a sample of sufficient size could be obtained, life testing would not
in general be appropriate before the design is finalized. If one ran life tests
on the initial design, the results would likely underestimate the reliability of
the improved model that finally emerged from the prototype testing phase.
The two techniques discussed in this section are often employed as an
integral part of the design process, with the failures being analyzed and the
design improved during the course of the testing procedure. In contrast, the
life testing methods discussed in Sections 8.3 and 8.4 may be used to improve
the next model of the product, change the recommended operation proce-
dures, revise the warrantee life, or for any number of other purposes. They
are not appropriate, however, while changes are being made to the design.
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FIGURE 8.1 Duane’s data on a log-log scale. [From L. H. Crow,

“On Tracking Reliability Growth,” Proceedings 1975 Reliability and
Maintainability Symposium, 438-443 (1975).]

Reliability Growth Testing

Newly constructed prototypes tend to fail frequently. Then, as the causes
of the failures are diagnosed and actions taken to correct the design deficien-
cies, the failures become less frequent. This behavior is pervasive over a variety
of products, and has given rise to the concept of reliability growth. Suppose
we define the following

T'= total operation time accumulated on the prototype

n(T) = number of failures from the beginning of operation through
time 7.

Duane* observed that if n(T)/T is plotted versus T on log-log paper, the

result tends to be a straight line, as indicated in Fig. 8.1, no matter what

type of equipment is under consideration. From such empirical relationships,

referred to as a Duane plots, we may make rough estimates of the growth of

the time between failures and therefore also extrapolate a measure of how

much reliability is likely to be gained from further cycles of test and fix.
Since Duane plots are straight lines, we may write

In[n(T)/T] = —aIn(T) + b, (8.1)
or solving for n(7),
n(T) = KT, (8.2)

where K = ¢’. Note that if @ = 0 there is no improvement in reliability, for
the number of failures expected is proportional to the testing time. For a
greater than zero the expected failures become further and further apart as

#J. J- Duane, “Learning Curve Approach to Reliability Modeling,” IEEE. Trans. Aerospace 2
563 (1964).
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the cumulative test time T increases. An upper theoretical limit is o« = 1, since
with this value, Eq. 8.2 indicates that the number of failures is independent
of the length of the test.

Suppose we define the rate at which failures occur as just the time deriva-
tive of the number of failures, n(7T) with respect to the total testing time:

A(T) = diTn(T). (8.3)

Note that A is not the same as the failure rate A discussed at length earlier,
since now each time a failure occurs, a design modification is made. Understat-
ing this difference, we may combine Egs. 8.2 and 8.3 to obtain

AT) = (1 — a)KT™, (8.4)
indicating the decreasing behavior of A(T) with time.

EXAMPLE 8.1

A first prototype for a novel laser powered sausage slicer is built. Failures occur at the
following numbers of minutes: 1.1, 3.9, 8.2, 17.8, 79.7, 113.1, 208.4 and 239.1. After
each failure the design is refined to avert further failures from the same mechanism.
Determine the reliability grown coefficient a for the slicer.

Solution The necessary calculations are shown on the spread sheet, Table 8.1. A
least-squares fit made of column D versus column C. We obtain a =
SLOPE (D2:D9,C2:C9) = —0.654. Thus, from Eq. 8.1: & = 0.654. The straightline fit
is quite good since we obtain a coefficient of determination that is close to one: r* =
RSQ(D2:D9,C2:C9) = 0.988.

For the test-fix cycle to be effective in reliability enhancement, each failure
must be analyzed and the mechanism identified so that corrective design
modifications may be implemented. In product development, these may take
the form of improved parts selection, component parameter modifications
for increased robustness, or altered system configurations. The procedure is
limited by the small sample size—often one—and by the fact that the prototype

TABLE 8.1 Spreadsheet for Reliability
Growth Estimate in Example 8.1

A B C D
1 n T In(T) In(n/T)
2 1.0 1.1 0.0953 -0.0953
3 2.0 3.9 1.3610 —0.6678
4 3.0 8.2 2.1041 —1.0055
5 4.0 17.8 2.8792 —1.4929
6 5.0 79.7 4.3783 —2.7688
7 6.0 113.1 4.7283 —2.9365
8 7.0 208.4 5.3395 —3.3935
9 8.0 239.1 5.4769 —3.3974
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may be operated under laboratory conditions. As failures become increasingly
far apart, a point of diminishing returns is reached in which those few that
do occur are no longer associated with identifiable design defects. Two strate-
gies may be employed for further reliability enhancement. The first consists of
operating the prototypes outside the laboratory under realistic field conditions
where the stresses on the system will be more varied. The second consists of
artificially increasing the stresses on laboratory prototypes to levels beyond
those expected in the field. This second procedure falls under the more
general heading of environmental stress testing.

In addition to the development of hardware, Duane plots are readily
applied to computer software. As software is run and bugs are discovered and
removed, their occurrence should become less frequent, indicating reliability
growth. This contrasts sharply to the life-testing methods discussed in the
following sections; they must be applied to a population of items of fixed
design and therefore are not directly applicable to debugging processes for
either hardware prototypes or software.

Reliability growth estimates are applicable to the development and debug-
ging of industrial processes as well as to products. Suppose a new production
line is being brought into operation. At first, it is likely that shutdowns will
be relatively frequent due to production of out-of-specification products, ma-
chinery breakdowns and other causes. As experience is gained and the pro-
cesses are brought under control, unscheduled shutdowns should become
less and less frequent. The progressive improvement can be monitored quanti-
tatively with a Duane plot in terms of hours of operation.

Environmental Stress Testing

Environmental stress testing is based on the premise that increasing the stress
levels of temperature, vibration, humidity, or other variables beyond those
encountered under normal operational conditions will cause the same failure
modes to appear, but at a more rapid rate. The combination of increased
stress levels with failure modes analysis often provides a powerful tool for
design enhancement. Typically, the procedure is initiated by identifying the
key environmental factors that stress the product. Several of the prototype
units are then tested for a specified period of time at the stress limits for
normal operation. As a next step, voltage, vibration, temperature, or other
identified factors are increased in steps beyond the specification limits until
failures occur. Each failure is analyzed, and action is taken to correct it. At
some level, small increases in stress will cause a dramatic increase in the
number of failures. This indicates that fundamental design limits of the system
have been exceeded, and further increases in stress are not indicative of the
robustness of the design.

Stress tests also may be applied to products taken off the production line
during early parts of a run. At this point, however, the changes are typically
made to the fabrication or assembly process and with the component suppliers
rather than with product design. In contrast to the stress testing discussed thus
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far, whose purpose it is to improve the product design or manufacturing
process, environmental stress screening is a form of proof or acceptance test.
To perform such screening all units are operated at elevated stress levels for
some specified period of time, and the failed units are removed. This is
comparable to accelerating the burn-in procedure discussed in Chapter 6, for
it tends to eliminate substandard units subject to infant mortality failures
over a shorter period of time than simply burning them in under nominal
conditions. The objective in environmental stress screening is to reach the
flat portion of the bathtub curve in a minimum time and at minimum expense
before a product is shipped.

In constructing programs for either environmental stress testing or
screening, the selection of the stress levels and the choice of exposure times
is a challenging task. Whereas theoretical models, such as those discussed
in section 8.4 are helpful, the empirical knowledge gained from previous
experience or industrial standards most often plays a larger role. Thermal
cycling beyond the normal temperature limits is a frequent testing form. The
test planner must decide on both a cycling rate and the number of cycles
before proceeding to the next cycle magnitude. If too few cycles are used,
the failures may not be precipitated; if too many are used, there is a diminishing
return on the expenditure of time and equipment use. Often an important
factor is that of using the same test for successive products to insure that
reliability is being evaluated with a common standard. Figure 8.2 illustrates

Rapid thermal cycles
Step stress
(cycle 0) Cycle 1 Cycle N

70°C

25°C

-20°C

|<——1.5 hours—>|<— 0.5 +|

hours

Product power on

Product average rate of change
measurements
Pull-down: 70° to 0° 9°C/min
70° to -20° 6°C/min
Pull-up: —20°to 70° 18°C/min (new)
10°C/min (old)

FIGURE 8.2 Typical thermal profiles used in environmental stress test-
ing. (From Parker, T.P. and Harrison, G.L., Quality Improvement Using
Environmental Stress Testing, pg. 17, AT&T Technical Journal, 71, #4,
Aug. 1992. Reprinted by permissions.)
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TABLE 8.2 Failure Times

ti

—

ti

0 0.00 5 1.50
1 0.62 6 1.62
2 0.87 7 1.76
3 1.13 8 1.88
4 1.25 9 2.03

one such thermal cycling prescription. Note that power on or off must be
specified along with the temperature stress profile.

8.3 NONPARAMETRIC METHODS

We begin our treatment of life-testing with the use of nonparametric methods.
Recall from Chapter 5.2 that these are methods in which the data are plotted
directly, without an attempt to fit them to a particular distribution. Such
analysis is valuable in allowing reliability behavior to be visualized and under-
stood. It may also serve as a first step in making a decision whether to pursue
parametric analysis, and in providing a visual indication of which class of
distributions is most likely to be appropriate.

In either nonparametric or parametric analysis two classes of data may
be encountered: ungrouped and grouped. Ungrouped data consists of a series
of specific times at which the individual equipment failures occurred. Table
8.2 is an example of ungrouped data. Grouped data consist of the number
of items failed within each of a number of time periods, with no information
available on the specific times within the intervals at which failures took place.
Table 8.3 is typical of grouped data. Both tables are examples of complete
data; all the units are failed before the test is terminated.

Ungrouped data is more likely to be the result of laboratory tests in which
the sample size is not large, but where instrumentation or personnel are
available to record the exact times to failure. Larger sample sizes are often
available for laboratory tests of less expensive equipment, such as electronic
components. Then, however, it may not be economical to provide instrumenta-

TABLE 8.3 Grouped Failure Data

Time interval Number of failures
0=s=t<5H 21
h=t<10 10

10=<t<15 7

15 < ¢ < 20 9

20=1<25 2

25 <t < 30 1
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tion for on-line recording of failure times. In such situations, the testis stopped
at equal time increments, the components tested, and the number of failures
recorded. The result is grouped data consisting of the number of failures
during each time interval. Larger sample sizes are also likely to be obtained
from field studies. But such data is often grouped in the form of monthly
service reports or other consolidated data bases. Whether grouped or un-
grouped, field data may require a fair amount of preliminary analysis to
determine the appropriate times to failure. For example if the monthly service
reports of failure for items that have been sold over several years are to be
utilized, the time of sale must also be recorded to determine the time in use.
Likewise, it may be necessary to include design or manufacturing modifica-
tions, unreported failures, and other complicating factors into the analysis to
reduce the data to a usable form.

Ungrouped Data

Ungrouped data consists of a series of failure times ¢ #y,..., &, ..., ty for
the N units in the test. In statistical nomenclature the ¢ are referred to as the
rank statistics of the test. In Chapter 5 we discuss the utilization of such data
to approximate the CDF in Eq. 5.12 as

F@t) = i/ (N + 1). (8.5)

Since the reliability and the CDF are related by R = 1 — F, we may make
the estimate

N+1—1

R(t) = =577

(8.6)

In addition to the reliability, we would also like to examine the behavior
of the failure rate as a function of time. The use of Egs. 6.10 and 6.14 to
accomplish this is problematical since the required numerical differentiation
amplifies the random behavior of the data. Instead we define the integral of
the failure rate as

H(p) = j;A(t') dt’, (8.7)

which is usually referred to as the cumulative hazard function since in some
reliability literature A(¢) is called the hazard function instead of the failure
rate. Equation 6.18 may then be used to write the reliability as

R(t) = &9, (8.8)
which may be inverted to obtain
H(t) = —In R(?). (8.9)

These equations reduce to H(t) — At in the case of a constant failure rate.
In a hazard plot, H(t) is graphed as a function of time. This provides some
insight into the nature of the failure rate: a linear graph indicates a constant
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TABLE 8.4 Ungrouped Data Computations

i ti R(ti) H(t)

0 0.00 1.00 0.0000
1 0.62 0.90 0.1054
2 0.87 0.80 0.2231
3 1.13 0.70 0.3567
4 1.25 0.60 0.56108
5 1.50 0.50 0.6931
6 1.62 0.40 0.9163
7 1.76 0.30 1.2040
8 1.88 0.20 1.6094
9 2.03 0.10 2.3026

failure rate, one whose curve is concave upward indicates a failure rate that
is increasing with time, whereas a concave downward curve indicates a failure
rate decreasing with time. To present H(¢) in a form suitable for plotting, we
simply insert Eq. 8.6 into the right hand side of Eq. 8.9. Simplifying the
algebra, we obtain

Hit) =In(N+ 1) = In(N+ 1 — 4 (8.10)

The use of these ungrouped data estimators for R(¢) and H(¢) are best under-
stood with an example.

EXAMPLE 8.2

From the data in Table 8.2 construct graphs for the reliability and the cumulative
hazard function as a function of time.

Solution The necessary calculations are carried out in Table 8.4. The results are
plotted in Fig. 8.3. The concave upward behavior of H(t) provides evidence of an
increasing failure rate and therefore of wear or aging effects.

3
] » |
1 OE T A
| 1 —
! ot | I | ]
3 0 1 2 3
t t
(a) (b)

FIGURE 8.3 Nonparametric estimates from ungrouped life data (a) reliability, (b) cu-
mulative hazard function
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The estimate of the MTTF or variance of the failure distribution for
ungrouped data is straightforward. We simply adopt the unbiased point estima-
tors discussed in Chapter 5. The mean is given by Eq. 5.6,

1 N
o =— " 8.11
po=gy2t (8.11)
and for the variance, Eq. 5.8, becomes
1 N
Fl=—— > (t— Q)2 (8.12)
N_ =1

Equation 5.10 can likewise serve as a basis for calculating the skewness and
the kurtosis of the time-to-failure distribution.

Grouped Data

Suppose that we want to estimate the reliability, failure rate, or cumulative
hazard function of a failure distribution from data such as those given in
Table 8.3. We begin with the reliability. The test is begun with N items. The
number of surviving items is tabulated at the end of each of the M time
intervals into which the data are grouped: &, fo, ..., ;... tu. The number
of surviving items at these times is found to be n,, ng, ..., N, . ... Since the
reliability R(¢) is defined as the probability that a system will operate success-
fully for time ¢, we estimate the reliability at time ¢, to be
R _ n; .

() =N i=1,2,..., M, (8.13)
which is a straightforward generalization of Eq. 5.11. Since the number of
failures is generally significantly larger for grouped than for ungrouped data,
it usually is not meaningful to derive more precise estimates. Knowing the
values of the reliability at the ¢;, we may combine Egs. 8.9 and 8.13 to obtain
an empirical plot of the hazard function:

H() =InN—Inn (8.14)

These estimation procedures are illustrated in the following example.

EXAMPLE 8.3

From the data in Table 8.8 estimate the reliability and the cumulative hazard function.
Is the failure rate increasing or decreasing?

Solution The necessary calculations, from Egs. 8.12, 8.13 and 8.14 are indicated
in Table 8.5. The resulting values for the quantities are plotted in Fig. 8.4. For R(7)
and H(t). Since Fig 8.45 is nearly linear, the failure rate increases only slightly—if at
all—with increasing time.

5
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TABLE 8.5 Grouped Data Computations

i a ni R(t) H(t)
0 0 50 1.00 0.0000
1 5 29 0.58 0.5447
2 10 19 0.38 0.9676
3 15 12 0.24 1.4271
4 20 3 0.06 2.8134
5 25 1 0.02 3.9120
6 30 0 0.00

In addition to obtaining plots of the results for grouped data, we may
estimate the mean, variance, or other properties of the failure distribution.
We simply approximate f(¢) by a histogram. In the interval -, < ¢ < ¢; and
set f(¢) equal to

f=te (8.15)
NA,
where the width of the interval is
A= (4 — o). (8.16)
The integral of Eq. 3.15 is then estimated from
ﬂ=ﬁwm“ (8.17)
=1

where 7, = 5 (¢, + ;). Likewise, the variance, given by Eq. 3.16, is estimated as

M

o= 1A — (8.18)

=1

8.4 CENSORED TESTING

Next we consider censored reliability tests. Censoring is said to occur if the
data are incomplete, either because the test is not run to completion or
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FIGURE 8.4 Nonparametric estimates from grouped life data (a) reliability, (b) cumulative
hazard function
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because specimens are removed during the test. Many reliability tests must
either be stopped before all the specimens have failed, or intermediate results
must be tabulated. The data are then said to be singly censored, or censored
on the right, since most data are plotted with time on the horizontal axis.
Data are said to be multiply censored if units are removed at various times
during a life test. Such removals are usually required either because a mecha-
nism that is not under study caused failure or because the unit is for some
other reason no longer available for testing.

Singly-Censored Data

With single-censored grouped data we have available the number of failures
for only some of the intervals, say for the first i (<M). For ungrouped data
there are two types of single censoring. In type I the test is terminated after
some fixed length of time; in type II the test is terminated after some fixed
number of failures have taken place. This distinction becomes important when
sampling for a particular distribution is considered. For the nonparametric
methods used in this section, it is adequate to treat all singly-censored un-
grouped data as failure-censored; we assume that of N units that begin a test,
we are able to obtain the failure times for only the first n (<N) failures.
Censoring from the right of either grouped or ungrouped data simply
removes that part of the curves in Figs. 8.3 or 8.4 to the right of the time at
which the test is terminated. The graphical results still are very useful, for
often the early part of the reliability curve is the most important for setting
a warrantee period, for determining adequate safety, and for other purposes.
Moreover, if early failures are under investigation, the first failures are of
primary interest. Even when wearout is of concern, most engineering analysis
can be completed without waiting until the very last test unit has failed.
Censoring from the right may be deliberately incorporated into a test
plan in conjunction with specifying how many units are to be tested. The test
engineer may require that a relatively large number of units be tested in order
to obtain enough early failures in order to estimate better the failure rate
curve for some specified period of time, say the warrantee period or the design
life. If this is the case, many of the units will not fail until well after the time
period of interest, and at least a few are likely to survive for very long periods.
Thus terminating the test at the end of the period of interest is quite natural.
The standard formulas for the sample mean and variance, of course, can
no longer be applied to singly-censored data. Likewise the methods discussed
in Chapter 5.4 for estimating distribution parameters and their confidence
intervals are no longer valid. Probability plotting methods, however, are appli-
cable to censored data, and these are often particularly valuable in performing
parametric analysis. If one of the standard PDFs, say the Weibull distribution,
can be fitted to the data and the distribution’s parameters estimated, the
reliability can be extrapolated beyond the end of the test interval. Extreme
care must be taken in employing such extrapolations, however, for if different
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failure modes appear after longer periods of time, the extrapolations may
lead to serious errors.

Multiply-Censored Data

Multiply-censored data occurs in situations where some units are removed
from the test before failure or because failure result from a mechanism not
relevant to the test. Suppose, for example, that records are being kept on a
fleet of trucks to determine the time-to-failure of the transmission. Trucks
destroyed by severe accidents would be withdrawn from the test, assuming
that a transmission failure was not the cause. Moreover, from time to time
some of the trucks might be sold or for other reasons removed from the test
population before failure occurs. When trucks are removed for such reasons,
it is easy to pretend that the removed units were not part of the original
sample. This would not bias the results, provided the censored units were
representative of the total population, but it would amount to throwing away
valuable data with a concomitant loss in precision of the life-testing results.
It is preferable to include the effects of the removed but unfailed units in
determining the reliability.

Multiple censoring may be called for even in situations in which all the
test units are run to failure, for, in a complex piece of machinery, analysis may
indicate two or more different failure modes. Thus, it may prove particularly
advantageous to remove units that have not failed from the mode under study
in order to describe a particular failure mode through the use of a specific
distribution of times to failure. This requires, of course, that each piece of
machinery be examined and a determination made of the failure mode.

In what follows, we examine the nonparametric analysis of multiply-cen-
sored data. These techniques have been developed the most extensively in
the biomedical community, but they are also applicable to technological sys-
tems. Once the censoring is carried out and the reliability estimate is available,
the substitution £(£) = 1 — R(¢) allows the probability plotting methods of
Chapter 5 to be employed for parametric analysis.

Ungrouped Data Ungrouped censored data take the form shown in Table
8.6. They consist of a series of times, ¢, &y, ..., &;, . . ., ty. Each of these times
represents the removal of a unit from the test. The removal may be due to
failure, or it may be due to censoring (i.e., removal for any other reason).
The convention is to indicate the times associated with censoring removals
by placing a plus sign (+) after the number.

TABLE 8.6 Failure Times

27 39 40+ 54 69
85+ 93 102 135+ 144
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To estimate reliability, we begin by deriving a recursive relation for R(t,)
in terms of R(t.-;). Without censoring, it follows from Eq. 8.6 that

s N+2—i
R(t-)) = N+l (8.19)
By taking the ratio
R(t) _N+1-—i
. = 8.20
R(t,‘_l) N+ 2 - i’ ( 2 )
we obtain
" N+1-—1,
R(t) = o= Rl (8.21)

This expression may be interpreted in light of the definition of a conditional
probability given by Eq. 2.4. The probability that a unit survives to ¢, [i.e.,
R(t;)] is just the product of the probability that it survives to ¢_;[i.e., R(t1)]
multiplied by the conditional probability [i.e., (N+ 1 — ¢) /(N + 2 — 7)] that
it will not fail between ¢,_; and ¢, given that it is operating at ¢_;. Thus, for
each ¢;at which a failure takes place, we reduce the reliability by using Eq. 8.21.

In the event that a censoring action takes place at #;, the reliability should
not change. Therefore, we take

R(t) = R(t-)). (8.22)

Equations 8.21 and 8.22 can be combined as an estimate of the conditional
probability that a system that is operational at ¢, will not fail until t > ¢.

<N+l—i
R(ti| liy) = N+2-i

1 censor at t;

Jailure at t;
) . (8.23)

If both a failure and a censor take place at the same time, this formula may
be applied unambiguously if the censor is assumed to follow immediately after
the failure.

By analogy to Eq. 2.4, which defines conditional probability, we may write

R(t) = R(t;| t)) R(t:-y). (8.24)

Hence the reliability at any # can be determined by applying this relation-
ship recursively

R(t) = R(t] ti—l)R(ti—l| ti—?)R(ti—2| tis) * -+ R(4,10), (8.25)

with R(0) = 1.

In practice, this estimate is used to calculate the values of the reliability
only at the values of ¢; at which failures occur. The time dependence of the
reliability between these points may then be interpolated, for instance, by



Reliability Testing 223

TABLE 8.7 Spreadsheet for Multiply Censored
Ungrouped Data Analysis in

Example 8.4
A B G D

1 i ti R(tilti-1) R(ti)
2 1 27 0.90909 0.90909
3 2 39 0.90000 0.81818
4 3 40+ 1.00000

5 4 54 0.87500 0.71591
6 5 69 0.85714 0.61364
7 6 85+ 1.00000

8 7 93 0.80000 0.49091
9 8 102 0.75000 0.36818
10 9 135+ 1.00000
11 10 144 0.50000 0.18409

straight-line segments. Once the reliability has been calculated, Eq. 8.9 may
be used to estimate the hazard function at the failure times.

Methods for treating multiply-censored data that are based on the use
of the product of conditional reliabilities given in Eq. 8.25 are generally
referred to as product limit methods. The foregoing procedure using Eq. 8.5
as a point of departure is due originally to Herd and Johnson. The Kaplan—
Meier procedure, which is widely used in the biomedical community, is quite
analogous; it begins with Eq. 5.11: F(t) = 1/N and yields the same results
with the expectation that the factor in Eq. 8.23 is replaced by (N — @) /(N +
1 — i). As N becomes larger, the differences between the two procedures
become very small.*

EXAMPLE 8.4

Ten motors underwent life testing. Three of these motors were removed from the test
and the remaining ones failed. The times in hours are given in Table 8.6. Use the
Herd-Johnson method to plot the motor reliability versus time.

Solution The necessary calculations are indicated in Table 8.7. In columns A and
B are the values of i and ¢. In column C R(4]¢_)) is calculated from Eq. 8.23 and in
D the values of R(t;) resulting from Eq. 8.24 are shown. The reliability is plotted in
Fig. 8.5 for the values of ¢#; corresponding to failures.

Grouped Data The procedures for treating multiply-censored grouped data
parallel those previously described for ungrouped data. Suppose that the
number of failures and the number of non-failed items removed from the
test is recorded for a number of intervals defined by & (=0), ¢, &, ;... ;.
We again use the recursive relationships given by Eqs. 8.24 and 8.25 to estimate
the reliability, but now the ¢ represent the time intervals over which the data

* W. Nelson, Applied Life Data Analysis, Chapt. 4, Wiley, New York, 1982.
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FIGURE 8.5 Reliability estimate from censored life data.

has been grouped. We must derive a new expression for R(t;|ti-;) which is
applicable to grouped data.

Suppose that there are n;; items under test at the beginning of the
interval for which ¢, < ¢ < t;, and d, failures occur during that interval. The
conditional reliability may then be estimated from

N d;

N
If there were no censoring we would simply have
n; = niy — di, (8.27)

with 1, = N, and Eq. 8.26 reduces to Eqg. 8.13. Suppose, however, that during
the " interval ¢; unfailed units are removed from the test. We then have

n, = Ni—y — di - (. (828)

If ¢ is a significant fraction of =, Eq. 8.26 will tend to overestimate the
reliability since for most of the interval there will be fewer than n;-, units
available for testing. If we assume that the ¢; unfailed units are removed at
random points throughout the interval, then a rough correction can be made
to Eq. 8.26 by writing

. d;
R(t|t) =1 = 050 (8.29)
In applying Eqs. 8.28 and 8.29 in conjunction with Eq. 8.25 to estimate
reliability, the values of R(t;|t-,) and R(t)) normally are only calculated at
the end of those time intervals in which failure have occurred, for the value of
the reliability would not change at intermediate times. The following example
demonstrates the procedure.

EXAMPLE 8.5

Table 8.8 shows life data for 206 turbine disks at 100 hour intervals. Make a nonparamet-
ric estimate of the reliability versus time.
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TABLE 8.8 Failure Data for 206 Turbine Disks*

Interval Failures Removals Interval Failures Removals

0-200 0 4 1000-1200 0 18
200-300 1 2 1200-1300 2 5
300-400 1 11 1300-1400 1 13
400-500 3 10 1400-1500 0 14
500-700 0 32 1500-1600 1 14
700-800 1 10 1600-1700 1 14
800-900 0 11 1700-2000 0 5
900-1000 1 9 2000-2100 1 2

* Data from W. Nelson, Applied Life Data Analysis, Wiley, New York, 1982, p- 150.

Solution Since the censoring takes place randomly, we set up a spread sheet
shown shown in Table 8.9. Columns A, B, and C are the values of i, t; and n, for those
intervals in which failures take place. Columns F and G are calculated from Eqgs. 8.28
and 8.29 respectively, and column H is calculated from Eq. 8.24.

Frequently field service records are tabulated over time intervals of equal
length A, months, for instance. However only the time interval of purchase
and the time interval during which failure occurs are recorded. Suppose at
the end of some number of time intervals following the initiation of sales we
want to use all of the available data to estimate the reliability. The recursive
relations Eqs. 8.24 and 8.25 are still applicable, but care must be taken since
inclusion of items of different ages in the reliability estimate is equivalent to
multiple censoring from the right.

We retain the use of Eq. 8.28 to determine the number of items under
test at the beginning of each interval. However, we now use Eq. 8.26 for the
reliability since the censoring amounts to removal at the end of the i time
interval those operational items that are currently of age i - A at the time the
analysis is made. We must also make a correction to the time scale since the

TABLE 8.9 Spreadsheet for Multiply Censored Data Analysis in

Example 8.5
A B C D E F G H

1 i ti ni_; di ci n; R(tilti-1) R(ti)

2 2 200 206 0 4 202 1.0000 1.0000

3 3 300 202 1 2 199 0.9950 0.9950

4 4 400 199 1 11 187 0.9948 0.9899

5 5 500 187 3 10 174 0.9835 0.9736

6 8 800 142 1 10 131 0.9927 0.9665

7 10 1000 120 1 9 110 0.9913 0.9581

8 13 1300 92 2 5 85 0.9777 0.9367

9 14 1400 85 1 13 71 0.9873 0.9247
10 16 1600 57 1 14 42 0.9800 0.9063
11 17 1700 42 1 14 27 0.9714 0.8804
12 21 2100 9 1 2 6 0.8750 0.7703
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items are sold throughout each time interval. If we assume that sales are
approximately uniform during each time interval (since we have no basis for
a more specific assumption) we estimate that the average age of the surviving
items is A/2 at the end of the first interval, 3A/2 at the end of the second,
andin general ;= (i — 1/2)A. The procedure is made clearer with an example:

EXAMPLE 8.6

A new pager goes on sale beginning January 1. Monthly records are kept of the number
sold, the number units returned and the month of sale for those returned. The first
four months sales are Jan.—1430, Feb.—1657, March—~1725, April-2198. For those sold
in January, the returns during each month are J-31, F-71, M-56, A-53. For those
sold in February the monthly returns are F-38, M—69, A—65, in March M—-34, A-176,
and in April A-43. Estimate the product reliability.

Solution We must first establish a time scale: In column B of Table 8.10 are the
average ages in months at the end of cach recording interval. In columns C-F are
the monthly failures for those sold in January through April respectively, and column
G contains the total number of failures during the first, second, third, and fourth
months of operation. In columns H-K Eq. 8.28 is used to calculate the numbers in
operation at the beginning of each monthly interval i for those sold in January through
April respectively. Summing columns H-K in column L yields i n,.; total number of
units available at the beginning of each time interval. In columns M and N, the values
of R(t] t,-1) and R(1;) are calculated from Egs. 8.26 and 8.24. The reliability is plotted
in Fig. 8.6.

TABLE 8.10 Spreadsheet for Data Analysis in Example 8.6

A B C D E F G
1 Failures
2 i ti Jan. Feb. March April di
3 1 0.5 31 38 34 43 146
4 2 1.5 71 69 76 216
5 3 2.5 56 65 121
6 4 3.5 53 53
H I J K L M N
1 #Test units
2 Jan. Feb. March April iy R(tilti-1) R(ti)
3 1430 1657 1725 2198 7010 0.9792 0.9792
4 1399 1619 1691 4709 0.9541 0.9342
5 1328 1550 2878 0.9580 0.8950
6 1272 1272 0.9583 0.8577
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8.5 ACCELERATED LIFE TESTING

Inadequate time to complete life testing is an ubiquitous problem in making
reliability estimates. The censoring from the right discussed in the preceding
section is a solution only if data from a sufficiently short time span is needed,
or if that data can be confidently extrapolated to longer times. Fortunately,
a number of acceleration methods may be used to counter the difficulties
in performing life testing with time deadlines. Although none are without
shortcomings, these procedures nevertheless contribute substantially to the
timeliness with which reliability data are obtained. Accelerated tests can be
divided roughly into two categories; compressed-time tests and advanced-
stress tests.

Compressed-Time Testing

Unless the product is one that is expected to operate continuously, such as
a wrist watch or an electric utility transformer, one can condense the compo-
nent’s lifetime by running it continuously to failure. Hence, many engines,
motors, and other mechanical and electrical devices can be tested for durability
in a small fraction of the calendar design life. Likewise, on-off cycles for many
products can be accumulated over a condensed period of time compared to
the calendar design life. Reliability tests are frequently performed in which
appliance doors are opened and closed, consumer electronics is turned on
and off, or pumps or motors are started and stopped to reach a design life
target over a relatively short period of time. These are referred to as com-
pressed-time tests, for the product is used more steadily or frequently in the test
than in normal use, but the loads and environmental stresses are maintained at
the level expected in normal use.

Precaution must be exercised in amassing data from compressed-time
tests. In field use the appliance door may only be cycled (opened and closed)
several times per day. But a compressed-time test can easily be performed in
which the open-close cycle is performed a few times per minute. If the cycle
is accelerated too much, however, the conditions of operation may change,
increasing stress levels and thus artificially increasing failure rates. If the latch
is worked several times per second, for example, the heat of friction may not
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have time to dissipate. This, in turn, would cause the latch to overheat; increas-
ing the failure rate and perhaps activating failure mechanisms that would not
plague ordinary operation. Conversely, tests in which engines, motors, or
other systems, which normally operate for intermittent periods of time, are
operated continually until failure occurs will not pick up the cyclical failure
modes caused by starting and stopping. To detect these a separate cycling
test is required, or the continuous operation must be interrupted by intervals
long enough for ambient temperatures to be achieved. Compressed-time tests
under the field conditions that a product will face may be more difficult to
achieve. Nevertheless, some acceleration is possible. The field life of automo-
biles may be compressed by leasing them as taxicabs, that of a home kitchen
appliances by testing them in restaurants. Differences, of course, will remain,
but the data may be adequate for the design verification or other use for
which it is needed.

EXAMPLE 8.7

Life testing was undertaken to examine the effect of operating time and number of
on-off cycles on incandescent bulb life. Six volt flashlight bulbs were operated at 12.6
volts in order to increase the failure rates. The wall-clock failure times, in minutes,
for 26 bulbs operated continually and 28 bulbs operated on a 30 sec. on-30 sec. off
cycle are given in Table 8.11. Use probability plotting to fit the two sets of data to
Weibull distributions, and determine the effect of on-off cycling on the life of the bulb.

Solution Recall from Chapter 5 that Weibull probability plots are made by plotting
y = In[In(1/(1 = F))] versus ln(). The F(t) is approximated at each failure by Eq.
5.12. The necessary calculations are performed in Table 8.12. In Figure 8.7, columns
E and I are plotted versus columns G and C, respectively, and least-squares fits are

TABLE 8.11 Wall Clock Failure Times

in Minutes

Steady State Cyclic

72 125 17 258

82 126 161 262

87 127 177 266

97 127 186 271
103 128 186 272
111 139 196 280
113 140 208 284
117 148 219 292
117 154 224 300
118 159 224 317
121 177 232 332
121 199 241 342
124 207 243 355

243 376
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TABLE 8.12 Spreadsheet for Weibull Analysis of Failure Data in Example 8.9

A B C D E F G H I
STEADY STATE: CYCLIC:

1
9 i t x=In(t) F=i/27 y t x=In(t) F=i/29 y
3 1 72 4.9767 0.0370 ~3.2770 17 2.8332 0.0345 —3.3498
4 9 82 4.4067 0.0741 -2.5645 161 5.0814 0.0690 —2.6386
5 3 87 4.4659 0.1111 —2.1380 177 5.1761 0.1084 -2.9146
6 4 97 4.5747 0.1481 —~1.8304 186 5.9957 0.1379 —1.9077
7 5 108 4.6847 0.1852 —1.5857 186 5.9957 0.1724 -1.6647
8 6 111 4.7095 0.2222 -1.3811 196 5.2781 0.2069 -1.4619
9 7 118 47274 0.2593 —1.2036 208 5.3875 0.2414 —1.2864
0 8 117 47622 0.2963 ~1.0458 219 5.3891 0.2759 -1.1308
1 9 117 4.7622 0.3333 —-0.9027 224 5.4116 0.3103 —0.9900
19 10 118 4.7707 0.3704 —0.7708 224 5.4116 0.3448 ~0.8607
13 11 121 4.7958 0.4074 —0.6477 232 5.4467 0.8793 —0.7404
4 12 121 4.7958 0.4444 ~0.5314 241 5.4848 0.4138 —0.6272
15 13 124 4.8203 0.4815 —0.4204 243 5.4931 0.4483 -0.5197
16 14 125 4.8283 0.5185 —0.3185 243 5.4981 0.4898 —0.4167
17 15 12 4.8363 0.5556 —-0.2096 258 5.5530 0.5172 —0.3171
18 16 127 4.8442 0.5926 —0.1077 262 5.5683 0.5517 —0.2202
v 17 127 4.8442 0.6296 —0.0068 266 5.5885 0.5862 —0.1251
20 18 198 4.8520 0.6667 0.0940 271 5.6021 0.6207 —0.0311
21 19 189 4.9345 0.7087 0.1959 272 5.6058 0.6552 0.0627
92 2 140 4.9416 0.7407 0.3001 280 5.6348 0.6897 0.1571
93 91 148 4.9972 0.7778 0.4082 284 5.6490 0.7241 0.2530
% 22 154 5.0870 0.8148 0.5226 292 5.6768 0.7586 0.3516
% 23 159 5.0689 0.8519 0.6469 300 5.7038 0.7931 0.4546
% 24 177 5.1761 0.8889 0.7872 817 5.7889 0.8276 0.5641
97 25 199 5.9933 0.9259 0.9565 332 5.8051 0.8621 0.6836
98 2 207 5.3327 0.9630 1.1927 342 5.8348 0.8966 0.8192
29 27 355 5.8721 0.9310 0.9836
30 928 376 5.9296 0.9655 1.2141

made. The first cyclic failure at 17 min. is an outlier, probably due to infant mortality,
and would appear far to the left of the graph. Thus it is not included in the least-
square fit. In terms of the slope a and the y intercept b, the Weibull shape and scale
parameters are determined from Egs. 5.33 and 5.34 to be

Steady St.: 7 = 4.41, 6= exp(+21.8/4.41) = 140.2 min. (clock time)
Cyclic: m = 4.51, f= exp(+25.3/4.51) = 273.1 min. (clock time)

The shape factors are nearly identical, while the scale parameter for the cyclic case is
approximately double that for steady-state operation. If we convert clock time to
operating time and plot the results, the scale parameter would be 140 and (1/2)
273.1 = 137. Thus the two sets of data give indistinguishable results when cast in
terms of operating time. Therefore the effects of the on-off cycling on bulb lifetime
are negligible.
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FIGURE 8.7 Weibull probability plot for light bulb accelerated life tests.

Advanced-Stress Testing

Systems that are normally in continuous operation or in which failures are
caused by deterioration occurring, even though a unit is inactive, present
some of the most difficult problems in accelerated testing. Failure mechanisms
cannot be accelerated using the foregoing time compression techniques. Ad-
vanced-stress testing, however, may be employed to accelerate failures, since as
increased loads or harsher environments are applied to a device, an increased
failure rate may be observed. If a decrease in reliability can be quantitatively
related to an increase in stress level, the life tests can be performed at high
stress levels, and the reliability at normal levels inferred.

Both random failures and aging effects may be the subject of advanced
stress tests. In the electronics industry, components are tested at elevated
temperatures to increase the incidence of random failure. In the nuclear
industry, pressure vessel steels are exposed to extreme levels of neutron irradia-
tion to increase the rate of embrittlement. Similarly, placing equipment under
a high-stress level for a short period of time in a proof test may be considered
accelerated testing to reveal the early failures from defective manufacture.

The most elementary form of advances-stress test is the nonparametric
estimate of the MTTF. Suppose that the MTTF is obtained at the number of
different elevated-stress levels. The MTTF is then plotted versus some function
of the stress level. Knowledge of either the stress effects or trial and error
may be used to choose the function that will result in a linear graph. A curve
is fitted to the data, and the MTTF is estimated at the stress level that the
device is expected to experience during normal operation. This process is
illustrated in the following example:
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EXAMPLE 8.8

Accelerated life tests are run on four sets of 12 flashlight bulbs and the failure times
in minutes are tabulated in Table 8.13. Estimate the MTTF at each voltage and
extrapolate the results to the normal operating voltage of 6.0 volts.

Solution Using the spread sheet formula for the mean we have:
9.4v: AVERAGE (A3:A14) = 4,744 min.
12.6 v: AVERAGE(B3:B14) = 126. min
14.3 v: AVERAGE(C3:C14) = 29.0 min.
16.0 v: AVERAGE (D3:D14) = 10.3 min.

In Fig. 8.8 In(MTTF) is plotted versus volts, and the results fall nearly on a straight
line as indicated by the .99 coefficient of determination. The least-squares fit indicates.

In(MTTF) = —1.14v + 19.3
Hence,
MTTF = exp(19.3 — 1.14v) = 241 X 10°exp(—1.14 v) min.
=167 X 10* exp(—1.14 v) days
At 6 volts:
MTTF = 167 X 10° exp(—1.14 X 6) = 179 days = 6 months

The foregoing nonparametric process, while straightforward, has several
drawbacks relative to the parametric methods to which we next turn. First, it
requires that a complete set of life data be available at each stress level in

TABLE 8.13 Light Bulb Failure Times in

Minutes
A B C D
1 9.4v 12.6v 14.3v 16.v
2
3 63 87 9 7
4 3542 111 13 9
5 3782 117 23 9
6 4172 118 25 9
7 4412 121 28 9
8 4647 121 30 9
9 5610 124 32 10
10 5670 125 34 11
11 5902 128 37 12
12 6159 140 37 12
13 6202 148 39 13
14 6764 177 41 14
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FIGURE 8.8 MTTF extrapolation from accelerated life tests.

order to use the sample mean to calculate the MTTF. Parametric methods
can also utilize data that is censored as well as accelerated. Second, without
attempting to fit the data to a distribution, one has no indication whether
the shape, as well as the time scale of the distribution, is changing. Since
changes in distribution shape are usually indications that a new failure mecha-
nism is being activated by the higher-stress levels, there is a greater danger
that the nonparametric estimate will be inappropriately extrapolated.

Parametric analysis may be applied to advanced-stress data as follows. As
stress is increased above that encountered at normal operating levels, failures
should occur at earlier times and therefore the CDF for failure should rise
more rapidly. Let F,(#) be the failure CDF under accelerated-stress conditions
and F(¢) be that obtained under ordinary operating conditions. Then, we
would expect that at any time, F, () > F(¢). True acceleration is said to take
place if F,(¢) and F(t) are the same distribution and differ only by a scale
factor in time. We then have

F.(0) = F(kt), (8.30)

where k > 1 is referred to as the acceleration factor.

The Weibull and lognormal distributions are particularly well suited for
the analysis of advanced-stress tests, for in each case there is a scale parameter
that is inversely proportional to the acceleration factor and a shape parameter
that should be unaffected by acceleration. Thus, if the shape parameter re-
mains relatively constant, some assurance is provided that no new failure
mode has appeared.

The CDF for the Weibull distribution is given by Eq. 3.74. Thus at an
advanced stress it will be given by

Ft)y =1— W, (8.31)
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where to satisfy Eq. 8.30 the scale parameter must be given by
0 =6/« (8.32)

A special case of the Weibull distribution, of course, is the exponential distribu-
tion, where m = 1, is also used for accelerated testing. Likewise, the CDF for
the lognormal distribution is given by Eq. 3.65. At corresponding advanced
stress the distribution will be

F(f) = ® [1 In (—t>] (8.33)
where to satisfy Eq. 8.30 we must have
L =t/ K. (8.34)

The procedure for applying advanced-stress testing to determine the life
of a device requires a good deal of care. One must be satisfied that the shape
parameter is not changing, before making a statistical estimate of the scale
parameter. This is often difficult, for at any one stress level the number of
failures is not likely to be large enough to determine shape parameter within
a narrow confidence interval, and moreover the estimates of these parameters
will vary randomly from one stress level to the next. Thus, one must rely on
other means to establish the shape parameter. Historical evidence from larger
data bases may be used, or more advanced maximum likelihood methods may
be used to combine the data under the assumption that there is a common
shape parameter. Finally, additional data may be acquired at one or more of
the stress levels to establish the parameter within a narrower bound. Some
of these considerations are best illustrated by carrying through the analysis
on a set of laboratory data. For this purpose we return to the light bulb data
used in Examples 8.7 and 8.8:

EXAMPLE 8.9

Make Weibull plots of the accelerated-life test data in Table 8.13. Estimate the shape
parameter and determine the acceleration factor as a function of voltage.

Solution For each of the four sets of data we make up a spread sheet analogous
to Table 8.12. This is shown as Table 8.14. The first two columns contain the rank i,
and the corresponding values of y = In[In(1/(1 — F))] with F= i/(N + 1). Columns
C through F contain the failure times, copied from Table 8.13, and the corresponding
values of x = In(¢) are calculated in columns G through J. The x-y curve for each
voltage is shown in Fig 8.9. With the exception of one early failure at 63 min. in the
9.4 v data, the data sets appear to be reasonably represented by the Weibull distribution.
Moreover the graphical representations appear to be of similar slope. To explore this
further, we make least-squares fits of each of these data sets (deleting the one outlier)
and obtain the slopes and the coefficients of determination:

9.4 v a = SLOPE(B4:B14,G4:G14) = 4.86 r* = RSQ(B4:B14,G4:G14) = .891
12.6 v a = SLOPE(B3:B14,H3:H14) = 2.10 7’ = RSQ(B3:B14,H3:H14) = .900
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A B C D E F G H I ]
1 9.4v 12.6v 14.3v 16.v 9.4v 12.6v 14.3v 16.v
2 i y t t t t X x X X
3 1 —2.5252 63 87 9 7 4.143 4.466 2.197 1.946
4 2 —1.7894 3542 111 13 9 8.172 4.710 2.565 2197
5 3 —1.3380 3782 117 23 9 8.238 4.762 3.135 2.197
6 4 ~1.0004 4172 118 25 9 8.336 4.771 3.219 2.197
7 5 —0.7226 4412 121 28 9 8.392 4.796 3.332 2.197
8 6 ~0.4796 4647 121 30 9 8.444 4.796 3.401 2.197
9 7 —0.2572 5610 124 32 10 8.632 4.820 3.466 2.303
10 8 —0.0455 5670 125 34 11 8.643 4.828 3.526 2.398
11 9 0.1644 5902 128 37 12 8.683 4.852 3.611 2.485
12 10 0.3828 6159 140 37 12 8.726 4.942 3.611 2.485
13 11 0.6269 6202 148 39 13 8.733 4.997 3.664 2.565
14 12 0.9419 6764 177 41 14 8.819 5.176 3.714 2.639
15
16 ybar= ~0.5035 xbar= 8.529 4.8263 3.2868 23172
17 m= 4.4 b= —38.0 ~21.7 —15.0 -10.7
18 theta= 5,672.6 139.9 30.0 11.4
19 In(theta)= 8.643 4.941 3.401 2.432

14.3 v a = SLOPE(B3:B14,I3:114) = 5.60 r* = RSQ(B3:B14,13:114) = .862
160 v a = SLOPE(B3:B14J3:J14) = 3.79  * = RSQ(B3:B14,3:J14) = .963

These coefficients of determination reinforce the view that the data is reasonably fit
by Weibull distributions. The varying values of the slopes reveals no systematic trend,
and may well be due to large fluctuations caused by the small sample sizes. Thus the
average over the four slopes, a = m = 4.09, may be a reasonable approximation to a
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FIGURE 8.9 Weibull probability plots for light bulb accelerated life tests.
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shape parameter for all of the data. We have an additional piece of evidence, however.
The two larger data sets, N = 24, taken for steady state and cyclic operation at 12.6
v, shown in Fig. 8.7, yield values of 4.41 and 4.51. As a result we chose m = 4.4 as a
reasonable estimate.

With the common shape factor, and therefore fixed slope, we may use Eq. 5.25
to make a leastsquares fit for 5, the y intercept, at each voltage: b = y — ax. The
necessary calculations for b are carried out in Table 8.14. For each voltage the Weibull
scale parameter 6 is then evaluated from Eq. 5.34. To estimate the acceleration factor
as a function of voltage we first attempt a linear fit of the values given in Table 8.14
versus voltage. We obtain »* = RSQ(G18:J18,G1:J1) = 0.77, which is a poor fit. We
next attempt a fit with y = In (6) and obtain a coefficient of determination that is
substantially closer to one: r* = RSQ(G19:J19,G1:J1) = 0.98. Therefore we make a
least-square fit of In(f) versus voltage and find ¢« = SLOPE(G19:J19,G1:J1) = —0.96
and INTERCEPT(G19:J19,G1:J1) = 17.4. Thus we may write In (8') = —0.96v + 17.4
or §' = 36.0 10%xp(—0.967). From Eq. 8.32 we find the acceleration factor to be

k= 0/ = exp[0.96(v — 6)]

Other distributions, such as the normal and extreme value, may also be
used in advanced-stress testing. In these cases, however, the analysis is more
complex since both distribution parameters change if Eq. 8.30 remains valid.
For example in the normal distribution, we have u' = u/k and ¢’ = o/«k.
Thus lines drawn on probability plots at different stress levels will no longer
be parallel with the time scaling. The normal distribution is more useful in
modeling phenomena in which stress levels have additive instead of multiplica-
tive effects on the times to failure. For u is a displacement rather than a scale
parameter, and thus in such situations only # and not o will be effected. A
similar behavior is observed if the extreme value distribution is employed.

Acceleration Models

As in compressed-time testing, the extrapolations involved in advanced-
stress testing may be problematical in situations where it is feasible to run
accelerated tests at only one or two stress levels. Then it is impossible to
define an empirical relationship between stress and reliability from which the
extrapolation to normal operating conditions can be made. In such situations
the existence of a well-understood acceleration model can replace the empiri-
cal extrapolation. For example, the rate at which a wide variety of chemical
reactions take place, whether they be corrosion of metals, breakdown of
lubricants, or diffusion of semiconductor materials, obeys the Arrhenius
equation.

rate ~ ¢ AT (8.35)

where AH is the activation energy, k is the Boltzmann constant, and T is
the absolute temperature. Thus, for systems in which chemical reactions are
responsible for failure, an increase in temperature increases the failure rate
in a prescribed manner.
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Since the times to failure will increase as the rate decreases, we may
equate the scale parameter for the Weibull distribution to the inverse of
the rate

6 = At (8.36)

where A is a proportionality constant. The Arrhenius equation may also be
used for lognormal fitting simply by substituting the scale parameter for 0
in the following equations. Suppose that T; is the nominal temperature at
which the device is designed to operate. The acceleration factor, defined in
Eq. 8.30 may then be determined simply by taking the ratio 6,/ 0, of scale
parameters at the nominal and elevated temperatures, T and 7.

1 1

k(T)) = exp {(AH/k) [To - ?1]} (8.37)

Before this expression may be used for accelerated testing, however, the
activity energy AH must be determined. This can be accomplished by taking
the ratio between 6, and 6, at two elevated temperatures and solving Eq. 8.36

for AH:
1 1\ 0,
AH=Fk|——— Inl—=—]. .
(Tl T2> ° <02) (8:38)

Thus tests must first be run at two reference temperatures 7, and 7; to
determine the Weibull parameters 6, and 6,. Then, once A H has been deter-
mined, the acceleration factor can be calculated as a function of temperature.

Other time-scaling laws are also available. Empirical relations are often
applied to voltage, humidity and other environmental factors. Accelerated
testing is useful, but it must be carried out with great care to ensure that
results are not erroneous. We must be certain that the phenomena for which
the acceleration factor k has been calculated are the failure mechanisms.
Experience gained with similar products and a careful comparison of the
failure mechanisms occurring in accelerated and real-time tests will help
determine whether we are testing the correct phenomena.

8.6 CONSTANT FAILURE RATE ESTIMATES

In this section we examine in more detail the testing procedures for determin-
ing the MTTF when the data are exponentially distributed. This is justified
both because the exponential distribution (i.e., the constant failure rate
model) is the most widely applied in reliability engineering, and because it
provides insight into the problems of parameter estimation that are indicative
of those encountered with other distributions.

We must, of course, determine whether the constant failure rate model
is applicable to the test at hand. At least four approaches to this problem may
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be taken. The exponential distribution may be assumed, based on experience
with equipment of similar design. It may be identified by using one of the
standard statistical goodness-of-fit criteria or by probability plotting, and exam-
ining the results visually for the required straight-line behavior. Finally, it may
be argued from the failure mode whether the failures are random, as opposed
to early or aging failures. If defective products or aging effects are identified
as causing some of the failures, the data must be censored appropriately.

The exponential distribution has only a single parameter to be estimated,
the failure rate A. Rather than estimate the failure rate directly, most sampling
schemes are cast in terms of the MTTF, denoted by MTTF = w = 1/A. For
uncensored data the value of u may be estimated from Eq. 8.11. Moreover,
when N, the number of test specimens, is sufficiently large, the central limit
theorem, which was discussed in Chapter 5, may be used to estimate a confi-
dence interval. In particular, the 69% confidence interval is given by & * o/
\/N, where o? is the variance of the distribution. Since for the exponential
distribution o = u, we may estimate the 69% confidence interval from & *
#/VN,

Censoring on the Right

It is clear from the foregoing expressions that for a precise estimate a large
sampling size is required. Using many test specimens is expensive, but, more
important, a very long time is required to complete the test. As N becomes
large, the last failure is likely to occur only after several MTTFs have elapsed.
Moreover, the analysis of the failures that occur after long periods of time is
problematic for two reasons. First, a design life is normally less than the MTTF,
and it is often not possible to hold up final design, production, or operation
while tests are carried out over many design lives. Equally important, many
of the last failures are likely to be caused by aging effects. Thus they must be
removed from the data by censoring if a true picture of the random failures
is to be gained.

Type I and type II censoring from the right are attractive alternatives to
uncensored sampling. By limiting the period of the test while increasing the
number of units tested, we can eliminate most of the aging failures, and
estimate more precisely the time-independent failure rate. Within this frame-
work four different test plans may be used. With the assumption that the test
is begun with N test units, these plans may be distinguished as follows. If the
test is terminated at some specified time, say ¢, then type I censoring is said
to take place. If the test is terminated immediately after a particular number
of failures, say n, then type II censoring is said to take place. With either type
I or type Il censoring, we may run the test in either of two ways. In the
nonreplacement method each unit is removed from the test at the time of
failure. In the replacement method each unit is immediately repaired or
replaced following failure so that there are always N units operating until the
test is terminated.
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The choice between type I and type II censoring involves the following
trade-off. Type I censoring is more convenient because the duration of the
test . can be specified when the test is planned. The time £, of the nth failure,
at which a test with type II censoring is terminated, however, cannot be
predicted with precision at the time the test is planned, for ¢, is a random
variable. Conversely, the precision of the measurement of the MTTF for the
exponential distribution is a function of the number of failures rather than
of the test time. Therefore, it is often considered advisable to wait until some
specified number of failures have occurred before concluding the test.

A number of factors also come into play in determining whether nonre-
placement or replacement tests are to be used. In laboratory tests the cost of
the test units compared with the cost of the apparatus required to perform
the test may be the most significant factor. Consider two extreme examples.
First, if jet engines are being tested, nonreplacement is the likely choice.
When a specified number of engines are available, more will fail within a
given length of time if they are all started at the same time than if some of
them are held in reserve to replace those that fail. The same is true of any
other expensive piece of equipment that is to be tested as a whole.

Conversely, suppose that we are testing fuel injectors for large internal-
combustion engines. The supply of fuel injectors may be much larger than
the number of engines upon which to test them. Therefore, it would make
sense to keep all the engines running for the entire length of the test by
immediately replacing each fuel injector following failure, provided that the
replacement can be carried out swiftly and at minimum cost. Minimizing cost
is an important provision, for generally the personnel costs are larger with
replacement tests; in nonreplacement tests personnel or instrumentation is
required only to record the failure times. In replacement tests personnel and
equipment must be available for carrying out the repairs or replacements
within a short period of time.

The situation is likely to be quite different when the data are to be
accumulated from actual field experience with breakdowns. Here, in the
normal course of events, equipment is likely to be repaired or replaced over
a time span that is short compared to the MTTF. Conversely, records may
indicate only the number of breakdowns, not when they occurred. The num-
ber of breakdowns might be inferred, for example, from spare parts orders
or from numbers of service calls. In these circumstances replacement testing
describes the situation. Moreover, unlike nonreplacement testing, the MTTF
estimation does not require that the times of failures be recorded.

One last class of test remains to be mentioned. Sometimes referred to
as percentage survival, it is a simple count of the fraction (or percentage) of
failed units. From the properties of the exponential distribution, we infer the
MTTF. This test procedure requires no surveillance, for failed equipment
does not need to be replaced or times of failure recorded. Not surprisingly,
the estimate obtained is less precise. The method is normally not recom-
mended, unless failures are not apparent at the time they take place and
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can only be determined by destructive testing or other invasive techniques
following the conclusion of the test.

MTTF Estimates

With the exception of the percentage survival technique, the same estimator
may be shown to be valid for all the test procedures described:*

T
m=,
n
T = total operational time of all test units, (8.39)

n = number of failures.

For each class of test, however, the total operating time T 'is calculated differ-

ently.
Consider first nonreplacement testing with type I censoring (i.e., the test
is terminated at some predetermined time ¢.). If #,, &, ..., t, are the times

of the n failures, the total operational time T for the N units tested is
T=>> t;+ (N— n)t, (8.40)
=1
since N — n units operate for the full time ¢..

EXAMPLE 8.10

A 30-day nonreplacement test is carried out on 20 rate gyroscopes. During this period
of time 9 units fail; examination of the failed units indicates that none of the failures
is due to defective manufacture or to wear mechanisms. The failure times (in days)
are 27.4, 13.5, 10.5, 20.0, 23.6, 29.1, 27.7, 5.1, and 14.4. Estimate the MTTF.

Solution From Eq. 8.40 with N= 20 and n = 9,
9
T=> t+ (20 —9) X 30
=1
=171.83 + 11 X 30 = 501.3
T 501.3

p=_=—g = 55.7 days.

For type II censoring the test is stopped at ¢,, the time of the nth failure.
Thus, if there is no replacement of test units, the total operating time is

* 1. Bazovsky, Reliability Theory and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1961.
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calculated from
T=>t+(N—nt, (8.41)
=1

since the unfailed (N — =) units are taken out of service at the time of the
nth failure. Note that in the event that some of the units, say & of them, are
removed from the test because they fail from another mechanism, such as
aging, then T is still calculated by Eq. 8.40 or Eq. 8.41. Now, however, the
estimate is obtained by dividing only by the number n — k of random failures:

T
n—k

o= (8.42)

EXAMPLE 8.11

The engineer in charge of the test in the preceding problem decides to continue to
test until 10 of the 20 rate gyroscopes have failed. The tenth failure occurs at 41.2
days, at which time the test is terminated. Estimate the MTTF.

Solution From Eq. 8.41 with N = 20 and n = 10,

10
T=> 1t + (20 —10)41.2
=1

T= (171.3 + 41.2) + 10 X 41.2 = 624.5

. _ T _6245 _
B=T=0 62.4 days.

In replacement testing all N units are operated for the entire length of
the test. Thus, for type I censoring, we have T'= Ni, where i is the specified
test time. Hence

Nt.
=20 (8.43)
n

For type II censoring, we have T'= Nt,, where t, is the time at which the nth
unit fails. Thus T = Nt, or

Mt,
e

o= (8.44)

EXAMPLE 8.12

A chemical plant has 24 process control circuits. During 5000 hr of plant operation
the circuits experience 14 failures. After each failure the unit is immediately replaced.
What is the MTTF for the control circuits?
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Solution From Eq. 8.43
T = Nt. = 24 X 5000 = 120,000

o=~ = 8571 hr.
p=- r

T _ 120,000
14

EXAMPLE 8.13

Six units of a new high-precision pressure monitor are placed on an industrial furnace.
After each failure the monitor is immediately replaced. However, the eighth failure
occurs after only 840 hours of service. Itis decided that the high-temperature environ-
ment is too severe for the instruments to function reliably, and the furnace is shut
down to replace the pressure monitors with a more reliable, and expensive, design.
Assuming that the failures are random, estimate the MTTF of the monitors.

Solution From Eq. 8.44
7= Nty = 6 X 840 = 5040 hr

Asalluded to earlier, the MTTF may also be estimated from the percentage
survival method. We begin by first estimating the reliability at the end of the
test, time ¢ as R(¢) = 1 — n/N. With an exponential distribution however,
the reliability is given by

R(ty) = exp(—t/p)- (8.45)
Thus, combining these equations, we estimate MTTF from
ly
M= — .
In[1/(1 = n/N)]

(8.46)

EXAMPLE 8.14

A National Guard unit is supplied with 20,000 rounds of ammunition for a new model
rifle. After 5 years, 18,200 rounds remain unused. From these 200 rounds are chosen
randomly and test-fired. Twelve of them misfire. Assuming that the misfires are random
failures of the ammunition caused by storage conditions, estimate the MTTF.

Solution 1In Eq. 8.46 take n = 12, N = 200, and #, = 5 years. We have

o 5
= n{1/11 = 1272001}

= 81 years.

Confidence Intervals

We next consider the precision of the MTTF estimates made with Eq. 8.39.
The confidence limits for both replacement and nonreplacement tests may
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be expressed in terms of i and the number of failures by using the x* distribu-
tion. The results are given conveniently by the curves shown in Fig. 8.10. We
consider type II censoring first.

Let U,/y, and L, , be the upper and lower limits for the 100 X (1 — «)
percent confidence interval for type II censoring. The two-sided confidence
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FIGURE 8.10 Confidence limits for measurement of mean-time-to-failures. (From Igor Bazov-
sky, Reliability Theory and Practice, © 1961, p. 241, with permission from Prentice-Hall, Engle-
wood Cliffs, NJ.)



Reliability Testing 243

interval states that if the test is stopped after the nth failure, thereisa l — «
probability that the true value of n lies between L, and U, .

P{IJQ‘/Q,,, = j22 < Ua/?,n} =1- a. (847)

It turns out that the ratios Lg,/f and U,.,/ft are independent of the
operating time T. Therefore, they can be plotted as functions of « and n, the
number of failures. The plot is shown in Fig. 8.10. Thus, if &t has been estimated
from one of the forms of Eq. 8.39, the confidence interval can be read from
Fig. 8.10. This is best illustrated by examples.

EXAMPLE 8.15

What is the 90% confidence interval for the rate gyroscopes tested in Example 8.11
taking the failure at 41.2 days into account?

Solution For a 90% confidence interval we have 100(1 — «) = 90, or a = 0.1
and «/2 = 0.05. For n = 10 failures we find from Fig. 8.10 that

UO.()F:,I()

IJO,OF», 0

0.65, 1.82.

Therefore, using & = 62.4 days from Example 8.11:

Ly gs,00 = 0.65 X 62.4 = 41 days,
Upgso =~ 1.82 X 62.4 = 114 days,
41 < p < 114 days with 90% confidence.

With slight modifications the results of Fig. 8.10 may also be applied to
type I censoring, where the test is ended at some time ¢:. Using the properties
of the y? distribution, it may be shown that the upper confidence limit and
& remain the same. The lower confidence limit, in general, decreases. It may
be related to the results in Fig. 8.10 by

Lisn __m Loso ey (8.48)
a n+l @ 7 ’

where L¥ is the value for type I censoring, and Lis the plotted value for type II
censoring. Again, the confidence limits are applicable to both nonreplacement
and replacement testing.

EXAMPLE 8.16

During the first year of operation a demineralizer suffers seven shutdowns. Estimate
the MTBF and the 95% confidence interval.
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Solution From Eq. 8.39

f=MTBF = = 1.71 months.

T _ 12 months
n 7

For a 95% confidence interval & = 0.05 and @/2 = 0.025. From Fig. 8.10,

Liosn _ n Loowsarr _ 7TLoowss 7

=X 0.57=0.
3 0.57=10.50

1 n+1l @ 8 i
Lygs7 = 0.50 X 1.71 = 0.86 month,
U0,025,7 =925 X 1.71 = 4.27 months.

Thus
0.86 months < w < 4.27 months

with 95% confidence.

In some situations, particularly in setting specifications, we are not inter-
ested in the MTBF, but only in assuring that it be greater than some specified
value. If the MTBF must be greater than the specified value at a confidence
level of a/2, we estimate L.,/ or L¥,,/f from Fig. 8.10 and determines
the value of i with an appropriate form of Eq. 8.39.

EXAMPLE 8.17

A computer specification calls for an MTBF of at least 100 hr with 90% confidence.
If a prototype fails for the first time at 210 hr, can these test data be used to demonstrate
that the specification has been met?

Solution o= T/n = 210/1 = 210 hr. For the 90% one-sided confidence interval
a/2 = 0.1. From Fig. 8.10,

Loy, /o= 0.44,
140.1,1 =0.44 X 210 = 93 hr.

The test is inadequate, since the lower confidence limit is smaller than the specified
value of 100 hr.

A word is in order concerning the percentage survival test discussed
earlier. It is a form of binomial sampling, with the ratio n/N being the estimate
of the failure probability of failure. Consequently, the method discussed in
Chapter 2 can be used to estimate the confidence interval of the failure
probability, and from this the confidence interval on the MTTF can be esti-
mated. The uncertainty is greater than that obtained from testing in which
the actual failure times are recorded.
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EXAMPLE 8.18

Estimate the 90% confidence interval for the National Guard ammunition problem,
Example 8.14.

Solution Since, in 5 years, 12 of 200 rounds fail, the 5-year failure probability
may be calculated from Eq. 2.66 to be

som_ 12 B
p—N—200 0.06=1—-R.

Since this test is a form of binomial sampling, we can look up the 90% confidence
interval on p from Appendix B. We obtain for n = 12,0.01 <p < 0.31. For a constant
failure rate we have

p=1-—€" or w=—t/In(1 — p).
Therefore, with ¢ = 25 years,

—95 -95
n(1—030) *“In(1-001)

67 years < p << 2487 years.
with 90% confidence.
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Exercises

8.1 Suppose that “‘bugs” are detected and corrected in developmental soft-
ware at 1.4, 8.9, 24.3, 68.1, 117.2, and 229.3 hrs.

(a) Estimate the reliability growth coefficient, .
(b) Calculate the coefficient of determination for c.
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8.2 The wearout times of 10 emergency flares in minutes are 17.0, 20.6,
21.3, 21.4, 22.7, 25.6, 26.5, 27.0, 27.7, and 29.7. Use the nonparametric
method to make plots of the reliability and cumulative hazard function.

8.3 Determine the MTTF of the data in Example 5.7.

8.4 For the data in Example 5.7, make a nonparametric graph of the reliabil-
ity and cumulative hazard function.

8.5 The L life is defined at the time at which 10% of a product has failed.

(a) Estimate L, for the failure data in Example 5.2.
(b) Estimate the MTTF for that data.

8.6 For the flashlight bulb data in Example 5.2 make nonparametric plots
of the reliability and cumulative hazard function.

8.7 A new robot system undergoes test-fix-test-fix development testing. The
number of failures during each 100-hr interval in the first 700 hr of
operation are recorded. They are 14, 7, 6, 4, 3, 1, and 1.

(a) Plot the camulative MTBF = T/n on log-log paper and approximate
the data by a straight line.

(b) Estimate « from the slope of the line.

8.8 Data for the failure times of 318 radio transmitter receivers are given in
the following table.*

Time interval, Time interval,
hr Failures hr Failures

0-50 41 300-350 18
50-100 44 350-400 16
100-150 50 400-450 15
150-200 48 450-500 11
200-250 28 500-550 7
250-300 29 550-600 11

At 600 hr, 51 of the receiver—transmitters remained in operation. Use
the nonparametric method described in the text to plot the reliability
and cumulative hazard function versus time.

8.9 Fifteen components undergo a 100 hour life-test. Failures occur a 31.4,
45.9,50.2,58.4,70.7,73.2,86.6 and 96.3 hours. From previous experience
the data is expected to obey a lognormal distribution. Make a probability
plot and estimate the lognormal parameters; then estimate the MTTF.

* From W. Mendenhall and R. J. Hader, ‘‘Estimation of Parameters of Mixed Exponential Distribu-
tion Failure Times from Censored Life Test Data,” Biometrika, 63, 449-464 (1958).
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8.10 The following uncensored grouped data were collected on the failure

8.11

8.12

8.13

8.14

8.15

time of feedwater pumps, in units of 1000 hr:

Number

Interval of failures
0=<t=6 5
6=st=<12 19
12=<¢=<18 61
18=st=<24 27
24 < t =< 30 20
30 < (< 36 17

Make a nonparametric plot of the reliability and of the cumulative hazard
function versus time.

The test started in Exercise 8.9 is run to completion. The remaining
samples fail at 100.6, 117.9, 124.8, 148.7, 159.5, 205.2, and 232.5 hours.
Redo the analysis and compare the lognormal parameters and the MTTF
to the values obtained in Exercise 8.9

The following numbers of bends to failure were recorded for 20 paper
clips: 11, 29, 15, 20, 19, 11, 12,9, 9, 8, 13, 20, 11, 22, 20, 9, 25, 19, 11,
and 10.

(a) Make a nonparametric plot of R(¢), the reliability.

(b) Attempt to fit your data to Weibull, lognormal and/or normal distri-
butions and determine the parameters.

(c) Briefly discuss your results.

Repeat Exercise 8.9 but fit the data to a two-parameter Weibull distri-
bution.

Consider the following multiply censored data* for the field windings
for 16 generators. The times to failure and removal times (in months)
are 31.7, 39.2, 57.5, 65.0+, 65.8, 70.0, 75.0+, 75.0+, 87.5+, 88.3+,
94.9+,101.7+,105.8,109.2+, 110.0, and 180.0+. Make a nonparametric
plot of the reliability.

Suppose that a device undergoing accelerated testing can be described
by a Weibull distribution with a shape factor of m = 2.0. Under acceler-
ated test conditions, with an acceleration factor of k = 5.0, 50% of the
devices are found to fail during the first month. Under normal operating
conditions, estimate how long the device will last before the failure proba-
bility reaches 10%. (This is referred to as the Ly, life of the device).

* From Nelson, Applied Life Data Analysis, Wiley, New York, 1982
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8.16

8.17
8.18

8.19

8.20

8.21

8.22
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The data that follows is obtained for the time to failure of 128 appli-
ance motors

(a) Make a histogram of the PDF.

(b) Plot the reliability.

(c¢) Plot the cumulative hazard function.

hours # failures hours # failures
0~10 4 50-60 31
10-20 8 60-70 22
20-30 11 70-80 10
30-40 16 80-90 2
40-50 23 90-100 1

Estimate the mean and variance of the data in Exercise 8.16

Make a Weibull plot and a normal plot of the grouped data in Exercise
8.16. Determine which is the better fit and estimate the parameters for
that distribution.

Make a two-parameter Weibull plot of the multiply-censored winding
data from Exercise 8.14 and estimate m and 6.

A wear test is run on 20 specimens and the following failure times in
hours are obtained: 81, 91, 95+, 97, 100+, 106, 109, 110+, 112, 114+,
117+, 120, 126, 128, 130, 132+, 139, 144, 154, and 163. Using the
product-limit technique to account for the censoring:

(a) Make a nonparametric plot of the reliability.
(b) Fit the data to a normal distribution and estimate the parameters.

Of a group of 180 transformers, 20 of them fail within the first 4000 hr
of operation. The times to failure in hours are as follows:*

10 1046 2096 3200
314 1570 2110 3360
730 1870 2177 3444
740 2020 2306 3508
990 2040 2690 3770

(a) Make a normal probability plot.
(b) Estimate w and o for the transformers.
(c) Estimate how many transformers will fail between 4000 and 8000 hr.

Plot the data from the Exercise 8.21 on exponential paper to estimate
whether the failure rate increases or decreases with time.

* Data from Nelson, op cit.
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8.23 Twenty units of a catalytic converter are tested to failure without censor-
ing. The times-to-failure (in days) are the following:

2.6
7.1
9.8
12.3

3.2
8.4
11.3
16.0

3.4
8.8
11.8

21.9

3.9
8.9
11.9
22.4

5.6
9.5
12.7
24.2

Make an exponential probability plot, and determine whether the failure
rate is increasing or decreasing with time.

8.24 A producer of consumer products offers a three year double-your-money
back guarantee over a limited marketing area and collects the failure
data tabulated below.

(a) Make a nonparametric plot of R(?).

(b) Fit the data to a Weibull distribution and estimate the parameters.
(c) Fitthe data to alognormal distribution and estimate the parameters.
(d) Does the Weibull or the lognormal distribution yield the better fit?

Quarter sold: W92 S92 S92 F92 W93 S93 S93 F93 W94 S$594 S94 F94
Number sold: 842 972 1061 1293 939 1014 1036 1185 979 1125 1205 1300
Number failed:
W92 18
S92 42 22
S92 33 42 21
F92 32 39 45 26
W93 32 37 43 54 19
S93 27 35 38 51 38 22
S93 34 31 42 50 39 43 20
F93 42 35 37 46 34 39 43 23
W94 27 32 35 46 37 39 40 50 19
S94 26 26 29 40 32 36 38 48 44 26
594 21 31 36 43 33 37 41 42 41 44 28
F94 25 27 31 41 29 33 35 45 35 46 49 24

8.25 Make a Weibull plot of Exercise 8.23 and estimate the parameters m

and 6.

8.26 The following multiply-censored times-to-failure (in hours) have been
obtained from a battery powered motor used in inexpensive consumer
products: 22, 37, 41, 43, 56, 57+, 58, 61, 62+, 63+, 64, 64, 656+, 69, 69,
69+, 70, 76+, 78, 87, 88+, 89, 94, 100, and 119. Using the product-limit

technique to account for the censoring:

(a) Make a nonparametric plot of the reliability and cumulative haz-
ard function.
(b) Fit the data to a Weibull distribution and estimate the parameters.
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8.27

8.28

8.29

8.30

8.31
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Suppose that instead of Eq. 5.12, we use Eq. 5.13 as a starting point for
nonparametric analysis. Derive the expressions for R(¢) and H(t), that
should be used in place of Egs. 8.6 and 8.10

Microcircuits undergo accelerated life testing. The analysis is to be car-
ried out using nonparametric methods for ungrouped data.

(a) The first test series on six prototype microcircuits results in the
following times to failure (in hours): 1.6, 2.6, 5.7, 9.3, 18.2, and
39.6. Plot a graph of the estimated reliability.

(b) The second test series of six prototype microcircuits results in the
following times to failure (in hours): 2.5, 2.8, 3.5, 5.7, 10.3, and
23.5. Combine these data with the data from a and plot the reliability
estimate on the same graph used for a.

At rated voltage a microcircuit has been estimated to have an MTTF of
20,000 hr. An accelerated life test is to be carried out to verify this
number. It is known that the microcircuit life is inversely proportional
to the cube of the voltage. At least 10% of the test circuits must fail
before the test is terminated if we are to have confidence in the result.
If the test must be completed in 30 days, at what percentage of the rated
voltage should the circuits be tested?

A life test with type II censoring is performed on 50 servomechanisms
that are thought to have a constant failure rate. The test is terminated
after the twentieth failure. The times to failure (in months) are as follows:

0.10 0.29 0.49 0.51 0.55
0.63 0.68 1.16 1.40 2.24
2.25 2.64 2.99 3.01 3.06
3.15 3.51 3.63 3.99 4.05

The failed servomechanisms are not replaced.

(a) Make an exponential probability plot and estimate whether the
failure rate is constant.

(b) Make a point estimate of the MTTF from the appropriate form of
Eq. 8.39.

(c) Using the MTTF from b, draw a straight line through the data plotted
for a.

(d) What is the 90% confidence interval on the MTTF?

(e) Draw the straight lines on your plot in a corresponding to the
confidence limits on the MTTF.

Suppose that in Exercise 8.30 the life test had to be stopped at 3 months
because of a production deadline. Based on a 3-month test, estimate the
MTTF and the corresponding 90% confidence interval.
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Sets of electronic components are tested at 100°F and 120°F and the
MTTFs are found to be 80 hr and 35 hr, respectively. Assuming that the
Arrhenius equation is applicable, estimate the MTTF at 70°F.

A nonreplacement reliability test is carried out on 20 high-speed pumps
to estimate the value of the failure rate. In order to eliminate wear
failures, it is decided to terminate the test after half of the pumps have
failed. The times of the first 10 failures (in hours) are 33.7, 36.9, 46.8,
56.6, 62.1, 63.6, 78.4, 79.0, 101.5, and 110.2.

(a) Estimate the MTTF.
(b) Determine the 90% confidence interval for the MTTF.

A nonreplacement test with type I censoring is run for 50 hours on 30
microprocessors. Five failures occur at 12, 19, 28, 39, and 47 hours.
Estimate the value of the constant failure rate.

A replacement test is run for 30 days using 18 test setups. During the
test there are 16 failures. Assuming an exponential distribution, estimate
the MTTF.
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Redundancy
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9.1 INTRODUCTION

It is a fundamental tenet of reliability engineering that as the complexity of
a system increases, the reliability will decrease, unless compensatory measures
are taken. Since a frequently used measure of complexity is the number of
components in a system, the decrease in reliability may then be expressed in
terms of the product rule derived in Chapter 6. To recapitulate, if the compo-
nent failures are mutually independent, the reliability of a system with N
nonredundant components is

R=RR,...R,...Ry (9.1)

where R, is the reliability of the nth component. The dramatic deterioration
of system reliability that takes place with increasing numbers of components
is illustrated graphically by considering systems with components of identical
reliabilities. In Fig. 9.1, system reliability versus componentreliability is plotted,
each curve representing a system with a different number of components. It
is seen, for example, that as the number of components is increased from 10
to 50, the component reliability must be increased from 0.978 to 0.996 to
maintain a system reliability of 0.80.

An alternative to the requirements for increased component reliability
is to provide redundancy in part or all of a system. In what follows, we examine
a number of different redundant configurations and calculate the effect on
system reliability and failure rates. We also discuss specifically several of the
trade-offs between different redundant configurations as well as the increased
problem of common-mode failures in highly redundant systems.

The graphical presentation of systems provided by reliability block dia-
grams adds clarity to the discussion of redundancy. In these diagrams, which

252
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FIGURE 9.1 System reliability as a function of number and reliability of components.
(From Norman H. Roberts, Mathematical Methods of Reliability Engineering, p. 112,
McGraw-Hill, New York, 1964. Reprinted by permission.)

have their origin in electric circuitry, a signal enters from the left, passes
through the system, and exits on the right. Each component is represented
as a block in the system; when enough blocks fail so that all the paths by
which the signal may pass from left (input) to right (output) are cut, the
system is said to fail. The reliability block diagram of a nonredundant system
is the series configuration shown in Fig. 9.2¢; the failure of either block (unit)
clearly causes system failure. The simplest redundant configurations are the
parallel systems shown in Fig. 9.2b and c. In the active parallel system shown
in 9.26 both blocks (units) must fail to cut the signal path and thus cause
system failure. In the standby parallel system shown in Fig. 9.2¢ the arrow
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-

(a) Series (b) Active parallel (¢) Standby parallel
FIGURE 9.2 Reliability block diagrams: (a) series, (b) active parallel, (c) standby parallel.

—_— [ [ o)

switches from the upper block (the primary unit) to the lower block (the
standby unit) upon failure of the primary unit. Thus, both units must fail
for the system to fail. More general redundant configurations may also be
represented as reliability block diagrams. Figures 9.9. and 9.11 are examples
of redundant configurations considered in the following sections.

9.2 Active and Standby Redundancy

We begin our examination of redundant systems with a detailed look at the
two-unit parallel configurations pictured in Fig. 9.2. They differ in that both
units in active parallel are employed and therefore subject to failure from the
onset of operation, whereas in a standby parallel the second unit is not brought
into operation until the first fails, and therefore cannot fail until a later time.
In this section we derive the reliabilities for the idealized configurations, and
then in Section 9.3 we discuss some of the limitations encountered in practice.
Similar considerations also arise in treating multiple redundancy with three
or more parallel units and in the more complex redundant configurations
considered the subsequent sections.

Active Parallel

The reliability R,(¢) of a two-unit active parallel system is the probability that
either unit 1 or unit 2 will not fail until a time greater than ¢ Designating
random variables t; and t, to represent the failure times we have

R, (t) = P{t, > tU t, > t}. (9.2)
Thus Eq. 2.10 yields
R(t) =Pty >4+ Plt,> 1t — P{ty >t Nty > ). (9.3)

Next we make an important assumption. Assume that the failures are indepen-
dent events and thus replace the last term in Eq. 9.3 by P{t; > }P{t, > t}.
Denoting the reliabilities of the units as

R:(t) = P{t; > t}, (9.4)
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we may then write

R, (1) = Ri()) + Re(t) — Ri()) Ro(1). (9.5)

Standby Parallel

The derivation of the standby parallel reliability R,(f) is somewhat more
lengthy since the failure time t, or the standby unit is dependent on the fajlure
time t; of the primary unit. Only the second unit must survive to time ¢ for
the system to survive, but with the condition that it cannot fail until after the
first unit fails. Hence we may write

R,(t) = P{t, > t|t, >t} (9.6)

There are two possibilities. Either the first unit doesn’t fail, t, > ¢, or the first
unit fails, but the standby unit does not, t; < £ N & > & Since these two
possibilities are mutually exclusive, according to Eq. 2.12 we may just add
the probabilities,

R(t) = P{t; > 4+ Plt, < tNty >t} (9.7)

The first term is just R,(f), the reliability of the primary unit. The second
term requires more careful attention. Suppose that the PDF for the primary
unit is f;(¢). Then the probability of unit 1 failing between ¢’ and ¢’ + di’ is
fi(t') dt'. Since the standby unit is put into operation at #', the probability
that it will survive to time ¢ is Ro(¢ — t'). Thus the system reliability, given
that the first failure takes place between t' and ¢ + dt' is Ry(t — YA dt’.
To obtain the second term in Eq. 9.7 we integrate primary failure time ¢’
between zero and &

Plt,<iNt> 0 = j; Ro(t— t') fi(t') dt'. (9.8)
The standby system reliability then becomes
R(t) =R, (?) + L’) Ry(t— t") fi(t") dt’, (9.9)

or using Eq. 6.10 to express the PDF in terms of reliability we obtain

d
dt’

R.(t) = Ry(t) — J; Ry(t—1t") R(¢") dt'. (9.10)

Constant Failure Rate Models

General expressions for active or standby systems reliability can be obtained
by inserting Eq. 6.18 for the reliability with time-dependent failure rates into
Eqgs. 9.5 or 9.10. Comparisons are simplest, however, if we employ a constant
failure rate model. Assume that the units are identical, each with a failure
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rate A. Equation 6.25, R = exp(—At¢), may then be inserted to obtain

R.(t) = 2¢M — ¢ (9.11)
for active parallel, and

R() = (1 + Ap)e™ (9.12)

for standby parallel.
The system failure rate can be determined for each of these cases using
Eq. 6.15. For the active system we have

1 d 1—¢e™
A (L) = “EaRa—A<m‘A}), (9.13)

while for the standby system

1d At
A = EERS—)\<1+M>. (9.14)

Figure 9.3 shows both the reliability and the failure rate for the two
parallel systems, along with the results for a system consisting of a single unit.
The results for the failure rates are instructive. For even though the units’
failure rates are constants, the failure rates of the redundant systems as a
whole are functions of time. Characteristic of systems with redundancy, they
have zero failure rates at ¢ = 0. The failure rates then increase to an asymptotic
value of A, the value for a single unit. At intermediate times the failure rate
for the standby system is smaller than for the active parallel system. This is
reflected in a larger reliability for the standby system.

Two additional measures are useful in assessing the increased reliability
that results from redundant configurations. These are the mean-time-to-failure
or MTTF and the rare event estimate for reliability at times which are small
compared to the MTTF of single units. The values of the MTTF for active
and standby parallel systems of two identical units are obtained by substituting
Egs. 9.11 and 9.12 into Eq. 6.22. We have

MTTF, = 2 MTTF (9.15)
T T T T T
- A . Standby n
B parallel -
i ~— Active parallel B Active parallel ]
gr - €| i
= Standby N
- paraliel _
| | I | !

0 1 2 3 0 1 2 3

AT T

(a) (b)

FIGURE 9.3 Properties of two-unit parallel systems: (a) reliability, (b) failure rate.
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and
MTTF, = 2 MTTF, (9.16)

where MTTF = 1/A for each of the two units. Thus, there is a greater gain
in MTTF for the standby than for the active system.

Frequently, the reliability is of most interest for times that are small
compared to the MTTF, since it is within the small-time domain where the
design life of most products fall. If the single unit reliability, R = exp(—A1),
is expanded in a power series of At, we have

R(H) =1 — At + %A)? — Ye(A)® + - - - (9.17)

The rare event approximation has the form of one minus the leading term
in At. Thus

R(t) =1 — Ay A<l (9.18)

for a single unit. Employing the same exponential expansion for the redundant
configurations we obtain

R, (t) =1 — (A0} At <1, (9.19)
from Eq. 9.11 and
R(t) = 1 — Ya(At)?, At <€ 1. (9.20)

from Eq. 9.12. Hence, for short times the failure probability, 1 — R, for a
standby system is only one-half of that for an active parallel system.

EXAMPLE 9.1

The MTTF of a system with a constant failure rate has been determined. An engineer
is to set the design life so that the end-oflife reliability is 0.9.
(@) Determine the design life in terms of the MTTF.

(b) If two of the systems are placed in active parallel, to what value may the design
life be increased without causing a decrease in the end-of-life reliability?

Solution Let the failure rate be A = 1/MTTF.
(a) R = ¢! Therefore, T= (1/A) In(1/R).

T=1n <112> X MTTF =In (%) MTTF = 0.105 MTTF.

(&) From Eq. 9.11, R = 26" — ¢ 21 Let x = ¢!, Therefore, x* — 2x + R = 0. Solve
the quadratic equation:

+2+ V4 —

P R I-VI-R

The ““+” solution is eliminated, since x cannot be greater than one. Since x =
¢* =1 —"V1- R, then with A = 1/MTTF,
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1
T=1In| ——=——==| X MTTF,
" [(1 -V1- R)]

X MTTF = 0.380 MTTF.

1
=1In [—-————]
1-Vv1-09)
Thus the redundant system may have nearly four times the design life of the single
system, even though it may be seen from Eq. 9.15 that the MTTF of the redundant
system is only 50% longer.

9.3 REDUNDANCY LIMITATIONS

The results for active and standby reliability presented thus far are highly
idealized. In practice, a number of factors can significantly reduce the reliabil-
ity of redundant systems. In reality, these factors and their mitigation often
are dominant in determining the level of reliability which can be achieved.
For active parallel systems, common mode failures and load sharing phenom-
ena tend to be of most concern. For standby systems, switching failures and
failure of the standby unit before switching are important considerations.

Common-Mode Failures

Common-mode failures are caused by phenomena that create dependencies
between two or more redundant components which cause them to fail simulta-
neously. Such failures have the potential for negating much of the benefit
gained with redundant configurations. Common-mode failures may be caused
by common electric connections, shared environmental stresses such as dust
or vibration, common maintenance problems, or a host of other factors. In
commercial aviation, for example, a great deal of redundancy is employed,
allowing high levels of safety to be achieved. Thus when problems do occur
frequently they may be attributed to common-mode failures: the dust rising
from a volcanic eruption in Alaska that caused simultaneous malfunctioning
of all of a commercial airliner’s engines, or the pieces of a fractured jet engine
turbine blade that cut all of the redundant hydraulic control lines and caused
the crash of a DC10.

Viewed in terms of the reliability block diagrams in Fig. 9.2, common-
mode failure mechanisms have the same effect as putting in an additional
component in series with the parallel configuration. For identical units with
reliability R, the active parallel reliability given by Eq. 9.5 becomes

R, = (2R— R) R/, (9.21)

where R’ is the contribution to decreased reliability from common mode
failures. The effects are illuminated if we recast this equation in terms of the
failure probability p =1 — R, p’ =1 — R’ and p;, = 1 — R, corresponding
to each of the reliability’s. Equation 9.21 may be written as

po=p +pr—p'pl (9.22)
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Suppose we have an aircraft engine with a failure probability per flight of
p = 107° and a common mode failure probability a thousand times smaller:
p' = 107°. For a two engine aircraft in the absence of common-mode failures
the failure probability would be p* = 107", but from Eq. 9.22 we see that

pe=10"7"+ 107" — 1072 (9.23)

Thus the system failure probability, p, =~ 107 is totally dominated by common
mode failure, although it is still far more reliable than if a single engine had
been used.

A great deal of the engineering of redundant systems is expended on
identifying possible common mode mechanisms and eliminating them. Never-
theless, some possibilities may be impossible to eliminate entirely, and there-
fore reliability modeling must take them into account. Most commonly, such
phenomena are modeled through the following constant failure rate model.*
Suppose that A is the total failure rate of a single unit. We divide A into
two contributions

A=A+ A, (9.24)
where A, is the rate of independent failure and A. is the common-mode failure

rate. These partial failure rates may be used to express common-mode failure
rates in active parallel systems as follows. Define the factor 8 as the ratio

B=A/A (9.25)
Each of the units then has an failure mode reliability of
R;= ¢, (9.26)

which accounts only for independent failures. Therefore the system reliability
for independent failure is determined by using A; in Eq. 9.11. We multiply
this system reliability by exp(—A.) to account for common-mode failures.
Thus, for the two units in parallel.

R, (1) = (2e7M — ¢ty g7, (9.27)
or using A, = BA and A; = (1 — ) A we may write

R,(8) = [2 — e U"PA] e, (9.28)
The loss of reliability with the increase in the 8 factor is clearly seen by looking
at the rare event approximation at small Az, for we now have a term which is
linear in At:

R, () =1 —BAat— (1 —2B8+B/2)(At)* + -+, (9.29)

as opposed to 1 — (Af)? as in Eq. 9.19. The effect of common-mode failures
can also be seen in the reduction in the mean-time-to-failure:

MTTF, = [2 - Q—i—é] MTTEF. (9.30)

* K. L. Flemming and P. H. Raabe, ‘A Comparison of Three Methods for the Quantitative
Analysis of Common Cause Failures,” General Atomic Report, GA-A14568, 1978.
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EXAMPLE 9.2

Suppose that a unit has a design-life reliability of 0.95.

(a) Estimate the reliability if two of these units are put in active parallel and there
are no common-mode failures.

(#) Estimate the maximum fraction 8 of common failures that is acceptable if the
parallel units in ¢ are to retain a system reliability of at least 0.99.

Solution From Eq. 9.18 take At = 0.05.
(@) R~1— (AT)% R = 0.9975.
(6) From Eq. 9.29,

R=1-R=001=~BAT+ (l - 28 +%> (AT)2

Thus, with AT = 0.05, we have
0.0012582 + 0.0458 — 0.0075 = 0.

Therefore,

_ —0.045 * (2.0625 X 107912
0.0025 ’

B

For S to be positive, we must take the positive root. Therefore, 8 = 0.166.

Load Sharing

Load sharing is a second cause of reliability degradation in active parallel
systems. For redundant engines, motors, pumps, structures and many other
devices and systems, the failure of one unit will increase the stress level on
the other and therefore increase its failure rate. A simple example is two
flashlight batteries placed in parallel to provide a fixed voltage. Assume the
circuit is designed so that if either fails the other will supply adequate voltage.
Nevertheless, the current through the remaining battery will be higher, and
this will cause greater heating in the internal resistance. The net result is that
the remaining battery will operate at a higher temperature and thus tend to
deteriorate faster.

Fortunately, in a redundant system with sufficient capacity, the increased
failure rate should not lead to unacceptable failure probabilities. If the first
failure is detected, the system may be required to operate for only a short
period of time before repairs are made. Thus if one engine fails in a muld-
engine aircraft, it is only necessary that the flight continue to the nearest
airfield without incurring a significant probability of a second engine failure.
From this standpoint, the degradation is less serious than the potential for
common-mode failures.

In Chapter 11, Markov methods are used to develop the following model
for shared load redundancy with time-independent failure rates. Suppose that
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A* > A is the increased failure rate of the remaining unit after the first has
failed. Then, in the absence of common-mode failures,

R,(1) = 2e7 + ¢ — 27 A (9.31)

This may be seen to reduce to Eq. 9.11 in the limiting case that A* = A. A
conservative design procedure, which always gives an underestimate of the
reliability, is to replace A by A* in Eq. 9.31, thereby assuming that each unit
is carrying the entire load of the system.

If A* becomes too large, all of the benefit of the redundancy may be lost,
and in fact the system may be less reliable than a single unit with failure rate
A. For example, it may be shown that if A* > 1.56 A, the MTTF will be less
than for a single unit. In the limit as A* — o Eq. 9.31 reduces to the reliability
for the two units placed in series. This may be understood as follows. If either
unit failing gives rise to the second unit failing almost instantaneously then
indeed the system failure rate will be twice that of a single unit. For in doubling
the number of units, one increases the possibility of a first failure.

EXAMPLE 9.3

In an active parallel system each unit has a failure rate of 0.002 Ar".

(a) What is the MTTF, if there is no load sharing?
(b) What is the MTTF, if the failure rate increases by 20% as a result of increased load?

(¢) What is the MTTF, if one simply (and conservatively) increased both unit failure
rates by 20%?

Solution

3 3

2 = axo00z - P0hbr

(¢) MTTF, = gMTTF =

() MTTE, = ["R() di= [[ 126474 e = 2070 e

or
9 1 9
TTF, = — + — — .
MITE = e o " aa
Thus with
A= 1.2 X 0.002 = 0.0024 hr~!
we have
) 1 2
MTTF, = + - =
= 00024 T 3% 0008 0.004a  029hrs
3 3

(¢) MTTF, = —

20 9% 0002a 025
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Switching and Standby Failures

Common-mode failures are less likely for standby than for active parallel
configurations because the secondary system may be quite different from the
primary. For example, the causes of the failure of electric power are likely to
be quite different than those that may cause the diesel backup generator to
fail. Nevertheless, care must also be exercised in the design and operation of
systems with standby redundancy. Some smaller possibility of common-mode
failure incapacitating both primary and secondary units may remain. In addi-
tion, two new failure modes, unique to standby configurations, must be ad-
dressed: switching failures and secondary unit failure while in the standby
mode. The following illustration may be helpful in understanding thesc
modes.

Suppose power is supplied by a diesel generator. A second identical
generator is used for backup. If there is some probability, p, that a switch can
not be made to the second generator upon failure of the primary unit, as
derived in Chapter 11, the reliability of the system is obtain by multiplying
the second term in Eq. 9.12 by (1 — p):

R(t) = [1+ (1 — p)At]e ™. (9.32)

One cause of switching failures is the failure of the control mechanism in
sensing the primary unit failure and turning on the secondary unit. Time is
also an important consideration, for in certain situations some delay can be
tolerated before the backup unit takes over. For example, if a pump supplying
coolant to a reservoir fails, it may only be necessary for the backup system to
come on before the reservoir drains. On a shorter time scale, if a process
control computer fails there may be a period of seconds or less before the
backup is required. If some time delay is tolerable, repeated attempts to switch
the system may be made, or parts replaced.

Failure of the secondary unit to function may result not only from switch-
ing failures. The secondary system may also have failed in the standby mode
before the primary system failure. Such failures are most prone to happen in
situations where the secondary unit is called upon very infrequently and
therefore may have been allowed to deteriorate while in the standby mode.
In Chapter 11 an expression for reliability in which both failure modes are
present is developed. The result is equivalent to affixing the multiplicitive
factor (A*#)"'(1 — ') to the second term in Eq. 9.32

R(1) = [1 +(1-p) % (1- e-“f)] e, (9.33)
where A" is the failure rate of the secondary unit while in standby.

EXAMPLE 9.4

An engineer designs a standby system with two identical units to have an idealized
MTTF,of 1000 days. To be conservative, she then assumes a switching failure probability
of 10% and the failure rate of the unit in standby of 10% of the unit in operation.
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Assuming constant failure rates, estimate the reduced MTTF, of the system with switch-
ing and standby failures included.

Solution For the idealized MTTF, we have MTTF, = 2/A or
= 2/1000 days = 0.002 day™".
For the reduced MTTF, we have
N I _ _)l_ 2t Y
MTTE, = [ R() di= {[1 FA=pi-e )] ¢ }dt
or
MTTF, = % L+ (1—p)A+A/N0™1.
Thus with p = 0.1 and A*/A = 0.1 we have:

1
R — - 0. +0.1)7 " =
MTTF, 0.002[1+(1 0.1) (1 +0.1)7'] = 909 days

Cold, Warm, and Hot Standby

The trade-off between switching failures and failure in standby must be consid-
ered in the design of standby redundancy; it is the primary consideration in
determining whether cold, warm, or hot standby is to be used. In cold standby
the secondary unit is shut down until needed. This typically reduces the value
of A” to a minimum. However, it tends to result in the largest values of p.
Thus in our example of the diesel generator, it is most likely not to have
failed if it has not been operating. However, coming from cold startup to a
fully loaded operation on short notice may cause sufficient transient stress to
resultin a significant demand failure probability. In warm standby the transient
stresses are reduced by having the secondary unit continuously in operation,
but in an idling or unloaded state. In this case p may be expected to be
smaller, at the expense of a moderately increased value of A*. Even smaller
values of p are achieved by having the secondary unit in hot standby, that is,
continuously operating at a full load. In this case—for identical units—the
failure rate will equal that of the primary system, A* = A, causing Eq. 9.33 to
reduce to

R(t) = (2= pyet — (1 — p)e™M (9.34)

We see from this equation that if the switching failure can be made very small,
which is the object of hot standby, the equation is equivalent to an active
parallel system. Thus the reliability is markedly less than for an idealized
standby system. In many instances of warm or hot standby, however, secondary
unit failures in standby can be detected and repaired fairly rapidly. The
modeling of such repairable systems is taken up in Chapters 10 and 11.
Redundant computer control systems present a somewhat different situa-
tion than that encountered with motors, engines, pumps, or other energy or
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mass delivery systems. In order to start from cold standby not only must the
computer be powered, but the current data must be loaded to memory. Hot
standby is particularly advantages in these cases where switching the output
from the primary to the secondary computer is a relatively simple matter.
There is, however, one difficulty. A means must be established for detecting
which computer is wrong. This is straightforward if the computer stops func-
tioning altogether. However, if the failure mode is a type that caused the
computer to give incorrect but plausible output, then a means for knowing
where the incorrect information is being produced is a necessity. For these
situations the 2/3 voting systems discussed in the following section are
widely used.

9.4 MULTIPLY REDUNDANT SYSTEMS

The reliability of a system can be further enhanced by placing increased
numbers of components in parallel. Such redundancy can take either active
or standby form. In 1/N and m/N redundancy, respectively, one or m of the
N units must function for the system to function. Consider 1/N redundancy
first for active and then for standby parallel. In either of these configurations
the probability of system malfunction becomes increasingly small, and as a
result increased attention must be given to the complications discussed in
Section 9.3.

1/N Active Redundancy

Suppose that we have N components in parallel; if any one of them functions,
the system will function successfully. Thus, in order for the system to fail, all
the components must fail. This may be written as follows. Let X; denote the
event of the ith component failure and X the system failure. Thus, for a system
of N parallel components, we have

X=XNXnN...NX, (9.35)
and the system reliability is
R,=1-PXNX,N...N Xyt (9.36)

If the failures are mutually independent, we may use the definition of indepen-
dence to write

R,=1— P{X}P{Xs} ... P{X\}. (9.87)

The P{X,} are the component failure probabilities; therefore, they are related
to the reliabilities by

P{X}=1-R. (9.38)
Consequently, we have for 1/N active redundancy

R.=1-J[ 1 -R). (9.39)
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For identical components this may be simplified. Suppose that all the R; have
the same value, R, = R. Equation 9.39 then reduces to

R,=1—- (1 - R" (9.40)

The degree of improvement in system reliability brought about by multiple
redundancy is indicated in Fig. 9.4, where system reliability is plotted versus
component reliability for different numbers of parallel components. Two
other characterizations of the increased reliability are given by the rare event
approximation and the MTTF. The expansion of Eq. 9.18 yields 1 — R~ At
for small At and results in the reduction of Eq. 9.40 to

R ~1— (W)Y, <<l (9.41)

We may use the binomial expansion, introduced in Chapter 2, to express
the reliability in a form that is more convenient for evaluating the MTTF.
The binomial coefficients allow us to write in general

N
(p + q)N = 2 C;\z’l,bN—nqn’ (942)
n=0
1.0
N=4
09—
N

Z
3 08
]
K
§ N=2
14
© 07

06 N = Number of parallel

components
N=1
0.5
i AL | | | ] |
0.5 0.6 0.7 0.8 09 1.0

Component reliability
FIGURE 9.4 Reliability improvement by N parallel components. (From
K. C. Kapur and L. R. Lamberson, Reliability in Engineering Design. Copy-
right © 1977, by John Wiley and Sons. Reprinted by permission.)
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where the CY coefficients are given by Eq. 2.43. Taking p = 1 and ¢ = —R,
we obtain

N
(1-RYN=>, C¥-1)"R". (9.43)
n=0
Therefore, since C) = 1, we may write Eq. 9.40 as
N
R,= >, (=1)"'CIR". (9.44)
n=1

We next assume a constant failure rate for each component and replace R
with ¢ . Applying Eq. 6.22, to express the MTTF in terms of R,(1), we obtain
N

N cN
MTTF, = >, (-1)"'—. (9.45)
n=1 nA

While the forgoing relationships indicate that in principle, reliabilities
very close to one are obtainable, common-mode failures become an increas-
ingly overriding factor when N is taken to be three or more. If the 8 factor
method is applied, for example, the loss of reliability may be dominated not
by the (Af)Y of Eq. 9.41 but by a 8 At term as in Eq. 9.29. Likewise, the load
sharing phenomena becomes increasingly serious as additional units fail. A
four engine aircraft, flying on one engine may be expected to be under higher
stress than a two engine aircraft flying on one.

EXAMPLE 9.5

A temperature sensor is to have a design-life reliability of no less than 0.98. Since a
single sensor is known to have a reliability of only 0.90, the design engineer decides
to put two of them in parallel. From Eq. 9.5 the reliability should then be 0.99, meeting
the criterion. Upon reliability testing, however, the reliability is estimated to be only
0.97. The engineer first deduces that the degradation is due to common-mode failures
and then considers two options: (1) putting a third sensor in parallel, and (2) reducing
the probability of common-mode failures.

(a) Assuming that the sensors have constant failure rates, find the value of 8 that
characterizes the common-mode failures.

(#) Will adding a third sensor in parallel meet the reliability criterion if nothing is
done about common-mode failures?

(¢) By how much must 8 be reduced if the two sensors in parallel are to meet
the criterion?

Solution If the design-life reliability of a sensor is R, = e M =009, then AT =
In(1/R)) = In(1/0.9) = 0.10536.

(a) Let Ry = 0.97 be the system reliability for two sensors in parallel. Then 8 is found
in terms of Ry from Eq. 9.28 to be

1 . 1 0.97
= “+ — — R, = —
B=1+77In@2 = Reel) =1+ 5eegin (2 0.9 )

= 0.2315.
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(b) The reliability for three sensors in parallel is given by Eq. 9.40 with N = 3. Using
A= (1 — B)A and A, = BA, we may expand the bracketed term to obtain

RiS — [3 _ 36*(1*/3)){/' —+ e—Q(l',B)AT] e-‘);T-
From a we have (1 — B)AT = (1 — 0.2315) X 0.10536 = 0.08097, and thus
AT = (.92222. Thus the reliability is
R, = [3 — 8 X 0.92222 + (0.92222)?] X 0.9 = 0.975

Therefore, the criterion is not met by putting a third sensor in parallel.

(¢) To meet the criterion with two sensors in parallel, we must reduce § enough so
that the equation in part a is satisfied with Ry = 0.98. Thus

1 0.97
=1+ —220) = 0.1165.
p=1 0.105361n<2 0.9) 0.1165

Therefore, 8 must be reduced by at least

~0.1165

0.2315 ~ 20%:

1/N Standby Redundancy

We may derive expressions for 1/N standby reliability by noting that the
derivation of the recursive equation, Eq. 9.10, is valid even if R,(f) represents
a standby system. Thus we may derive the reliability of a standby system of N
identical units in terms of a system of N — 1 units. Suppose we denote the
reliability of the » unit system as R,, and thus of the n — 1 system as R,
where the reliability of a single unitis Ry = R. We may now rewrite Eq. 9.10 as

R,(8) = R, (1) — jo R(i— 1) %Rn,l(t') dr'. (9.46)

Thus R,, in the constant failure rate approximation given by Eq. 9.12, may
be shown to result from inserting R = R, = ¢ * into the right hand side of
this expression. Likewise if Eq. 9.12 is inserted into the right hand side of
this expression we obtain

Ry() = [1 + At + 3(A)* e (9.47)

This expression can be inserted into the right of Eq. 9.46 to obtain Ry and
so on. In general, for N units in standby redundancy we obtain

N-1 1
R,(t) = D, — (A1) ngM, (9.48)

n=0 7t
Equation 6.22 then yields a standby MTTF of
MTTEF, = N/A. (9.49)
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To calculate the rare event approximation we first note that the exponential
expansion can be written as two sums:

N-1 Ed
M= —;— (AD)" + ZN% (AD)™ (9.50)

n=0 !

Solving for the first sum, and inserting the result into Eq. 9.48, we obtain
after simplification

o«

R(H=1-> % (Af)"e ™, (9.51)

n=N

Thus taking the lowest order terms, we find for small A¢ that
R(t)=1-— L AON 9.52
S(1) = Nl(t)' (9.52)

We see that the 1/N standby configuration comes closer to one in the rare
event approximation than does Eq. 9.41 for the active parallel system. Of
course switching failures and failures in the standby state must be included
to make more realistic comparisons.

m/N Active Redundancy

In the 1/N systems considered thus far, if any one of the two or more units
functions, the system operates successfully. We now turn to the m/N system
in which m is the minimum number that must function for successful system
operation. The m/N is popular for relief valves, pumps, motors, and other
equipment that must have a specified capacity to meet design criteria. In such
systems it is often possible to increase reliability without a commensurate cost
increase, for components of off-the-shelf sizes may meet capacity requirements
while at the same time allowing for some degree of redundancy. In instrumen-
tation and control systems m/N configurations are popular for two reasons.
The spurious fail-safe operation of a single unit is prevented from causing
undesirable consequences. Likewise, voting can be applied to the output of
redundant instruments or computers.

An m/N system may be represented in a reliability block diagram, as
shown for a 2/3 system in Figure 9.5. Now, however, the block representing

FIGURE 9.5 Reliability block
diagram for a § system.
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each component must be repeated in the diagram. Thus the system reliability
cannot be calculated as in earlier 1/N cases because the three parallel chains
contain some of the same components and therefore cannot be independent
of one another.

For identical components, the reliability of an m/N system may be deter-
mined by again returning to the binomial distribution. Suppose that p is the
probability of failure over some period of time for one unit. That is,

p=1-—R, (9.53)
where R is the component reliability. From the binomial distribution the
probability that » units will fail is just

Pn = n} = CYp"(1 — p)¥ . (9.54)

The m/N system will function if there are no more than N — m failures. Thus
N—m

Pln=N—m}= > C¥p"(1 — p)¥" (9.55)
n=0

is the reliability. Combining Eqs. 9.53 and 9.55 then yields

N—m

R,= > CY(1 — R)"R¥™ (9.56)
n=0
Alternately, since
N
Pln>N-—m}= > CW'(1—prr (9.57)
n=N-m+1

is the probability that the system will fail, we may also write the system reliabil-
ity as
N
R,=1- 2 CY¥1-R"R¥" (9.58)
n=N—-m+1

Equations 9.56 and 9.58 are identical in value. Depending on the ratio of m
to N, one may be more convenient than the other to evaluate. For example,
in a 1/N system Eq. 9.58 is simpler to evaluate, since the sum on the right-
hand side has only one term, n = N, yielding Eq. 9.40.

In dealing with redundant configurations, whether of the 1/N or m/N
variety, we can simplify the calculations substantially with little loss of accuracy
if the component failure probabilities are small (i.e., when the component’s
reliability approaches one). In these situations a reasonable approximation
includes only the leading term in the summation of Eq. 9.58. To illustrate,
suppose that R is very close to one; we may replace it by one in the R"" term
to yield

N
R,~1- > C¥1-R)" (9.59)
n=N—m+1

We note, however, that the terms in the (1 — R)" series decrease very rapidly
in magnitude as the exponent is increased. Consequently, we need include
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only the term with the lowest power of 1 — R. Thus the reliability is approxi-
mately

R,~1— CN_,1(1 — RN, (9.60)
If the rare event approximation, 1 — R = A¢, is employed, then

Ry~ 1— CY i (AD)¥"1, (9.61)

EXAMPLE 9.6

A pressure vessel is equipped with six relief valves. Pressure transients can be controlled
successfully by any three of these valves. If the probability that any one of these valves
will fail to operate on demand is 0.04, what is the probability on demand that the
relief valve system will fail to control a pressure transient? Assume that the failures
are independent.

Solution In this situation, the foregoing equations are valid if unreliability, R, =
1 — R,, is defined as demand failure probability. Using the rare-event approximation,
we have from Eq. 9.60, with N=6and m = 3,004 =1 - R:

~ . !
R,~ C5(0.04)* = é%fl (0.04)* = 15 X 256 X 1078

R,~0.38 X 107,

9.5 REDUNDANCY ALLOCATION

High reliability can be achieved in a variety of ways; the choice will depend
on the nature of the equipment, its cost, and its mission. If we were to provide
an emergency power supply for a hospital, an air traffic control system, or a
nuclear power plant, for example, the most cost-effective solution might well
be to use commercially available diesel generators as the components in a
redundant configuration. On the other hand, the use of redundancy may not
be the optimal solution in systems in which the minimum size and weight are
overriding considerations: for example, in satellites or other space applica-
tions, in well-logging equipment, and in pacemakers and similar biomedical
applications. In such applications space or weight limitations may dictate an
increase in component reliability rather than redundancy. Then more empha-
sis must be placed on robust design, manufacturing quality control, and on
controlling the operating environment.

Once a decision is made to include redundancy, a number of design
trade-offs must be examined to determine how redundancy is to be deployed.
If the entire system is not to be duplicated, then which components should be
duplicated? Consider, for example, the simple two-component system shown in
Fig. 9.6a. If the reliability R, = R, R, is not large enough, which component
should be made redundant? Depending on the choice, the system Fig. 9.6
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(a) (c)
FIGURE 9.6 Redundancy allocation.
or ¢ will result. It immediately follows that
R,= (2R, — R)R,, (9.62)
R.= Ri(2R, — R}). (9.63)
Or taking the differences of the results, we have
R, — R, = RIRy(R; — R)). (9.64)

Not surprisingly, this expression indicates that the greatest reliability is
achieved in the redundant configuration if we duplicate the component that
is least reliable; if R, > R, then system R, is preferable, and conversely. This
rule of thumb can be generalized to systems with any number of nonredundant
components; the largest gains are to be achieved by making the least reliable
components redundant. In reality, the relative costs of the components also
must be considered. Since component costs are normally available, the greatest
impediment to making an informed choice is lack of reliability data for the
components involved. Trade-offs in the allocation of redundancy often involve
additional considerations. Two examples are those between high- and low-
level redundancy, and those between fail-safe and fail-to-danger consequences.

EXAMPLE 9.7

Suppose that in the system shown in Fig. 9.6 the two components have the same cost,
and R, = 0.7, R, = 0.95. If it is permissible to add two components to the system,
would it be preferable to replace component 1 by three components in parallel or to
replace components 1 and 2 each by simple parallel systems?

Solution If component 1 is replaced by three components in parallel, then from
Eq. 9.40
R,=1[1— (1 = R)*1R, = 0.973 X 0.95 = 0.92435.
If each of the two components is replaced by a simple parallel system,

Ry,=11—- (1 =Rl — (1 - Ry = 0.91 X 0.9975 = 0.9077.

In this problem the reliability R, is so low that even the reliability of a simple parallel
system, 2R, — R}, is smaller than that of R,. Thus replacing component 1 by three
parallel components yields the higher reliability.
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High- and Low-Level Redundancy

One of the most fundamental determinants of component configuration
concerns the level at which redundancy is to be provided. Consider, for
example, the system consisting of three subsystems, as shown in Fig. 9.7. In
high-level redundancy, the entire system is duplicated, as indicated in Fig. 9.7 4,
whereas in low-level redundancy the duplication takes place at the subsystem or
component level indicated in Fig. 9.76. Indeed, the concept of the level at
which redundancy is applied can be further generalized to lower and lower
levels. If each of the blocks in the diagram is a subsystem, each consisting of
components, we might place the redundancy at a still lower component level.
For example, computer redundancy might be provided at the highest level
by having redundant computers, at an intermediate level by having redundant
circuit boards within a single computer, or at the lowest level by having
redundant chips on the circuit boards.

Suppose that we determine the reliability of each of the systems in Fig.
9.7 with the component failures assumed to be mutually independent. The
reliability of the system without redundancy is then

Ry = R.RR.. (9.65)

The reliability of the two redundant configurations may be determined by
considering them as composites of series and parallel configurations.

For the high-level redundancy shown in Fig. 9.74, we simply take the
parallel combination of the two series systems. Since the reliability of each
series subsystem is given by Eq. 9.65, the high-level redundant reliability is
given by

Ry = 2Ry — R, (9.66)
or equivalently,
Ry, = 2R, R\R, — R?LR%R§' (9~67)

Conversely, to calculate the reliability of the low-level redundant system, we
first consider the parallel combinations of component types a, b, and ¢ sepa-
rately. Thus the two components of type a in parallel yield

Ry=2R, - RZ, (9.68)

a ~ b o

T
High-ievei redundancy Low-level redundancy
FIGURE 9.7 High- and low-level redundancy.
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and similarly,
Rz;=2R,— R3, R:=2R,— R (9.69)
The low-level redundant system then consists of a series combination of the
three redundant subsystems. Hence
R, = RyRyR, (9.70)
or, inserting Eqgs. 9.68 and 9.69 into this expression, we have
R, = (2R, — R% (2R, — R})(2R.— R)). (9.71)
Both the high- and the low-level redundant systems have the same num-
ber of components. They do not result, however, in the same reliability. This

may be demonstrated by calculating the quantity R;;, — Ry, For simplicity we
examine systems in which all the components have the same reliability, R. Then

Rm = 2R* — R° (9.72)
and
Ry = (2R — RY’. (9.73)
After some algebra we have
Ry, — Ry, = 6R*(1 — R)%. (9.74)

Consequently, R;; > Ry;.

Regardless of how many components the original system has in series,
and regardless of whether two or more components are put in parallel, low-
level redundancy yields higher reliability, but only if a very important condition
is met. The failures must be truly independent in both configurations. In
reality, common-mode failures are more likely to occur with low-level than
with high-level redundancy. In high-level redundancy similar components are
likely to be more isolated physically and therefore less susceptible to common
local stresses. For example, a faulty connector may cause a circuit board to
overheat and then the two redundant chips on that board to fail. But if the
redundant chips are on different circuit boards in a high-level redundant
system, this common-mode failure mechanism will not exist. Physical isolation,
in general, may eliminate many causes of common-mode failures, such as
local flooding and overheating.

Some insight into common-mode failures may be gained as follows. Con-
sider the same high- and low-level redundant systems for which the results are
given by Egs. 9.72 and 9.73, and let the component reliability be represented by
R = ¢*. Suppose that because components in the high-level system are physi-
cally isolated, there are no significant common-mode failures. Then we may
write simply

RHL = 873).1(2 —_ ef?h\z)' (975)

In the low-level system, however, we specify that some fraction, 8, of the failure
rate A is due to common-mode failures. In this case the quantities R,, R;, and
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R, will no longer reduce to Eq. 7.73, or
Ry = 2 — ™)y, (9.76)

where there are no common-mode failures. Rather, the B-factor model re-
places Egs. 9.68 and 9.69 by Eq. 9.28 to yield

R, = Ry = Rp= 2¢M — ¢ 2phN, (9.77)

Then, from Eq. 9.70, we find the low-level redundant system reliability is
reduced to

RLL — (2€—At — 8_2/“63/\[)3. (978)
This must be compared to Eq. 9.75 to determine how large 8 can become

before the advantage of low-level is lost. Consider the following example.

EXAMPLE 9.8

Suppose that the design-life reliability of each of the components in the high- and
low-level redundant systems pictured in Fig. 9.7 is 0.99. What fraction of the failure
rate in the low-level system may be due to common-mode failures, without the advantage
of low-level redundancy being lost?

Solution Set Ry, = Ry, using Egs. 9.75 and 9.78 at the end of the design life:

e‘?»)ﬂl‘(? — 673)‘7') - (28—)\'1' — *‘ZAT%‘BA'I')S‘
Solving for B yields
1 —3A1Ty1/3
=—In[2— (2— ¥ + 1.
B=s7nl2- @2—-") 7T +1

Since ¢ 2" = 0.99, AT = 0.01005. Thus

In[2 — (2 - 0.99)"] +1=0.0197.

1
B = 001005

Fail-Safe and Fail-to-Danger

Thus far we have lumped all failures together. There are situations, however,
in which different failure modes can have quite different consequences. Judg-
ment must then be exercised in allocating redundancy between modes. One
of the most common examples occurs in the trade-off between fail-safe and
fail-to-danger encountered in the design of m/N alarm and safety systems.
Consider an alarm system. The alarm may fail in one of two ways. It may
fail to function even though a dangerous situation exists, or it may give a
spurious or false alarm even though no danger is present. The first of these
is referred to as fail-to-danger and the second as fail-safe. Generally, the fail-
to-danger probability is made much smaller than the fail-safe probability. Even
then, small fail-safe probabilities are also required. If too many spurious alarms



Redundancy 275

are sounded, they will tend to be ignored. Then, when the real danger is
present, the alarm is also likely to be ignored.

Two factors are central to the trade-offs between fail-safe and fail-to-
danger modes. First, many design alterations that decrease the fail-to-danger
probability are likely to increase the fail-safe probability. Power supply failures,
which are often a primary cause of failure of crudely designed safety systems,
are an obvious example. Often, the system can be redesigned so that power
supply failure will cause the system to fail-safe instead of to-danger. Specifically,
instead of leaving the system unprotected following the failure, the power
supply failure will cause the system to function spuriously. Of course, if no
change is made in the probability of power supply failure, the amelioration of
system fail-to-danger will result in an increased number of spurious operations.

Second, as increased redundancy is used to reduce the probability of fail-
to-danger, more fail-safe incidents are likely to occur. To demonstrate this,
consider a 1/ N parallel system with which are associated two failure probabili-
ties p, and p, for fail-to-danger and fail-safe, respectively. The system fail-to-
danger unreliability R, is found by noting that all units must fail. Hence

Ry = pY (9.79)

However, the system fail-safe reliability is calculated by noting that any one-
unit failure with probability p, will cause the system to fail-safe. Thus

R;=1-(1— p)~ (9.80)
If p, << 1, then (1 — p,)" = Np,, and we see that the fail-safe probability
grows linearly with the number of units in parallel,

Ry~ Np, (9.81)

The m/N configuration has been extensively used in electronic and other
protection systems to limit the number of spurious operations at the same
time that the redundancy provides high reliability. In such systems the fail-
to-danger unreliability is obtained from Eq. 9.57:

N
Re=Pln=N—-—m}= > C¥pi(1 - p)" (9.82)

n=N—m+1

With the approximation that p, << 1 this reduces to a form analogous to
Eq. 9.61:

Rdg% C%‘rn+1pd~m+l' (983)

Conversely, at least m spurious signals must be generated for the system to
fail-safe. Assuming independent failures with probability p, we have

N
Ry=Pln=m} =, CVpr(1 — p)¥™" (9.84)

Now, assuming that p, << 1, we may approximate this expression by

Ry~ Chpr. (9.85)
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From Eqs. 9.83 and 9.85 the trade-off between fail-to-danger and spurious
operation is seen. The fail-safe probability is decreased by increasing m, and
the fail-to-danger probability is decreased by increasing N — m. Of course, as
N becomes large, common-mode failures may severely limit further i1m-
provement.

EXAMPLE 9.9

You are to design an m/N detection system. The number of components, N, must be
as small as possible to minimize cost. The fail-to-danger and the fail-safe probabilities
for the identical components are

pa = 1072, po= 1072
Your design must meet the following criteria:

1. Probability of system fail-to-danger < 10*.
2. Probability of system failsafe < 1072

What values of m and N should be used?

Solution Make a table of unreliabilities (i.e., the failure probabilities) for fail-safe
and fail-to-danger using the rare-event approximations given by Egs. 9.85 and 9.83.

m/N R,Eq.9.85 Ry Eq.9.83
1/1 =107 pa=107
1/2 2p,=2 X107 pi=10"
2/2 pi=107" 2p=2X 107
1/3 3p,=3X107* pi=10"°
2/3 3pi=3x10" 3pi=38x10""
3/3 pi=10" 3p, =3 X 10
1/4 4p, =4 X107 pi=107"
2/4 6p?=6x 10" 4pi=4x10"
3/4 4pt=4x10"° 6p3=6Xx107°
4/4 pi=10" 4p,=4x 10"

At least four components are required to meet both criteria. They are met by a
2/4 system.

Voting Systems

In addition to the use of m/N redundancy to reduce the spurious operation
of safety and alarm systems, it plays an importantrole in the design of computer
control systems that must feed continuous streams of highly reliable output
to guarantee safe operations. Temperature controllers in chemical plants,
automated avionics controls, controls for respirators and other biomedical
devices offer a few examples where accurate sensing and control often requires
the use of redundancy.
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In these situations the most frequent configuration is a 2/3 voting system.
Three process computers or other instruments operate in parallel. A voter
then compares the outputs of the three units, and if one differs from the
other two, its output is ignored. The configuration reliability is then obtained
by putting the voter reliability in series with the 2/3 result obtained from
Eq. 9.56:

R, = (3R’ — 2R*)R,, (9.86)

where Rand R, are the computer and voter reliabilities, respectively. Clearly
the voter must have a very small failure probability if the system is to operate
satisfactorily. Fortunately, the voter is typically a very simple device compared
to the computer, and therefore may be expected to have a much smaller
failure probability.

In some situations the electronic voter may be replaced by an operator
decision. Suppose, for example that three computers are used to calculate
the pitch and yawl of an aircraft. The pilot and copilot might have the displays
from two of the computers in front of them with a third placed to be readily
visible by both of them. Therefore comparisons can be made readily, and the
malfunctioning computer switched out of the system. Of course this system
also creates an additional opportunity for pilot error.

More extensive voting systems may be required to achieve exceedingly
small failure probabilities in computer controlled systems. In one such config-
uration each of the computers has a spare, which may be kept in hot standby
and switched into the circuit upon detection of a failure by the voter. An
alternative configuration is a 3/5 majority vote system. In each of these config-
urations at least three computers must fail before the system fails, but each
requires that additional computers be purchased.

EXAMPLE 9.10

Derive the MTTF and the rare-event approximation for

(a) a 2/3 voting system,
(6) a 3/5 voting system.

Assume the failure probability of the voter can be neglected. How do the results
compare to those for a single unit?
Solution (2/3) From Eq. 9.86 we have
R=¢": Rg/g = 3¢ — 28_:‘)‘1.
Using the definition of MTTF given by Eq. 6.22 and evaluating the integrals we have

3 25
MTT =———==MTTF.
Fors 24 32 6 MTTFE
For the rare-event approximation Eq. 9.61 yields

Rys ~ 1 — C3AD:=1—3(A)™
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(3/5) From Eq. 9.56 we have

2
Rys= >, Ci(1— R)"R* "= R+ 5(1 — R)R* + 10(1 — R)*R".
n=0
Thus,
Rs; = 10R® — 15R* + 6R® = 10 — 156 + 67V
and we can again apply Eq. 6.22 to obtain

10 15 6 _ 47
e = ;
MTTF;; ax 4x A 60MTTF

For the rare-event approximation Eq. 9.61 yields
Roys =1 — C3(AD)* = 1 — 10(Ap)*

Increased number of voting components decreases the system MTTF. However, at
short times the rare-event approximations indicated that the reliability is increasingly
close to one. For example with Az = 0.1 we have

Rl/l = 0.90, Rg/g ~ (.97 and R3/5 =~ (.99,

Finally, it should be noted that in an electronic system, transient faults,
which may last only a fraction of a second, are expected to occur more
frequently than ‘“‘hard” irrecoverable failure. Thus in voting systems, software
is often included to test for transient faults and restart the computer once
the fault is corrected. If this is not done the failure probability may be too
large even if three or more faults must occur before the system will fail. In
this case the failure mode is referred to as ‘‘exhaustion of spares.”” Conversely
if the testing to determine whether a correctable fault or an irreparable failure
has taken place takes a significant length of time, there is a small possibility
that a fault will cause a second computer to malfunction before the spare can
be switched in. The system is then said to have a fault handling or switching
failure. The achievement of very small failure probabilities in systems such as
shown in Fig. 9.8 often hinges on balancing the gains and losses incurred
with the use of such sophisticated fault handling systems.

9.6 REDUNDANCY IN COMPLEX CONFIGURATIONS

Systems may take on a variety of complex configurations. In what follows we
examine the analysis of redundancy in two classes of systems: those that may
be analyzed in terms of series and parallel configurations, and those in which
the components are linked in such a way that they cannot. For brevity, we
primarily treat configurations involving only active parallel units. However,
with proper care the analysis can be extended to systems containing standby
configurations.
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N+S Voter-Switch-Detector (VSD)
functional
units
M, Switch
Select _\/\
N out of Voter Voted
(N+8) _/U output
M, N
Control
lines
M,
Disagree-
ment
detector
MN+S

FIGURE 9.8 Basic organization of a hybrid redundant system.
From S. A. Elkind, ‘‘Reliability and Availability Techniques,”
The Theory and Practice of Reliable System Design, D. P. Siewiorek
and R. S. Swarz (eds.) Digital Press, Bedford, MA 1982.

Series—Parallel Configurations

As long as a system can be decomposed into series and parallel subsystem
configurations, the techniques of the preceding sections can be employed
repeatedly to derive expressions for system reliability. As an example consider
the reliability block diagram shown for a system in Fig. 9.9. Components g,
through a, have reliability R, and components b and b, have reliability R,.
For the following analysis to be valid, the failures of the components must be
independent of one another.

We begin by noting that there are two sets of subsystems with type a
components, consisting of a simple parallel configuration as shown in Fig.
9.10a. Thus we define the reliability of these configurations as

R, = 2R, — R. (9.87)

The system configuration then appears as the reduced block diagram shown
in Fig. 9.105. We next note that each newly defined subsystem A is in series

B

FIGURE 9.9 Reliability block diagram of
a series—parallel configuration.
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| e — | ll'“'_——'"'__'l

FIGURE 9.10 Decomposition of the system in Fig. 9.9.

with a component of type b. We may therefore define a subsystem B by
Ry = RuRy, (9.88)

and the reduced block diagram then appears as in Fig. 9.10c¢. Since the two
subsystems B are in parallel, we may write

Rc= 2R, — R} (9.89)

to yield the simplified configuration shown in Fig. 9.10d. Finally, the total
system consists of the series of subsystems C and component ¢. Thus

R= RcR,. (9.90)

Having derived an expression for the system reliability, we may combine Egs.
9.87 through 9.90 to obtain the system reliability in terms of that of R,, R,,
and R,

R=(2R,— R)R)[2 — (2R, — R)R,R.. (9.91)

Standby configurations can also be included within series—parallel con-
figurations. Suppose components @, and a, are in a 1/2 standby configuration,
and that components a; and a, are in the same configuration. In the constant

failure rate approximation we would simply replace R, by R;, given by Eq.
9.12, and proceed as before. We would obtain, instead of Eq. 9.91,

R= RR,2 — RR)R, (9.92)

EXAMPLE 9.11

Suppose that in Fig. 9.9, R, = R, = ¢* = R, and R, = 1. Find R in the rare-event
approximation.
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Solution We simplify Eq. 9.91,
R=RY2 - RI2 — (2~ RRY
and write it as a polynomial in R :
R = 4R — 2R} — 4R} + 4R — R?.
Then we expand RY = ¢ ™ =1 — NA¢t + $N*(Af)? — -+ - - to obtain for small A¢
R=4[1 — 2At+ 2(A8)?] — 2[1 — 38Xt + 3(A0)?] — 4[1 — 4rt + 8(AD)?]
+4[1 — BAt+ $25(At)*] — 1 + 64t — 18(A0)?
R=(4-2—-4+4-1)—(8—6—16+ 20— 6)(A?)
—(—8+9+32—-50+18)(A)*+ - - -
R=1—- (A2

Had the coefficient of the (Af)? term also been zero, we would have needed to carry
terms in (Af)°.

Linked Configurations

In some situations the linkage of the components or subsystems is such that the
foregoing technique of decomposing into parallel and series configurations
cannot be applied directly. Such is the case for the system configuration shown
in Fig. 9.11, consisting of subsystem types 1, 2, and 3, with reliabilities R;, Ry,
and R;.

To analyze this and similar systems, we decompose the problem into a
combination of series—parallels by utilizing the total probability rule given in
Eq. 2.20.

P{Y} = P{Y|X}P{X} + P{Y|X}P{X}. (9.93)

Suppose we let X be the event that subsystem 2a fails. Then P{X}=1-R,
and P{X} = R,. If we then let Y denote successful system operation, the system
reliability is defined as R = P{Y}. Now suppose we define the conditional
reliabilities that the system function with subsystem 2a failed as

R = P{Y|X} (9.94)
and with 2a operational as

R* = P{Y|X}. (9.95)

la 2a 3a

16 2b 3b
FIGURE 9.11 Reliability block diagram of
a cross-linked system.
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Inserting these probabilities into Eq. 9.93, we may write the system reliability as
R=R (1 — Ry + R'Ry. (9.96)

We must now evaluate the conditional reliabilities R* and R™. For R™ in
which 2a has failed, we disconnect all the paths leading through 2a in Fig.
9.11; the result appears in Fig. 9.12a. Conversely, for R* in which 2a is function-
ing, we pass a path through 2a, thereby bypassing 2b with the result shown
in Fig. 9.120.

We see that when 2a is failed, the reduced system consists of a series of
three subsystems, 1b, 2b, and 3b; subsystems la and 3a no longer make any
contribution to the value of R™. We obtain

R = RiR:R;. (9.97)

When 2a is operating, we have a series combination of two parallel configura-
tions, 1a and 1b in the first and 3a and 3b in the second; since component
9b is always bypassed, it has no effect on R*. Therefore, we have

R* = (2R, — R}) (2R; — R3). (9.98)

Finally, substituting these expressions into Eq. 9.96, we find the system reliabil-
ity to be

R= R,RR;(1 — Ry) + (2R, — R)) (2R; — R} R, (9.99)

EXAMPLE 9.12

Evaluate Eq. 9.99 in the rare-event approximation with R, = ¢ for all n.

Solution Let R, = R,.ThenEq.9.99 becomes R= Ri(1 — R,) + 2R, — R)R,,.
Writing this expression as a polynomial in R,, we have R = 5R} — BR, + Rj.
Now we expand R} = ¢* =1 — NAt + 1LN?(At)? — -+ - - to obtain:

R=5 — 15A1 + Y45(A)* — - -
—5 4+ 20At — Y280(At)® + - - -
+ 1 — BAL + ¥625(A1)2 — - - -
Hence,
R=1-5(A)*+ -

If the (At)? term were zero, we would need to carry the (A#)* term in the expansion.

‘ (a)
FIGURE 9.12 Decomposition of the system in Fig. 9.11.
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Exercises

9.1 A nonredundant system with 100 components has a design-life reliability
of 0.90. The system is redesigned so that it has only 70 components.
Estimate the design life of the redesigned systems, assuming that all the
components have constant failure rates of the same value.

§2\At the end of one year of service the reliability of a component with a
constant failure rate is 0.95.

(a) What is the failure rate (include units)?

(b) If two of the components are put in active parallel, what is the one
year reliability? (Assume no dependencies.)

(c) If 10% of the component failure rate may be attributed to common-
mode failures, what will the one-year reliability be of the two compo-
nents in active parallel?

9.3 'Thermocouples of a particular design have a failure rate of A = 0.008/
hr. How many thermocouples must be placed in active parallel if the
system is to run for 100 hrs with a system failure probability of no more
than 0.05? Assume that all failures are independent.

9.4 In an attempt to increase the MTTF, an engineer puts two devices in
parallel and tests the resulting parallel system. The MTTF increases by
only 40%. Assuming the device failure rate is a constant, what fraction
of it, 8, is due to common-mode failures of the parallel system?

Q?A disk drive has a constant failure rate and an MTTF of 5000 hr.

(a) What will the probability of failure be for one year of operation?

(b) What will the probability of failure be for one year of operation if
two of the drives are placed in active parallel and the failures are
independent?

(c) What will the probability of failure be for one year of operation if
the common-mode errors are characterized by 8 = 0.2?

9.6 Suppose the design life reliability of a standby system consisting of two
identical units must be at least 0.95. If the MTTF for each unit is 3
months, determine the design life. (Assume constant failure rates and
neglect switching failures, etc.)
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-
i 9.7\Find the variance in the time to failure, assuming a constant failure rate A

(a) For two units in series.
{(b) For two units in active parallel.
(c) Which is larger?
9.8 Suppose that the reliability of a single unit is given by a Weibull distribu-

tion with m = 2. Use Eq. 9.10 to show that a standby system consisting
of two such units has a reliability of

R.(f) = e + 21 (1/ 0)erf(V1/21/6) ¢ H/0°

where the error function is defined by

erf(y) = —%jye“”?dx.

9 \Suppose that two identical units are placed in active parallel. Each has
a Weibull distribution with known 6 and m > 1.

(a) Determine the system reliability.
(b) Find a rare-event approximation for a.
9.10 Suppose that the units in Exercise 9.9 each have a Weibull distribution

with m = 2. By how much is the MTTF increased by putting them
in parallel?

9.11 A component has a one-year design-life reliability of 0.9; two such compo-
nents are placed in active parallel. What is the one-year reliability of the
resulting system:

(a) In the absence of common-mode failures?
(b) If 20% of the failures are common-mode failures?

9.12 Suppose that the PDF for time-to-failure for a single unit is uniform:

/T, 0<:<T
) = .

0, otherwise

(a) Find and plot R(?) for a single unit.
(b) Find and plot R(#) for two units in active parallel.
(¢) Find and plot R(¢) for two units in standby parallel.
(d) Find the MTTF for parts ¢, b, and ¢
9.13 An amplifier with constant failure rate has a reliability of 0.90 at the end
of one month of operation. If an identical amplifier is placed in standby

parallel and there is a 3% switching failure probability, what will the
reliability of the parallel system be at the end of one year?

9.14 Consider the standby system described by Eq. 9.33:
(a) Find the MTTF.
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(b) Show that your result from a reduces to Eq. 9.15 as p — 0 and
AT — A

(c) Show that your result from a reduces to a single unit MTTF as p— 1.

(d) Find the rare-event approximation for Eq. 9.33.

'9.1>’5>C0nsider a system with three identical components with failure rate A;.

9.16

9.17

9.18

9.19

9.20

Find the system failure rate:

(a) For all three components in series.

(b) For all three components in active parallel.

(c) For two components in parallel and the third in series.

(d) Plot the results for a, b, and ¢ on the same scale for 0 =< ¢ < 5/A.

For a 1/2 parallel system with load sharing:

(a) Show that for A*/A > 1.56 will have a smaller MTTF than a sin-
gle unit.

(b) Find the rare-event approximation for the case where A*/A = 1.56.

(c) Using rare-event approximations, compare reliabilities at At = 0.05
for a single unit, for A*/A = 1.56 and for A*/A = 1.0.

(d) Discuss your results.

In a 1/2 active parallel system each unit has a failure rate of 0.05 day™".

(a) What is the system MTTF with no load sharing?

(b) What is the system MTTF if the failure rate increases by 10% as a
result of increased load?

(c) What is the system MTTYF if one increases both unit failure rates
by 10%?

An engineer running a 1/2 identical unit system in cold standby finds
the switching failure probability is 0.2 while the failure rate in standby
is negligible. He converts to hot standby and eliminates the switching
failure probability, but discovers that now the failure rate of the unit in
standby is 30% of the active unit. As measured by system MTTF, has
going from cold to hot standby improved or degraded the system? By
how much?

Suppose that a system consists of two subsystems in active parallel. The
reliability of each subsystem is given by the Rayleigh distribution

R(t) = ",

Assuming that common-mode failures may be neglected, determine the
system MTTF.

Repeat exercise 9.18 assuming that the failure rate of the unit in standby
is only 20% of the active unit.
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9.21 The design criterion for the ac power system for a reactor is that its
failure probability be less than 2 X 107°/year. Offssite power failures
may be expected to occur about once in 5 years. If the on-site ac power
system consists of two independent diesel generators, each of which is
capable of meeting the ac power requirements, what is the maximum
failure probability per year that each diesel generator can have if the
design criterion is to be met? If three independent diesel generators
are used in active parallel, what is the value of the maximum failure
probability? (Neglect common-mode failures.)

9.22 Consider a 1/3 system in active parallel, each unit of which has a constant
failure rate A.

(a) Plot the system failure rate A(¢) in units of A versus Af from Az = 0,
to large enough At to approach an asymptotic system failure rate.

(b) What is the asymptotic value A(%)?

(c) At what interval should the system be shut down and failed compo-
nents replaced if there is a criterion that A(¢) should not exceed
1/3 of the asymptotic value?

9.23 An engineer designs a system consisting of two subsystems in series. The
reliabilities are R; = 0.98 and R, = 0.94. The cost of the two subsystems
is about equal. The engineer decides to add two redundant components.
Which of the following would it be better to do?

(a) Duplicate subsystems 1 and 2 in high-level redundance.
(b) Duplicate subsystems 1 and 2 in low-level redundance.
(c) Replace the second subsystem with 1/3 redundance.
Justify your answer.

9.24 For a 2/3 system:

(a) Express R(?) in terms of the constant failure rates.
(b) Find the system MTTF.

(c) Calculate the reliability y when At = 1.0 and compare the result to
a single unit and to a 1/2 system with the same unit failure rate.

5;9.25)Suppose that a system consists of two components, each with a failure
" rate A, placed in series. A redundant system is built consisting of four
components. Derive expressions for the system failure rates

(a) for high-level redundancy,
(b) for low-level redundancy.

(c) Plottheresults of aand balong with the failure rate of the nonredun-
dant system for 0 = ¢t = 2/A.

9.26 Suppose that in Exercise 9.21 one-fourth of the diesel generator failures
are caused by common-mode effects and therefore incapacitate all the
active parallel systems. Under these conditions what is the maximum
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failure probability (i.e., random and common-mode) that is allowable
if two diesel generators are used? If three diesel generators are used?

9.27 The failure rate on a jet engine is A = 107*/hr. What is the probability
that more than two engines on a four-engine aircraft will fail during a
2-hr flight? Assume that the failures are independent.

9.28 The shutdown system on a nuclear reactor consists of four independent
subsystems, each consisting of a control rod bank and its associated
drives and actuators. Insertion of any three banks will shut down the
reactor. The probability that a subsystem will fail is 0.2 X 107 per
demand. What is the probability per demand that the shutdown system
will fail, assuming that common-mode failures can be neglected?

9.29 Two identical components, each with a constant failure rate, are in series.
To improve the reliability two configurations are considered:

(a) for high-level redundancy,
(b) for low-level redundancy.

Calculate the system MTTF in terms of MTTF of the system mean-time-
to-failure without redundance.

9.30 Consider two components with the same MTTF. One has an exponential
distribution, the other a Rayleigh distribution (see Exercise 9.19). If they
are placed in active parallel, find the system MTTF in terms of the
component MTTF.

9.31 A radiation-monitoring system consists of a detector, an amplifier, and
an annunciator. Their lifetime reliabilities and costs are, respectively,
0.83 ($1200), 0.58 ($2400), and 0.69 ($1600).

(a) How would you allocate active redundancy to achieve a system life-
time reliability of 0.995?
(b) What is the cost of the system?
9.32 For constant failure rates evaluate Ry, and Ry for high- and low-level

redundancy in the rare-event approximation beginning with Eqgs. 9.72
and 9.73.

9.33 A system consists of three components in series, each with a reliability
of 0.96. A second set of three components is purchased and a redundant
system is built. What is the reliability of the redundant system (a) with
high-level redundancy, (b) with low-level redundancy?

"9.34\The identical components of the system below have fail-to-danger proba-
~bilities of p, = 107? and fail-safe probabilities of p, = 107"
(a) What is the system fail-to-danger probability?
(b) What is the system fail-safe probability?
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\‘Q.Qalculaw the reliabilities of the following systems:

o5 o]

0.98 0.85

o (o]

(@) (b)

9.36 A device consist of two components in series with a (1/2) standby system
as shown. Each component has the same constant failure rate.
(a) What is R(¢)?
(b) What is the rare-event approximation for R(¢)?
(c) What is the MTTF?

A
—_ A = A ‘
A

{ 9@ Calculate the reliability for the following system, assuming that all the
~ component failure rates are equal. Then use the rare-event approxima-
tion to simplify your result.

9.38 Calculate the reliability, R(¢), for the following systems, assuming that
all the components have failure rate A. Then use the rare-event approxi-
mation to simplify the result.

—
L

e T
Il

(b)
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9.39 Given the following component reliabilities, calculate the reliability of
the two systems.

0.80
0.90
0.99 0.80 0.99
0.90
0.80
(@) (b)

9.40 Calculate the reliabilities of the following two systems, assuming that all
the component reliabilities are equal. Then determine which system has

the higher reliability.

{773 LN

(a) (b)



CHAPTER 10

Maintained Systems

A little zzey@c/ may breed greal mz‘scﬁ[e/[ .
4 /f)l' wan! o/f a nail the shoe was lost:

/br want ty[ a shoe the horse was lost:

and /[or wan?t (y/ a horse the rider was lost.”

y?ely'amz'n Franklin
Toor Fichards Almanac 1756

10.1 INTRODUCTION

Relatively few systems are designed to operate without maintenance of any
kind, and for the most part they must operate in environments where access
is very difficult, in outer space or high-radiation fields, for example, or where
replacement is more economical than maintenance. For most systems there
are two classes of maintenance, one or both of which may be applied. In
preventive maintenance, parts are replaced, lubricants changed, or adjust-
ments made before failure occurs. The objective is to increase the reliability
of the system over the long term by staving off the aging effects of wear,
corrosion, fatigue, and related phenomena. In contrast, repair or corrective
maintenance is performed after failure has occurred in order to return the
system to service as soon as possible. Although the primary criteria for judging
preventive-maintenance procedures is the resulting increase in reliability, a
different criterion is needed for judging the effectiveness of corrective mainte-
nance. The criterion most often used is the system availability, which is defined
roughly as the probability that the system will be operational when needed.

The amount and type of maintenance that is applied depends strongly
on its costs as well as the cost and safety implications of system failure. Thus,
for example, in determining the maintenance for an electric motor used in
a manufacturing plant, we would weigh the costs of preventive maintenance
against the money saved from the decreased number of failures. The failure

290
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costs would need to include, of course, both those incurred in repairing
or replacing the motor, and those from the loss of production during the
unscheduled downtime for repair. For an aircraft engine the trade-off would
be much different: the potentially disastrous consequences of engine failure
would eliminate repair maintenance as a primary consideration. Concern
would be with how much preventive maintenance can be afforded and with
the possibility of failures induced by faculty maintenance.

In both preventive and corrective maintenance, human factors play a
very strong role. It is for this reason that laboratory data are often not represen-
tative of field data. In field service the quality of preventive maintenance is
not likely to be as high. Moreover, repairs carried out in the field are likely
to take longer and to be less than perfect. The measurement of maintenance
quantities thus depends strongly on human reliability so that there is great
difficulty in obtaining reproducible data. The numbers depend not only on
the physical state of the hardware, but also on the training, vigilance, and
judgment of the maintenance personnel. These quantities in turn depend on
many social and psychological factors that vary to such an extent that the
probabilities of maintenance failures and repair times are generally more
variable than the failure rates of the hardware.

In this chapter we first examine preventive maintenance. Then we define
and discuss availability and other quantities needed to treat corrective mainte-
nance. Subsequently, we examine the repair of two types of failure: those that
are revealed (i.e., immediately obvious) and those that are unrevealed (i.e.,
are unknown until tests are run to detect them). Finally, we examine the
relation of a system to its components from the point of view of corrective main-
tenance.

10.2 PREVENTIVE MAINTENANCE

In this section we examine the effects of preventive maintenance on the
reliability of a system or component. We first consider ideal maintenance
in which the system is restored to an as-good-as-new condition each time
maintenance is applied. We then examine more realistic situations in which
the improvement in reliability brought about by maintenance must be weighed
against the possibility that faulty maintenance will lead to system failure.
Finally, the effects of preventive maintenance on redundant systems are €x-
amined.

Idealized Maintenance

Suppose that we denote the reliability of a system without maintenance as
R(t), where tis the operation time of the system; it includes only the intervals
when the system is actually operating, and not the time intervals during which
it is shut down. If we perform maintenance on the system at time intervals 7,
then, as indicated in Fig. 10.1, for ¢ < T maintenance will have no effect on
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In R(t)
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FIGURE 10.1 The effect of preventive maintenance
on reliability.
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reliability. That is, if Ry(¢) is the reliability of the maintained system,
Ry (t) = R(1), 0=:1<T (10.1)

Now suppose that we perform maintenance at 7, restoring the system to an
as-good-as-new condition. This implies that the maintained system at ¢ > T
has no memory of accumulated wear effects for times before T. Thus, in the
interval T < ¢ = 2T, the reliability is the product of the probability R(T) that
the system survived to T, and the probability R(¢ — T) that a system as good
as new at T will survive for a time ¢t — 7 without failure:

Ry(t) = R(T)R(t — T), T=1t<2T (10.2)

Similarly, the probability that the system will survive to time ¢, 27T =< ¢t < 37,
is just the reliability Ry(27) multiplied by the probability that the newly
restored system will survive for a time ¢ — 27

Ru(t) = R(T)*R(t — 2T), 2T = t < 3T. (10.3)
The same argument may be used repeatedly to obtain the general expression
Ru(t) = R(T)"R(t— NT), NIr=t<(N+ 1T,
N=0,1,2,....

(10.4)

The MTTF for a system with preventive maintenance can be determined
by replacing R(t) by Ry(¢t) in Eq. 6.22:

MTTF = f " Ru(t) dt. (10.5)

To evaluate this expression, we first divide the integral into time intervals of
length T

MTTF = > f YT R0 dt. (10.6)
N=0 I N
Then, inserting Eq. 10.4, we have

MTTF = 5 f " R(T)R(1— NT) dt. (10.7)
N=0""*
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Setting t' = t — NT then yields

MTTF =3 R(T)NJOTR(t’) dr'. (10.8)

N=0

Then, evaluating the infinite series,

g)R(T)N=T:Jﬁ, (10.9)
we have
[ Ry ar
MTTF = o (10.10)

We would now like to estimate how much improvement, if any, in reliabil-
ity we derive from the preventive maintenance. The first point to be made is
that in random or chance failures (i.e., those represented by a constant failure
rate A), idealized maintenance has no effect. This is easily proved by putting
R(t) = ¢* on the right-hand side of Eq. 10.4. We obtain

Ry(t) = (e—/\t)Ne—)\(t—NT) = MU MENT) = gt (10.11)
or simply
Ru(t) = R(1), 0=t= . (10.12)

Preventive maintenance has a quite definite effect, however, when aging
or wear causes the failure rate to become time-dependent. To illustrate this
effect, suppose that the reliability can be represented by the two-parameter
Weibull distribution described in Chapter 3. For the system without mainte-

nance we have
R()) = exp [— (é)m] (10.13)

Equation 10.4 then yields for the maintained system

Ry (t) = exp [—‘N(%)m:l exp [—- <t—9NT>m], NT=t<(N+ 1T,

N =0,1,2,....

(10.14)

To examine the effect of maintenance, we calculate the ratio Ry(t) /R(t). The
relationship is simplified if we calculate this ratio at the time of maintenance

t = NT:
RANT) [ [TV, (NT)"
W—exp[ N(O) + <—0 > ] (10.15)

Thus there will be a gain in reliability from maintenance only if the argument
of the exponential is positive, that is, if (NT/6)" > N(T/6)™ This reduces to
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the condition
Nl —1> 0. (10.16)

This states simply that = must be greater than one for maintenance to have
a positive effect on reliability; it corresponds to a failure rate that is increasing
with time through aging. Conversely, for m < 1, preventive maintenance
decreases reliability. This corresponds to a failure rate that is decreasing with
time through early failure. Specifically, if new defective parts are introduced
into a system that has already been ‘‘worn in,” increased rates of failure may
be expected. These effects on reliability are illustrated in Fig. 10.2 where Eq.
10.14 is plotted for both increasing (m > 1) and decreasing (m < 1) failure
rates, along with random failures (m = 1).

Naturally, a system may have several modes of failure corresponding to
increasing and decreasing failure rates. For example, in Chapter 6 we note
that the bathtub curve for a device may be expressed as the sum of Weibull dis-

tributions
: L\ t\™ [\
Nd'=|—) +{=] +[= 17
Jaow=G GG o

For this system we must choose the maintenance interval for which the
positive effect on wearout time is greater than the negative effect on wearin
time. In practice, the terms in Eq. 10.17 may be due to different components
of the system. Thus we would perform preventive maintenance only on the
components for which the wearout effect dominates. For example, we may
replace worn spark plugs in an engine without even considering replacing a
fuel injection system with a new one, which might itself be defective.

InR(t)

0 T 2T 3T
No maintenance — -~  With maintenance

FIGURE 10.2 The effect of preventive maintenance
on reliability: m > 1, increasing failure rate; m < 1,
decreasing failure rate; m = 1, constant failure rate.

EXAMPLE 10.1

A compressor is designed for 5 years of operation. There are two significant contribu-
tions to the failure rate. The first is due to wear of the thrust bearing and is described
by a Weibull distribution with ¢ = 7.5 year and m = 2.5. The second, which includes
all other causes, is a constant failure rate of A, = 0.013/year.



(a)

(b)

(a)

(b)
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What is the reliability if no preventive maintenance is performed over the 5-year
design life?

If the reliability of the 5-year design life is to be increased to at least 0.9 by
periodically replacing the thrust bearing, how frequently must it be replaced?

Solution Let T, = b be the design life.
The system reliability may be written as
R(T,) = Ro(T) Ru(To),
where
Ro(Ty) = e hTi= ¢ 0994 = 09371,
is the reliability if only the constant failure rate is considered. Similarly,
Ru(Ty) = e /9" = ¢ 0/79% = 0,6957
is the reliability if only the thrust bearing wear is considered. Thus,
R(T,) = 0.9371 X 0.6957 = 0.6519.

Suppose that we divide the design life into N equal intervals; the time interval,
T, at which maintenance is carried out is then 7" = T,/ N. Correspondingly, T, =
NT. For bearing replacement at time interval T, we have from Eq. 10.14,

Ry(T) = N(T" = —N"m(Td\m
m(Ty) = exp| — No = exp g) .

For the criterion to be met, we must have

R(Ty) - 0.9
Ry(T,)  0.9371°

With (T,/6)" = (5/7.5)** = 0.36289, we calculate
Ru(Ty) = exp(—0.36289N""?).

RyW(T) = Ru(Ty) = 0.9604.

N‘l.2|3|4|5

Ry (T)) | 0.696 I 0.880 I 0.933 I 0.956 l 0.968

Thus the criterion is met for N = 5, and the time interval for bearing replacement
is T=T,/N=2%=1vyear.

In Chapter 6 we state that even when wear is present, a constant failure

rate model may be a reasonable approximation, provided that preventive
maintenance is carried out, with timely replacement of wearing parts. Al-
though this may be intuitively clear, it is worthwhile to demonstrate it with
our present model. Suppose that we have a system for which wearin effects
can be neglected, allowing us to ignore the first term in Eq. 10.17 and write

R(t) = exp [— é - (é)m] (10.18)
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The corresponding expression for the maintained system given by Eq. 10.4 be-
comes

Ru(t) = exp [—N(({)m] exp [— é = (‘_ojVT)ms], NT=i=(N+1)T.

(10.19)

For a maintained system the failure rate may be calculated by replacing R by
Ry in Eq. 6.15:

1 d

Au(t) = — Ru(D) ;l‘tRM(t)- (10.20)
Thus, taking the derivative, we obtain
s mg=1
Au(D) =l+—’f‘3(‘ NT> . NT=i(<(N+1T.  (10.21)
6, 06 0

Provided that the second term, the wear term, is never allowed to become
substantial compared to the first, the random-failure term, the overall failure
rate may be approximated as a constant by averaging over the interval 7. This
is illustrated for a typical set of parameters in Fig. 10.3.

Imperfect Maintenance

Next consider the effect of a less-than-perfect human reliability on the overall
reliability of a maintained system. This enters through a finite probability p
that the maintenance is carried out unsatisfactorily, in such a way that the
faulty maintenance causes a system failure immediately thereafter. To take
this into account in a simple way, we multiply the reliability by the maintenance
nonfailure probability, 1 — p, each time that maintenance is performed. Thus

Eq. 10.4 is replaced by
Ry(t) = R(T)M(1 — p)"R(t — NT), NT<i<(N+ 1T,
(10.22)
N =0,1,2,....

The trade-off between the improved reliability from the replacement of
wearing parts and the degradation that can come about because of mainte-

At)

_‘___,—AM
] |
1 |
i ]
T 2T 3T

FIGURE 10.3 Failure rate for a system with preven-
tive maintenance.

- — —

t
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nance error may now be considered. Since random failures are not affected
by preventive maintenance, we consider the system in which only aging is
present, by using Eq. 10.13 with m > 1. Once again the ratio Ry/R after the
Nth preventive maintenance is a useful indication of performance. Note that
for p << 1, we may approximate

A -—pr¥=e™ (10.23)
to obtain
RyNT) _ [ (T\" NT\"
W—exp[ N(G) N])+( 0) ] (10.24)

For there to be an improvement from the imperfect maintenance, the argu-
ment of the exponential in this expression must be positive. This reduces to
the condition
—t T m

p<(N"1-1) 3/ (10.25)
Consequently, the benefits from imperfect maintenance are not seen until a
long time, when either N or T'is large. This is plausible because after a long
time wear effects degrade the reliability enough that the positive effect of

maintenance compensates for the probability of maintenance failure. This is
illustrated in Fig. 10.4.

1
|
\
S~
~ | X
E ;\\}
£ |
|
|
|
|
0 T t
Key:

Imperfect maintenance
No maintenance == =— — —,

FIGURE 10.4 The effect of imperfect preventive
maintenance on reliability.

EXAMPLE 10.2

Suppose that in Example 10.1 the probability of faulty bearing replacement causing
failure of the compressor is p = 0.02. What will the design-life reliability be with the
annual replacement program?

Solution At the end of the design life (7, = 5 years) maintenance will have been
performed four times. From the preceding problem we take the perfect maintenance
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result to be
R(T;) = RyRy = 0.937 X 0.968 = 0.907.
With imperfect maintenance,

R(T)) = RyRu(1 — p)* = 0.907 X 0.98* = 0.907 X 0.922 = 0.836.

In evaluating the trade-off between maintenance and aging, we must
examine the failure mode very closely. Suppose, for example, that we consider
the maintenance of an engine. If after maintenance the engine fails to start,
but no damage is done, the failure may be corrected by redoing the mainte-
nance. In this case p may be set equal to zero in the model just given, with
the understanding that preventive maintenance includes a checkout and a
repair of maintenance errors.

The situation is potentially more serious if the maintenance failure dam-
ages the system or is delayed because it is an induced early-failure. We consider
each of these problems separately. Suppose first that after maintenance the
engine is started and is irreparably damaged by the maintenance error.
Whether maintenance is desirable in these circumstances strongly depends
on the failure mode that the maintenance is meant to prevent. If the engine’s
normal mode of failure is simply to stop running because a component is
worn, with no damage to the remainder of the engine, it is unlikely that even
the increased reliability provided by the preventive maintenance is economi-
cally worthwhile. Provided that there are no safety issues at stake, it may be
more expedient to wait for failure, and then repair, rather than to chance
damage to the system through faulty maintenance. If we are concerned about
servicing an aircraft engine, however, the situation is entirely different. Damag-
ing or destroying an occasional engine on the ground following faulty mainte-
nance may be entirely justified in order to decrease the probability that wear
will cause an engine to fail in flight.

Consider, finally, the situation in which the maintenance does not cause
immediate failure but adds a wearin failure rate. This may be due to the
replacement of worn components with defective new ones. However, it is
equally likely to be due to improper installation or reassembly of the system,
thereby placing excessive stress on one or more of the components. After the
first repair, we then have a failure rate described by a bathtub curve, as
in Eq. 10.17, with the first term stemming at least in part from imperfect
maintenance. The reliability is then determined by inserting Eq. 10.17 into
Eq. 10.4. If we assume that the early failure term is due to faulty maintenance,
it may be shown by again calculating Ry(NT)/R(NT) that the reliability is
improved only if

(1= Nm1y <ET> < (Vo) (01) L om<Lms>1. (10.26)
1 3
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Whether or not an increase in overall reliability is the only criterion to
be used once again depends on whether the failure modes are comparable
in the system damage that is done. If no safety questions are involved, it is
primarily a question of weighing the costs of repairing the failures caused by
aging against those induced by maintenance errors. This might be the case,
for example, with an automobile engine. With an aircraft engine, however,
prevention of failure in flight must be the overriding criterion; the cost of
repairing the engine following failure, of course, is not relevant if the plane
crashes. In this, and similar situations, the more important consideration is
often the effect of maintenance errors on redundant systems because mainte-
nance is one of the primary causes of common-mode failures. We examine
these next.

Redundant Components

The foregoing expressions for Ry (¢) may be used in calculating the reliability
of redundant systems as in Chapter 9, but only if the maintenance failures
on different components are independent of one another. This stipulation
is frequently difficult to justify. Although some maintenance failures are inde-
pendent, such as the random neglect to tighten a bolt, they are more likely
to be systematic; if the wrong lubricant is put in one engine, it is likely to be
put in a second one also.

The common-mode failure model introduced in Chapter 9 may be ap-
plied with some modification to treat such dependent maintenance failures.
As an example we consider a parallel system consisting of two identical compo-
nents. If the maintenance is imperfect but independent, we may insert Eq.
10.22 into Eq. 9.5 to obtain

Ry(1) = 2R(T)*(1 — p)"R(t — NT) — R(T)*(1 — p)*R(1 — NT)?,
NT=t< (N+ 1T, (10.27)
N =0,1,2,....

Suppose that a maintenance failure on one component implies that
the same failure occurs simultaneously in the other. We account for this by
separating out the maintenance failures into a series component, much as we
did with the common-mode failure rate A, in Chapter 9. Thus the system
failure is modeled by taking the reliability for perfect maintenance (i.e., p =
0) and multiplying by 1 — p for each time that maintenance is performed.
Thus, for dependent maintenance failures,

Ry(t) ={2R(T)"R(t — NT) — R(T)*R(t — NT)*%}(1 — p)",
NT=t<(N+1)T (10.28)
N =0,1,2,....
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The degradation from maintenance induced common-mode failures is indi-
cated by the ratio of Eqs. 10.28 to 10.27. We find

Ry(NT) _ 1 -3R(T)"
R(NT) ~ 1=31 = p)"R(T)"

(10.29)

The value of this ratio is less than one, and it decreases each time imperfect
preventive maintenance is performed.

10.3 CORRECTIVE MAINTENANCE

With or without preventive maintenance, the definition of reliability has been
central to all our deliberations. This is no longer the case, however, when we
consider the many classes of systems in which corrective maintenance plays
a substantial role. Now we are interested not only in the probability of failure,
but also in the number of failures and, in particular, in the times required
to make repairs. For such considerations two new reliability parameters be-
come the focus of attention. Availability is the probability that a system is
available for use at a given time. Roughly, it may be viewed as a fraction of
time that a system is in an operational state. Maintainability is a measure of
how fast a system may be repaired following failure. Both availability and
maintainability, however, require more formal definitions if they are to serve
as a quantitative basis for the analysis of repairable systems.

Availability

For repairable systems a fundamental quantity of interest is the availability.
It is defined as follows:

A(t) = probability that a system is performing (10.30)
satisfactorily at time ¢.

This is referred to as the point availability. Often it is necessary to determine
the interval or mission availability. The interval availability is defined by

17
A(T) = ‘fjo A(d) du. (10.31)

It is just the value of the point availability averaged over some interval of time,
T. This interval may be the design life of the system or the time to accomplish
some particular mission. Finally, it is often found that after some initial tran-
sient effects the point availability assumes a time-independent value. In these
cases the steady-state or asymptotic availability is defined as

T S
A¥(00) = 1T1$—Tf0 A1) dt. (10.32)

If a system or its components cannot be repaired, the point availability
is just equal to the reliability. The probability that it is available at ¢ is just
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equal to the probability that it has not failed between 0 and &
A(f) = R(t) (10.33)
Combining Eqgs. 10.31 and 10.33, we obtain

A¥(T) = lT [ OTR(t) dt. (10.34)

Thus, as 7 goes to infinity, the numerator, according to Eq. 6.22, becomes
the MTTF, a finite quantity. The denominator, T, however, becomes infinite.
Thus the steady-state availability of a nonrepairable system is

A*(®) = 0. (10.35)
Since all systems eventually fail, and there is no repair, the availability averaged

over an infinitely long time span is zero.

EXAMPLE 10.3

A nonrepairable system has a known MTTF and is characterized by a constant failure
rate. The system mission availability must be 0.95. Find the maximum design life that
can be tolerated in terms of the MTTF.

Solution For a constant failure rate the reliability is R = ¢ *. Insert this into Eq.
10.34 to obtain

1 .
* — AT
A¥(T) /\T(l e ).
Expanding the exponential then yields
1
=—(1-1+AT-}% T4y,
A(T) /\T(l 1+ AT —3(AT) )

Thus A(T) =~ 1 — $AT, for AT << 10r0.95 =1~ 3AT. Then AT = 0.1, but MTTF =
1/A. Therefore, T = 0.1 X MTTF.

Maintainability

We may now proceed to the quantitative description of repair processes and
the definition of maintainability. Suppose that we let t be the time required
to repair a system, measured from the time of failure. If all repairs take the
same length of time, t is just a number, say t = 7. In reality, repairs require
different lengths of time, and even the time to perform a given repair is
uncertain because circumstances, skill level, and a host of other factors vary.
Therefore t is normally not a constant but rather a random variable. This
variable can be considered in terms of distribution functions as follows.

Suppose that we define the PDF for repair as

m(t) At = P{t=t=<1t+ At} (10.36)
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That is, m(t) Atis the probability that repair will require a time between ¢and
¢t + At. The CDF corresponding to Eq. 10.36 is defined as the maintainability

M(1) = f(‘) m(t') dt’, (10.37)
and the mean time to repair or MTTR is then
MTTR = j: im(t) dt. (10.38)

Analogous to the derivations of the failure rate given in Chapter 6, we may
define the instantaneous repair rate as

P{it=t=t+Af

v(h) At = P{t> 1} ’

(10.39)

v(t) Atis the conditional probability that the system will be repaired between
tand ¢ + At, given that it is failed at ¢. Noting that

M(t) = Pit=1t} =1~ P{t=1¢}, (10.40)
we then have
__m(Y)
v(t) = 1= Mo MO (10.41)

Equations 10.37 and 10.41 may be used to express the maintainability
and the PDF in terms of the repair rate. To do this, we differentiate Eq. 10.87
to obtain

m(t) =d%M(t), (10.42)

and combine this result with Eq. 10.41 to yield

d

p(t) = [1— M()]™ = M(1). (10.43)

Moving dt to the left and integrating between 0 and ¢, we obtain

' , , (MO dM
[vayar = [ = (10.44)

Evaluating the integral on the right-hand side and solving for the maintainabil-
ity, we have

M(t) =1 — exp —f; vty dt’ |. (10.45)

Finally, we may use Eq. 10.42 to express the PDF for repair times as

m(t) = (1) exp —f(’) v(t') di . (10.46)
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A great many factors go into determining both the mean time to repair
and the PDF, m(¢), by which the uncertainties in repair time are characterized.
These factors range from the ability to diagnose the cause of failure, on the
one hand, to the availability of equipment and skilled personnel to carry out
the repair procedures on the other. The determining factors in estimating
repair time vary greatly with the type of system that is under consideration.
This may be illustrated with the following comparison.

In many mechanical systems the causes of the failure are likely to be
quite obvious. If a pipe ruptures, a valve fails to open, or a pump stops running,
the diagnoses of the component in which the mechanical failure has occurred
may be straightforward. The primary time entailed in the repair is then deter-
mined by how much time is required to extract the component from the
system and install the new component, for each of these processes may involve
a good deal of metal cutting, welding, or other time-consuming procedures.

In contrast, if a computer fails, maintenance personnel may spend most
of the repair procedure time in diagnosing the problem, for it may take
considerable effort to understand the nature of the failure well enough to be
able to locate the circuit board, chip, or other component that is the cause.
Conversely, it may be a rather straightforward procedure to replace the faulty
component once it has been located.

In both of these examples we have assumed that the necessary repair
parts are available at the time they are needed and that it is obvious how
much of the system should be replaced to eliminate the fault. In fact, both
the availability of parts and the level of repair involve subtle economic trade-
offs between the cost of inventory, personnel, and system downtime.

For example, suppose that the pump fails because bearings have burned
out. We must decide whether it is faster to remove the pump from the line
and replace it with a new unit or to tear it down and replace only the bearings.
If the entire pump is to be replaced, on-site inventories of spare pumps will
probably be necessary, but the level of skill needed by repair personnel to
install the new unit may not be great. Conversely, if most of the pump failures
are caused by bearing failures, it may make sense to stock only bearings on
site and to repack the bearings. In such a case repair personnel will need
different and perhaps greater training and skill. Such trade-offs are typical of
the many factors that must be considered in maintainability engineering, the
discipline that optimizes M(¢) at a high level with as low a cost as possible.

10.4 REPAIR: REVEALED FAILURES

In this section we examine systems for which the failures are revealed, so that
repairs can be immediately initiated. In these situations two quantities are of
primary interest, the number of failures over a given span of time and the
system availability. The number of failures is needed in order to calculate a
variety of quantities including the cost of repair, the necessary repair parts
inventory, and so on. Provided that the MTTR is much smaller than the MTTF,
reasonable estimates for the number of failures can be obtained using the
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Poisson distribution as in Chapter 6, and neglecting the system downtime for
repair. For availability calculations, repair time must be considered or else we
would obtain simply A(¢) = 1. Ordinarily, this is not an acceptable approxima-
tion, for even small values of the unavailability A(¢) are frequently important,
whether they be due to the risk incurred through the unavailability of a
critical safety system or to the production loss during the downtimes of an
assembly line.

In what follows, two models for repair are developed to estimate the
availability of a system, constant repair rate, and constant repair time. It will
be clear from comparing these that most of the more important results depend
primarily on the MTTR, not on the details of the repair distribution.

Constant Repair Rates

To calculate availability, we must take the repair rate into account, even though
it may be large compared to the failure rate. We assume that the distribution
of times to repair can be characterized by a constant repair rate

v(t) = v (10.47)
The PDF of times to repair is then exponential,
m(t) = ve' ™, (10.48)
and the mean time to repair is simply
MTIR = 1/v. (10.49)

Although the exponential distribution may not reflect the details of the distri-
bution very accurately, it provides a reasonable approximation for predicting
availabilities, for these tend to depend more on the MTTR than on the details
of the distribution. As we shall illustrate, even when the PDF of the repair is
bunched about the MTTR rather than being exponentially distributed, the
constant repair rate model correctly predicts the asymptotic availability.
Suppose that we consider a two-state system; it is either operational, state
1, or it is failed, state 2. Then A(¢) and A(¢), the availability and unavailability,
are the probabilities that the state is operational or failed, respectively, at time
t, where tis measured from the time at which the system operation commences.
We therefore have the initial conditions A(0) = 1 and A(0) = 0, and of course,

A + A(n) = 1. (10.50)

A differential equation for the availability may be derived in a manner
similar to that used for the Poisson distribution in Chapter 6. We consider
the change in A(¢) between tand ¢ + At. There are two contributions. Since
A At is the conditional probability of failure during A given that the system
is available at ¢, the loss of availability during A¢ is A Az A(z). Similarly, the
gain in availability is equal to » At A(¢), where v Atis the conditional probability
that the system is repaired during A¢, given that it is unavailable at 2. Hence
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it follows that
A(t+ At) = A(1) — AALAQ) + v ALA(D). (10.51)
Rearranging terms and eliminating A(¢) with Eq. 10.50, we obtain

A(t+ A — A(t)
At B

—(A+AQ) + v (10.52)

Since the expression on the left-hand side is just the derivative with respect
to time, Eq. 10.52 may be written as the differential equation,

%A(z) = —(A+ V)AL + 7. (10.53)

We now may use an integrating factor of ¢**”

A(0) = 1 to obtain

, along with the initial condition

v A

= +
Al =t

e ML (10.54)

Note that the availability begins at A(0) = 1 and decreases monotonically to
an asymptotic value 1/(1 + A/v), which depends only on the ratio of failure
to repair rate. The interval availability may be obtained by inserting Eq. 10.54
into Eq 10.31 to yield

v A

* =
A =7 A+ )T

[1— g Wnl], (10.55)

and the asymptotic availability is obtained by letting 7 go to infinity. Thus

v
A+ v

A¥ (o) = (10.56)

Finally, note from Egs. 10.54 and 10.56 that for constant repair rates
A*(o0) = A(®). (10.57)

Since, in most instances, repair rates are much larger than failure rates, a
frequently used approximation comes from expanding Eq. 10.56 and deleting
higher terms in A/v. We obtain after some algebra

A¥(®) =1 — A/, (10.58)

The ratio in Eq. 10.56 may be expressed in terms of the mean time be-
tween failures and the mean time to repair. Since MTTF = 1/A and
MTTR = 1/v, we have

MTTF

A(0) =
(*) = SITTF + MTTR

(10.59)
This expression is sometimes used for the availability even though neither
failure or repair is characterized well by the exponential distribution. This is
often quite adequate, for, in general, when availability is averaged over a
reasonable period T of time, it is insensitive to the details of the failure
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or repair distributions. This is indicated for constant repair times in the
following section.

EXAMPLE 10.4

In the following table are times (in days) over a 6-month period at which failure of a
production line occurred (¢;) and times (#,) at which the plant was brought back on
line following repair.

N
<
=~
.
o
=~

1 12.8 13.0 6 56.4 57.3
2 14.2 14.8 7 62.7 62.8
3 25.4 25.8 8 131.2 134.9
4 314 33.3 9 146.7 150.0
5 35.3 35.6 10 177.0 177.1

(a) Calculate the 6-month-interval availability from the plant data.
(b) Estimate MTTF and MTTR from the data.

(¢) Estimate the interval availability using the results of »and Eq. 10.59, and compare
this result to that of a.
Solution During the 6 months (182.5 days) there are 10 failures and repairs.

(a) From the data we find that A(T) is just the fraction of that time for which the
system is inoperable. Thus we find that

T)__E(tn t/z
=m(02+06+04+19+03+09+01+37+33+01)
A(T) = 0.0630

A(T) =1—0.063 = 0.937.

(b) Taking t, = 0, we first estimate the MTTF and MTTR from the data:
1 10
MTTF =% > (4= t-1)
N

=5 (128 +1.2+10.6 + 5.6 + 2.0 + 20.8 + 5.4
+68.4 % 11.8 + 27.0)
MTTF = & 165.6 = 16.56.

1 & 1825
MTTR = — =
R Nz (tn t/v 10 TE (ﬁ 71) A(T)

i=1

= 1.15 days.
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—~_ Vv 1 _ 1 _
(e) A(T) = V+A_1+MTTR 1+0.85_0'935'
MTTF 165

Constant Repair Times

In the foregoing availability model we have used a constant repair rate, as we
shall also do throughout much of the remainder of this chapter. Before
proceeding, however, we repeat the calculation of the system availability using
a repair model that is quite different; all the repairs are assumed to require
exactly the same time, 7. Thus the PDF for time to repair has the form

m(t) = o(t — 7), (10.60)

where 6 is the Dirac delta function discussed in Chapter 3. Although the
availability is more difficult to calculate with this model, the resultis instructive.
It will be seen that whereas the details of the time dependence of A(¢) differ,
the general trends are the same, and the asymptotic value is still given by
Eq. 10.59.

A differential equation may be obtained for the availability, with the initial
condition A(0) = 1. Since all repairs require a time 7, there are no repairs
for ¢ < 7. Thus instead of Eq. 10.51, we have only the failure term on the
right-hand side, :

A(L+ A = A(D) — AALA(Y), O0=1=<rT, (10.61)

which corresponds to the differential equation
d%A(t) = —AA(1), 0=t=r (10.62)

For times greater than 7, repairs are also made; the number of repairs
made during At is just equal to the number of failures during A¢ at a time 7
earlier: A At A(¢ — 7). Thus the change in availability during At is

A(t+ At) = A(t) — VAL A1) + LMALA(L — 1), t> 1, (10.63)
which corresponds to the differential equation
%A(t) = —AA() + AA(E— 1), 1> (10.64)
Equations 10.63 and 10.64 are more difficult to solve than those for the
constant repair rate. During the first interval, 0 = ¢ = 7, we have simply
A(t) = e 0=s:t=r (10.65)

For t > 7, the solution in successive intervals depends on that of the preceding
interval. To illustrate, consider the interval N7 = ¢t = (N + 1) 7. Applying an
integrating factor ¢ to Eq. 10.64, we may solve for A(¢) in terms of A(t — 7):
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A(f) = A(NT) e MV + J:;T dt’' Ae MTOA( — 1), Nr=t=(N+ 1)
(10.66)
For N = 1, we may insert Eq. 10.65 on the right-hand side to obtain
A(t) = eM+ At — 7)e M, T=¢=<27 (10.67)

For N = 2 there will be three terms on the right-hand side, and so on. The
general solution for arbitrary N appears quite similar to the Poisson distri-
bution:

N J— n
A =2 mt—n‘"—mw(‘""”, Nr=i=(N+1)7  (10.68)
n=0 .

The solutions for the constant repair rate and the constant repair time
models are plotted for the point availability A(¢) in Fig. 10.5 for 7 = 1/v.
Note that the discrete repair time leads to breaks in the slope of the availability
curve, whereas this is not the case with the constant failure rate model. How-
ever, both curves follow the same general trend downward and converge to
the same asymptotic value. Thus, if we are interested only in the general
characteristics of availability curves, which ordinarily is the case, the constant
repair rate model is quite adequate, even though some of the structure carried
by a more precise evaluation of the repair time PDF may be lost. Moreover,
to an even greater extent than with failure rates, not enough data are available
in most cases to say much about the spread of repair times about the MTTR.
Therefore, the single-parameter exponential distribution may be all that can
be justified, and Eq. 10.59 provides a reasonable estimate of the availability.

10.5 TESTING AND REPAIR: UNREVEALED FAILURES

As long as system failures are revealed immediately, the time to repair is the
primary factor in determining the system availability. When a system is not in
continuous operation, however, failures may occur but remain undiscovered.
This problem is most pronounced in backup or other emergency equipment
that is operated only rarely, or in stockpiles of repair parts or other materials
that may deteriorate with time. The primary loss of availability then may be

—

Constant repair rate
N\~

At)

Constant repair time

{(.
)4

| l | L1 ,
T 2r 3r 4r 57

FIGURE 10.5 Availability for different repair models.
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due to failures in the standby mode that are not detected until an attempt is
made to use the system.

A primary weapon against these classes of failures is periodic testing. As
we shall see, the more frequently testing is carried out, the more failures will
be detected and repaired soon after they occur. However, this must be weighed
against the expense of frequent testing, the loss of availability through down-
time for testing, and the possibility of excessive component wear from too-
frequent testing.

Idealized Periodic Tests

Suppose that we first consider the effect of a simple periodic test on a system
whose reliability can be characterized by a constant failure rate:

R(t) = ™. (10.69)

The first thing that should be clear is that system testing has no positive
effect on reliability. For unlike preventive maintenance the test will only catch
failures after they occur.

Testing, however, has a very definite positive effect on availability. To see
this in the simplest case, suppose that we perform a system test at time interval
Ty. In addition, we make the following three assumptions: (1) The time
required to perform the test is negligible, (2) the time to perform repairs is
negligible, and (3) the repairs are carried out perfectly and restore the system
to an as-good-as-new condition. Later, we shall examine the effects of relaxing
these assumptions.

Suppose that we test a system with reliability given by Eq. 10.69 at time
interval T;. As indicated, if there is no repair, the availability is equal to the
reliability. Thus, before the first test,

A(t) = R(1), 0=t<T,. (10.70)

Since the system is repaired perfectly and restored to an as-good-as-new state
at ¢ = Ty, we will have R(7T;) = 1. Then since there is no repair between T,
and 27, the availability will again be equal to the reliability, but now the
reliability is evaluated at ¢t — 7j:

Al = Rt~ T), Ty=1<2T. (10.71)
This pattern repeats itself as indicated in Fig. 10.6. The general expression is
A(f) = R(t— NT)), NL,=t< N+ DT,. (10.72)

For the situation indicated in Fig. 10.6, the interval and the asymptotic
availability have the same value, provided that the integral in Eq. 10.31 is
taken over a multiple of T;, say m7;,. We have

A*(mTy) = A de= %f{;’u(z) dt. (10.73)
0

miy
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A(t)

| |
0 T, 2T, 3T,
t

FIGURE 10.6 Availability with idealized periodic
testing for unrevealed failures.

Since the interval availability is independent of the number of intervals over
which A*(T) is calculated, so will the asymptotic availability A*(c0):

TR S ) _ 1
A%(e) = lim — [ Ay de = - [Faw a (10.74)

m—oo WLTO 0

The effect of the testing interval on availability may be seen by combining
Egs. 10.69 and 10.74. We obtain

1 "
* 2 R
A*(o0) L (1 — e M), (10.75)
Ordinarily, the test interval would be small compared to the MTTF: ATy <<

1. Therefore, the exponential may be expanded, and only the leading terms
are retained to make the approximation

A*(®) = 1 — AT;. (10.76)

EXAMPLE 10.5

Annual inspection and repair are carried out on a large group of smoke detectors of
the same design in public buildings. It is found that 15% of the smoke detectors are
not functional. If it is assumed that the failure rate is constant,
(@) In what fraction of fires will the detectors offer protection?

(b) If the smoke detectors are required to offer protection for at least 99% of fires,
how frequently must inspection and repair be carried out?

Solution With inspection and repair at interval T;, the fraction of detectors that
are operational at the time of inspection will be

R= ¢ =0.85.
Then AT, = —In(0.85) = 0.162. Since T; = 1 year, A = 0.162/year.
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(a) If we assume that the fires are uniformly distributed in time, the fractional protec-
tion is just equal to the interval availability; from Eq. 10.75

A*(o0) =)\_1T(;(1 — ey ="6Tlé§ (1 —0.85) =0.926.

(b) For this high availability the rare-event approximation, Eq. 10.76, may be used:
0.99 = A*(®) =~ 1 ~ $AT,.
Thus from Eq. 10.76,

_2[1 = A*(»)] _2(1-099) _
T, 3 0162 0.123 year

= (0.123 X 12 months =~ 1} months.

Real Periodic Tests

Equation 10.76 indicates that we may achieve availabilities as close to one as
desired merely by decreasing the test interval 7. This is not the case, however,
for as the test interval becomes smaller, a number of other factors—test time,
repair time, and imperfect repairs—become more important in estimating
availability.

When we examine these effects, it is useful to visualize them as modifica-
tions in the curve shown in Fig. 10.6. The interval or asymptotic availability
may be pictured as proportional to the area under the curve within one test
interval, divided by 7. Thus we may view each of the factors listed earlier in
terms of the increase or decrease that it causes in the area under the curve.
In particular, with reasonable assumptions about the ratios of the various
parameters involved, we may derive approximate expressions similar to Eq.
10.76 that are quite simple, but at the same time are not greatly in error.

Consider first the effect of a nonnegligible test time, ¢,. During the test
we assume that the system must be taken off line, and the system has an
availability of zero during the test. The point availability will then appear as
the solid line in Fig. 10.7. Provided that we again assume that A7), << 1, so
that Eq. 10.76 holds, and that ¢, << T;, the test time, is small compared to
the test interval, we may approximate the contribution of the test to system
downtime as ¢,/7;. The availability indicated in Eq. 10.76 is therefore de-
creased to

A¥(w) =1 —%/\To—i, (10.77)
Ty

We next consider the effect of a nonzero time to repair on the availability.
The probability of finding a failed system at the time of testing is just one
minus the point availability at the time the test is carried out. For small
T; this probability may be shown to be approximately AT;. Since 1/v is the
mean time to repair, the contribution to be unavailability over the period T;
is ATy/v, or dividing by the interval T;, we find, as in Eq. 10.58, the loss of
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A(t)

= -—tl

0 T, 2T, 3T,
FIGURE 10.7 Availability with realistic periodic
testing for unrevealed failures.

availability to be approximately A/v. We may therefore modify our availability
by subtracting this term to yield
A¥() =1 —%)\To—ﬁ—é. (10.78)
T, v
The effect of this contribution to the system unavailability is indicated by the
dotted line in Fig. 10.7.

Examination of Eq. 10.78 is instructive. Clearly, decreases in failure rate
and in test time ¢, increase the availability, as do increases in the repair rate
v. It may also be shown that the more perfect the repair, the higher the
availability. Decreasing the test interval, however, may either increase or de-
crease the availability, depending on the value of the other parameters. For,
as indicated in Eq. 10.78, it appears in both the numerator and the denomina-
tor of terms.

Suppose that we differentiate Eq. 10.78 with respect to 7; and set the
result equal to zero in order to determine the maximum availability:

d

t
Lpx(w) = —Ir + —= = 0. i
AT =t 0 (10.79)

The optimal test interval is then

21\ 12
T,= (-}\—) . (10.80)

Substitution of this expression back into Eq. 10.78 yields a maximum availabil-
ity of
A
A¥(0) =1 — (2)@,)1/2*;. (10.81)

If the test interval is longer than Eq. 10.80, undetected failures will lower
availability. However, if a shorter test interval is employed, the loss of availability
during testing will not be fully compensated for by earlier detection of failures.
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The test interval should increase as the failure rate decreases, and decrease
as the testing time can be decreased. Other trade-offs may need to be consid-
ered as well. For example, will hurrying to decrease the test time increase the
probability that failures will be missed?

EXAMPLE 10.6

A sulfur dioxide scrubber is known to have a MTBF of 137 days. Testing the scrubber
requires half a day, and the mean time to repair is 4 days. (a) Choose the test period
to maximize the availability. () What is the maximum availability?
Solution (a) From Eq. 10.80, with MTBF = 1/A,
T, = (2¢, MTBF)'2 = (2 X 0.5 X 137)"/2 = 11.7 days.
(b) From Eq. 10.81,

2, \* MTTR
% =1 - —
AF(e) =1 <MTBF) MTBF’
2x 0.5\ 4
% =1 (&2 - =
A% () = 1 < 5 ) 35 = 0.885.

10.6 SYSTEM AVAILABILITY

Thus far we have examined only the effects on availability of the failure and
repair of a system as a whole. But just as for reliability, it is often instructive
to examine the availability of a system in terms of the component availabilities.
Not only are data more likely to be available at the component level, but the
analysis can provide insight into the gains made through redundant configura-
tions, and through different testing and repair strategies.

Since availability, like reliability, is a probability, system availabilities can
be determined from parallel and series combinations of component availabili-
ties. In fact, the techniques developed in Chapter 9 for combining reliabilities
are also applicable to point availabilities, but only provided that both the
failure and repair rates for the components are independent of one another.
If this is not the case, either the 8-factor method described in Chapter 9 or
the Markov methods discussed in the following chapter may be required to
model the component dependencies. In this chapter we consider situations
in which the component properties are independent of one another, deferring
analysis of component dependencies to the following chapter.

In what follows we estimate point availabilities of systems in terms of
components. The appropriate integral is then taken to obtain interval and
asymptotic availabilities. When the component availabilities become time-
independent after a long period of operation, steady-state availabilities may
be calculated simply by letting ¢ —  in the point availabilities. In testing or
other situations in which there is a periodicity in the point availability, the
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point availability must be averaged over a test period, even though the system
has been in operation for a substantial length of time. Very often when repair
rates are much higher than failure rates, simplifying approximations, in which
A/ vis assumed to be very small, are of sufficient accuracy and lead to additional
physical insight in comparing systems.

For systems without redundancy the availability obeys the product law
introduced in Chapter 9. Suppose that we let X represent the failed state of
the system, and X the unfailed or operational state of the system. Similarly,
let X, represent the failed state of component i, and X, the unfailed state of
the same component. In a nonredundant system, all the components must
be available for the system to be available:

X=XNXN...N Xy (10.82)

Since the availability is defined as just the probability that the system is avail-
able, we have

A =T Ai0). (10.83)

where the A;(?) are the independent component availabilities.

For redundant (i.e., parallel) systems, all the components must be unavail-
able if the system is to be unavailable. Thus, if X signifies a failed system and
X; the failed state of component i, we have

X=XxnXnXn...N Xy (10.84)
Since the unavailability is one minus the availability, we have
1-A@® =[1 — A M1 — A()] ... [1 — Au(D)], (10.85)
or more compactly,

A(t) =1 —H [1- A()]. (10.86)

Comparing Eqgs. 10.83 and 10.86 with Eqgs. 9.1 and 9.38 indicates that the
same relationships hold for point availabilities as for reliabilities. The other
relationships derived in Chapter 9 also hold when the assumption that the
components are mutually independent is made throughout.

Revealed Failures

Suppose that we now apply the constant repair rate model to each component.
According to Eq. 10.54, the component availabilities are then
V; Ai

ey WL W (1087)

Ai() =

This relationship may be applied in the foregoing equations to estimate sys-
tem availability.
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If we are interested only in asymptotic availability, we may delete the
second term of Eq. 10.87 to obtain
Vi

A() = —. (10.88)

Combining this expression with Eq. 10.83, we have for a nonredundant system

A() =] ” i")\‘. (10.89)

i

If we further make the reasonable assumption that repair rates are large
compared to failure rates, v; >> A,, then
A;
Aj(0) =1——, (10.90)

i

With this expression substituted into Eq. 10.83 to estimate the availability of
a nonredundant system, we obtain

Ai
A(oo)z]‘[(h—). (10.91)
i Vi
But since we have already deleted higher-order terms in the ratios A,/ v;, for

consistency we also should eliminate them from this equation. This yields
A
A(o) =1—> =, (10.92)

i Vi
Thus the rapid deterioration of the availability with an increased number of
components is seen. If we further assume that all the repair rates can be
replaced by an average value v; = v, Eq. 10.92 becomes

A() =1 — A/p, (10.93)
where

A= E A (10.94)

Therefore, we obtain the same result as given for the system as a whole,
provided that we sum the component failure rates as in Chapter 6.

The effect of redundancy may be seen by inserting Eq. 10.88 into Eq.
10.86, the availability of a parallel system. For N identical units with A, = A
and v; = v, we have

(A
A(o) =1 <)\+v>' (10.95)

If we consider the case where v >> A, then

A(0) =1 — <§>N, (10.96)
14
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or correspondingly for the unavailability,
. A\Y
A(®) = <;> . (10.97)

The analogy to the reliability of parallel systems is clear; both unreliability
and unavailability are proportional to the N" power of the failure rate. The
foregoing relationships assume that there are no common-mode failures. If
there are, the B-factor method of Chapter 9 may be adapted, putting a fictitious
component in series with a failure and a repair rate for the common-mode
failure. Once again the presence of common-mode failure limits the gains
that can be made through the use of parallel configurations, although not as
severely as for systems that cannot be repaired. Suppose we consider as an
example N units in parallel, each having a failure rate A divided into indepen-
dent and common-mode failures as in Egs. 9.24 through 9.30. We have

A() = {1 = [1 = A(»)]"}A (), (10.98)

where A, are the availabilities with only the independent failure rate A, taken
into account, and A, is the common-mode availability with failure rate A,. We
assume that both common and independent failure modes have the same
repair rate. Thus

Ao —[1—( As >N] v 10.99
() = N+v) A+ (10.99)

This may also be written in terms of 8 factors by recalling that A, = (1 — B)A
and A, = BA.

EXAMPLE 10.7

A system has a ratio of v/A = 100. What will the asymptotic availability be (a) for the
system, (b) for two of the systems in parallel with no common-mode failures, and (c¢)
for two systems in parallel with 8 = 0.2?

Solution (a) A(®) = 1—%000 = 0.990.

Y S S b
(b) A() =1 <1+100> 0.99990.

A N S 1 _ -2
(¢) V—(l ,B)V—(l 0.2)100—0.8X10

A,

Loplooxio,

14 14

Therefore, from Eq. 10.99,

— 0.8 X 1072 2 1 3
= [1 (1 08X 1o-2> ] S0 09979
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Unrevealed Failures

In the derivations just given it is assumed that component failures are detected
immediately and that repair is initiated at once. Situations are also encoun-
tered in which the component failures go undetected until periodic testing
takes place. The evaluation of availability then becomes more complex, for
several testing strategies may be considered. Not only is the test interval Ty
subject to change, but the testing may be carried out on all the components
simultaneously or in a staggered sequence. In either event the calculation of
the system availability is now more subtle, for the point availabilities will have
periodic structures, and they must be averaged over a test period in order to
estimate the asymptotic availability.

To illustrate, consider the effects of simultaneous and staggered testing
patterns on two simple component configurations: the nonredundant config-
uration consisting of two identical components in series, and the completely
redundant configuration consisting of two identical components in parallel.
For clarity we consider the idealized situation in which the testing time and
the time to repair can be ignored. The failure rates are assumed to be constant.

We begin by letting A,(¢) and A,() be the component point availabilities.
Since the testing is carried out at intervals of Tj, we need only determine the
system point availability A(¢) between ¢ = 0 and ¢t = T;, for the asymptotic
mission availability is then obtained by averaging A(?) over the test period:

A* () = A%(Ty) = %f;le(z) dt. (10.100)

Simultaneous Testing When both components are tested at the same time,

t=0, Ty, 2Ty, . . ., the point availabilities are given by

Ay = e 0=1(<T,, (10.101)
and

Ay(t) = e, 0=t<T,. (10.102)

For the series system we have
A(t) = A1) As(2), (10.103)
or
A(t) = e, 0=t<T,. (10.104)
For the parallel system we obtain

A(D)

A1) + Ag(d) — Ai(2) Ag(D), (10.105)
or

A(2)

I

9 M — N 0=t<T,. (10.106)
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The availabilities are plotted as solid lines in Fig. 10.8a and b, respectively.
The asymptotic availability obtained from Eq. 10.100 for the series system is

1

s = (] — T,
AX(Ty) oNT, (1 — e (10.107)
whereas that of the parallel system is
1 _ »
AF(Ty) = oNT, (3 = 4o + ¢ 2), (10.108)

Staggered Testing We now consider the testing of components at staggered
intervals of 7,/2. We assume that component 1 is tested at 0, Tp, 2T;, .. .,

whereas component 2 is tested at the half-intervals 7,/2, 3T,/2, . . . . The point
availabilities within any interval after the first one are given by
A(t) = e, 0=:t<T, (10.109)
and
Ty Ty
-Alt+— = (<=
(D] eeect
As(t) = (10.110)

T. T
exp[—)\(t——Q—O)] —2—Qst< 1.

To determine the point system availability, we combine these two equations
with Egs. 10.103 and 10.105, respectively, for the series and parallel configura-
tions. The results are plotted as dotted lines in Figs. 10.8a and 10.82.

To calculate the asymptotic availabilities for staggered testing, we first
note from Fig. 10.8 that the system point availabilities for both series and
parallel situations have a periodicity over the halfintervals 7;/2. Therefore,
instead of averaging A(¢) over an entire interval as in Eq. 10.100, we need to

1 1
I P \ [ N P
\ \ \ \
v\ A\ AR LN \ AN
\ \ \ \ \ \
sl NN\ NN NN\ =
= \ \ \, \ =
< 4 4 ] N <
(Key: Key:
Simultaneous testing e . Simultaneous testing
Staggered testing —==-==-~. Staggered testing = —=—=====.
| | | ]
0 T 27, 3T, 0 T, 2T, 37,
t t
(a) Series (b) Parallel

FIGURE 10.8 Availability for a two-component system with unrevealed failures.
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TABLE 10.1 Availability A*(7;) for Unrevealed Failures

Testing Series system Parallel system
Simultaneous 1 - AT, + 3 (AT)? 1 -3 (ATy)?
Staggered 1 - AT, + 8 (A\Ty)? 1 —%& (AT)?

average it over only the half-interval. Hence
2 (1,2
* ==
A*(Ty) Tojo A(t) dt. (10.111)

For the series configuration we calculate A;(¢)Ay(¢) from Egs. 10.109 and
10.110, substitute the resultinto Eq. 10.111, and carry out the integral to obtain

AF(Ty) = o (402 — gty (10.112)

Similarly, for the parallel configuration we form A(f) by substituting Egs.
10.109 and 10.110 into Eq. 10.105, combine the result with Eq. 10.111, and
perform the integral to obtain

AN(T) = ALTO (2 — 26 — g ATY2 4 o NTY), (10.118)

Although the point availabilities plotted as dotted lines in Fig. 10.8 are
interesting in understanding the effects of staggering on the availability, the
asymptotic values are often more useful, for they allow us to compare the
strategies with a single number. Evaluation of the appropriate expressions
indicates that in the nonredundant (series) configuration higher availability
is obtained from simultaneous testing, whereas staggered testing yields the
higher availability for redundant (parallel) configurations.

This behavior can be understood explicitly if the expressions for the
asymptotic availability are expanded in powers of A7j, since for small failure
rates the lowest-order terms in A7; will dominate the expressions. The results
of such expansions are presented in Table 10.1.

The effects of staggered testing become more pronounced when repair
time, testing time, or both are not negligible. We can see, for example, that
even for a zero failure rate, the testing time ¢, will decrease the availability of
the series system by t,/ T if the systems are tested simultaneously. If the tests
are staggered in the series system, the availability will decrease by 2¢,/7;.
Conversely, in the parallel system simultaneous testing with no failures will
decrease the availability by ¢,/T;, but if the tests are staggered so that they
do not take both components out at the same time, the availability does
not decrease.

EXAMPLE 10.8

A voltage monitor achieves an average availability of 0.84 when it is tested monthly;
the repair time is negligible. Since the 0.84 availability is unacceptably low, two monitors
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are placed in parallel. What will the availability of this twin system be (a) if the monitors
are tested monthly at the same time, (b) if they are tested monthly at staggered intervals?

Solution  First we must find ATy. Try Eq. 10.76, the rare-event approximation:
0.84 = 1 — 3ATy; AT, = 0.32.

This is too large for the exponential expansion to be used. Therefore, we use Eq.
10.75 instead. We obtain a transcendental equation

0.84 = —— (1 — ¢y,

ATy
Solving iteratively, we find that
AT, | 0.320 | 0.340 \ 360 \ 380
(1/0.84) (1 — &%) l 0.326 I 0.343 | 3599 | .376
Therefore,
AT, = .36;

(a) From Eq. 10.108 we find for simultaneous testing

AT = 55536 ><10 55 (3 4¢ 0%+ %) = 0.967.

(b) From Eq. 10.113 we find for staggered testing

A/’zk(To) = ——0 136 (2 — 2¢70% — ¢0%/2 4 gm0y = () 978,

These results can be generalized to combinations of series and parallel
configurations. However, the evaluation of the integral in Eq. 10.100 over the
test period may become tedious. Moreover, the evaluation of maintenance,
testing, and repair policies become more complex in real systems that contain
combinations of revealed and unrevealed failures, large numbers of compo-
nents, and dependencies between components. Some of the more common
types of dependencies are included in the following chapter.
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Exercises

10.1

10.2

10.3

10.4

10.5

Without preventive maintenance the reliability of a condensate demin-
eralizer is characterized by

f{;)\(t') dt' = 1.2 X 1072+ 1.1 X 107

where ¢ is in hours. The design life is 10,000 hr.

(a) What is the design-life reliability?

(b) Suppose that by overhaul the demineralizer is returned to as-good-
as-new condition. How frequently should such overhauls be per-
formed to achieve a design-life reliability of at least 0.95?

(c) Repeat b for a target reliability of at least 0.975.

Discuss under what conditions preventative maintenance can increase
the reliability of a simple active parallel system, even though the compo-
nent failure rates are time-independent. Justify your results.

Repeat b of Exercise 10.1 assuming that there is a 1% probability that
faulty overhaul will cause the demineralizer to fail destructively immedi-
ately following start-up. Is it possible to achieve the 0.95 reliability? If
s0, how many overhauls are required?

Derive an equation analogous to Egs. 10.27 and 10.28 that includes a
probability p; of independent maintenance failure and a probability p,
of common-mode maintenance failure.

Suppose that a device has a failure rate of
A(t) = (0.015 + 0.02¢) /year,
where ¢ is in years.

(a) Calculate the reliability for a 5-year design life assuming that no
maintenance is performed.

(b) Calculate the reliability for a 5-year design life assuming that annual
preventive maintenance restores the system to an as-good-as-new
condition.

(c) Repeat b assuming that there is a 5% chance that the preventive
maintenance will cause immediate failure.

10.6 A machine has a failure rate given by A(f) = at. Without maintenance

the reliability at the end of one year is R(1) = 0.86.

(a) Determine the value of “‘a’’.

(b) If asgood-as-new preventive maintenance is performed at two-
month intervals, what will the one-year reliability be?
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(c) If in b there is a 2% probability that each maintenance will cause
system failure, what will be the value of the reliability at the end
of one year?

10.7 Suppose that the times to failure of an unmaintained component may
be given by a Weibull distribution with m = 2. Perfect preventive mainte-
nance is performed at intervals 7 = 0.256.

(a) Find the MTTF of the maintained system in terms of 6.

(b) Determine the percentage increase in the MTTF over that of the
unmaintained system.

10.8 Solve Exercise 10.7 approximately for the situation in which T << 6.
10.9 The reliability of a device is given by the Rayleigh distribution
R(t) = e,

The MTTF is considered to be unacceptably short. The design engineer
has two alternatives: a second identical system may be set in parallel
or (perfect) preventive maintenance may be performed at some interval
T. At what interval 7 must the preventive maintenance be performed
to obtain an increase in the MTTF equal to what would result from
the parallel configuration without preventive maintenance? (Nofe: See
the solution for Exercise 9.19.)

10.10 Show that preventive maintenance has no effect on the MTTF for a
system with a constant failure rate.

10.11 The following table gives a series of times to repair (man-hours) ob-
tained for a diesel engine.

11.6 7.9 27.7 17.8 8.9 22.5
3.3 33.3 75.3 9.4 28.5 54
10.3 1.1 7.8 41.9 13.3 5.3

(a) Estimate the MTTR.

(b) Estimate the repair rate and its 90% confidence interval assuming
that the data is exponentially distributed.

10.12 Find the asymptotic availability for the systems shown in Exercise 9.38,
assuming that all the components are subject only to revealed failures
and that the repair rate is ». Then approximate your result for the case
v/A>> 1.

10.13 A computer has an MTTF = 34 hr and an MTTR = 2.5 hr.

(a) What is the availability?

(b) If the MTTR is reduced to 1.5 hr, what MTTF can be tolerated
without decreasing the availability of the computer?
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10.17

10.18

10.19
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10.21
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A generator has a long-term availability of 72%. Through a management
reorganization the MTTR (mean time to 7epair) is reduced to one half
of its former value. What is the generator availability following the
reorganization?

A system consists of two subsystems in series, each with v/A = 10* as
its ratio of repair rate to failure rate. Assuming revealed failures, what
is the availability of the system after an extended period of operation?

A robot has a failure rate of 0.05 hr™'. What repair rate must be achieved
if an asymptotic availability of 95% is to be maintained?

Reliability testing has indicated that without repair a voltage inverter
has a 6-month reliability of 0.87; make a rough estimate of the MTTR
that must be achieved if the inverter is to operate with an availability
of 0.95. (Assume revealed failures and a constant failure rate.)

The control unit on a fire sprinkler system has an MTTF for unrevealed
failures of 30 months. How frequently must the unit be tested/repaired
if an average availability of 99% is to be maintained.

A device has a constant failure rate, and the failures are unrevealed. It
is found that with a test interval of 6 months the interval availability is
0.98. Use the “‘rare-event’’ approximation to estimate the failure rate.
(Neglect test and repair times.)

Starting with Egs. 10.107 and 10.112, derive the results for series systems
with simultaneous and staggered testing given in Table 10.1.

The following table gives the times at which a system failed (¢;) and
the times at which the subsequent repairs were completed (¢,) over a
2000-hr period.

51 52 1127 1134

90 92 1236 1265
405 412 1297 1303
507 529 1372 1375
535 539 1424 1439
615 616 1531 1552
751 752 1639 1667
760 766 1789 1795
835 839 1796 1808
881 884 1859 1860
933 941 1975 1976
1072 1091

(a) Calculate the average availability over the time interval 0 =
t = ty. directly from the data.
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10.22

10.23

10.24

10.25

10.26

10.27

10.28
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(b) Assuming constant failure and repair rates, estimate A and u from
the data.

(¢) Use the values of A and wu obtained in b to estimate A(¢) and the
time-averaged availability for the interval 0 = ¢ = . Compare
your results to a.

Starting with Eqgs. 10.108 and 10.113, derive the results for parallel
systems with simultaneous and staggered testing given in Table 10.1.

An auxiliary feedwater pump has an availability of 0.960 under the
following conditions: The failures are unrevealed; periodic testing is
carried out on a monthly (30-day) basis; and testing and repair require
that the system be shut down for 8 hr.

(a) What will the availability be if the shutdown time can be reduced
to 2 hr?

(b) What will the availability be if the tests are performed once per
week, with the 8-hr shutdown time?

(¢) Given the 8-hr shutdown time, what is the optimal test interval?

A pressure relief system consists of two valves in parallel. The system
achieves an availability of 0.995 when the valves are tested on a staggered
basis, each valve being tested once every 3 months.

(a) Estimate the failure rate of the valves.
(b) If the test procedure were relaxed so that each valve is tested once

in 6 months, what would the availability be?

In annual test and replacement procedures 8% of the emergency respi-

rators at a chemical plant are found to be inoperable.

(a) What is the availability of the respirators?

(b) How frequently must the test and replacement be carried out if an
availability of 0.99 is to be reached? (Assume constant failure rates.)

Consider three units in parallel, each tested at equally staggered inter-
vals of 7j. Assume constant failure rates.

(a) Whatis A(?)?

(b) Plot A(?).

(¢) What is A*(T)?

(d) Find the rare-event approximate for A*(7T;).

Unrevealed bearing failures follow a Weibull distribution with m = 2

and 6 = 5000 operating hours. How frequently must testing and repair
take place if bearing availability is to be maintained at least 95%?

The reliability of a system is represented by the Rayleigh distribution

R(t) = e V?",
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Suppose that all failures are unrevealed. The system is tested and re-
paired to an as-good-as-new condition at intervals of 7. Neglecting the
times required for test and repair, and assuming perfect maintenance:

(a) Derive an expression for the asymptotic availability A*().
(b) Find an approximation for A*(«) when T, << 6.
(c) Evaluate A*(o0) for Ty/0 = 0.1, 0.5, 1.0, and 2.0.



CHAPTER 11

Failure Interactions
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11.1 INTRODUCTION

In reliability analysis perhaps the most pervasive technique is that of estimating
the reliability of a system in terms of the reliability of its components. In
such analysis it is frequently assumed that the component failure and repair
properties are mutually independent. In reality, this is often not the case.
Therefore, it is necessary to replace the simple products of probabilities with
more sophisticated models that take into account the interactions of compo-
nent failures and repairs.

Many component failure interactions—as well as systems with indepen-
dent failures——may be modeled effectively as Markov processes, provided that
the failure and repair rates can be approximated as time-independent. Indeed,
we have already examined a particular example of a Markov process; the
derivation of the Poisson process contained in Chapter 6. In this chapter we
first formulate the modeling of failures as Markov processes and then apply
them to simple systems in which the failures are independent. This allows us
both to verify that the same results are obtained as in Chapter 9 and to
familiarize ourselves with Markov processes. We then use Markov methods to
examine failure interactions of two particular types, shared-load systems and
standby systems, and follow with demonstrations of how to incorporate such
failure dependencies into the analysis of larger systems. Finally, the analysis
is generalized to take into account operational dependencies such as those
created by shared repair crews.

11.2 MARKOV ANALYSIS

We begin with the Markov formulation by designating all the possible states
of a system. A state is defined to be a particular combination of operating

326
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TABLE 11.1 Markov States of Three-Component Systems

State #
Component 1 2 3 4 5 6 7 8
a 0o X 0 0 X X 0 X
b 0 0 D.¢ o X 0 X X
c (&) o o X 0 X X X

Note: O = operating; X = failed.

and failed components. Thus, for example, if we have a system consisting of
three components, we may easily show that there are eight different combina-
tions of operating and failed components and therefore eight states. These
are enumerated in Table 11.1, where O indicates an operational component
and X a failed component. In general, a system with N components will have
2V states so that the number of states increases much faster than the number
of components.

For the analysis that follows we must know which of the states correspond
to system failure. This, in turn, depends on the configuration in which the
components are used. For example, three components might be arranged in
any of the three configurations shown in Fig. 11.1. If all the components are
in series, as in Fig. 11.14, any combination of one or more component failures
will cause system failure. Thus states 2 through 8 in Table 11.1 are failed
system states. Conversely, if the three components are in parallel as in Fig.
11.15, all three components must fail for the system to fail. Thus only state 8
is a system failure state. Finally, for the configuration shown in Fig. 11.1¢both
components 1 and 2 or component 3 must fail for the system to fail. Thus
states 4 through 8 correspond to system failure.

The object of Markov analysis is to calculate P,(f), the probability that
the system is in state 7 at time ¢ Once this is known, the system reliability can
be calculated as a function of time from

R(1) = X P.(1), (11.1)
€0

where the sum is taken over all the operating states (i.e., over those states for
which the system is not failed). Alternately, the reliability may be calculated

(a) (b) fc)
FIGURE 11.1 Reliability block diagrams for three-component systems.
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from

R(H) =1- P(1), (11.2)

where the sum is over the states for which the system is failed.

In what follows, we designate state 1 as the state for which all the compo-
nents are operating, and we assume that at ¢ = 0 the system is in state 1.
Therefore,

P(0) =1, (11.3)
and

P.(0) =0, i # 1. (11.4)
Since at any time the system can only be in one state, we have

Ep,(t) =1, (11.5)

where the sum is over all possible states.

To determine the P;(f), we derive a set of differential equations, one for
each state of the system. These are sometimes referred to as state transition
equations because they allow the P(¢) to be determined in terms of the rates
at which transitions are made from one state to another. The transition rates
consist of superpositions of component failure rates, repair rates, or both. We
illustrate these concepts first with a very simple system, one consisting of only
two independent components, @ and b.

Two Independent Components

A two-component system has only four possible states, those enumerated in
Table 11.2. The logic of the changes of states is best illustrated by a state
transition diagram shown in Fig. 11.2. The failure rates A, and A, for compo-
nents a and b indicate the rates at which the transitions are made between
states. Since A, At is the probability that a component will fail between times
tand ¢ + At, given that it is operating at ¢ (and similarly for A,), we may write
the net change in the probability that the system will be in state 1 as

P(t+ At) — P(t) = ~A At P(t) — A ALP(D), (11.6)

TABLE 11.2 Markov States of Three-Component

Systems
State #
Component 1 2 3 4
a 0] X 0 X
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FIGURE 11.2 State transition diagram
with independent failures.

or in differential form

L P() == AR = AP0, (11.7)

To derive equations for state 2, we first observe that for every transition
out of state 1 by failure of component q, there must be an arrival in state 2.
Thus the number of arrivals during At is A, At P,(f). Transitions can also be
made out of state 2 during A¢; these will be due to failures of component b,
and they will make a contribution of —A, At P,(¢#). Thus the net increase in
the probability that the system will be in state 2 is given by

Pt + At) — Po(8) = A At P(D) — A At (D), (11.8)

or dividing by At and taking the derivative, we have
4 p() = AP — M. (119)
Identical arguments can be used to derive the equation for Py(¢). The result is
d%Pg(t) = MP(H) — APs(D). (11.10)

We may derive one more differential equation, which is for state 4. We
note from the diagram that the transitions into state 4 may come either as a
failure of component b from state 2 or as a failure of component a from
state 3; the transitions during At are A, At Py(£) and A, At Py(1), respectively.
Consequently, we have

Pi(t+ Af) — Py(8) = N, At Py(1) + A, At Py(2) (11.11)

or, correspondingly,

d%R,(t) = MP(8) + AB(1). (11.12)
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State 4 is called an absorbing state, since there is no way to get out of it. The
other states are referred to as nonabsorbing states.

From the foregoing derivation we see that we must solve four coupled
ordinary differential equations in time in order to determine the P(f). We
begin with Eq. 11.7 for P,(?), since it does not depend on the other P(?). By
substitution, it is clear that the solution to Eq. 11.7 that meets the initial
condition, Eq. 11.3, is

P(f) = e AT, (11.13)
To find Py(?), we first insert Eq. 11.13 into Eq. 11.9,

%Pg(ﬁ = A NN = N Py(1), (11.14)

yielding an equation in which only P;(¢) appears. Moving the last term to the
left-hand side, and multiplying by an integrating factor ¢, we obtain

Edt[e*'»'Pz(t)] = A (11.15)

Multiplying by dt, and integrating the resulting equation from time equals
zero to t, we have

[AMPyD)] = A, j; e dr (11.16)

Carrying out the integral on the right-hand side, utilizing Eq. 11.4 on the left-
hand side, and solving for P(¢), we obtain

Py(t) = e Mt — AN (11.17)

Completely analogous arguments can be applied to the solution of Eq.
11.10. The result is
Py(8) = e — e Mt (11.18)

We may now solve Eq. 11.11 for P(¢). However, it is more expedient to note
that it follows from Eq. 11.5 that

Pty =1~- iH(t), (11.19)

Therefore, inserting Eqs. 11.13, 11.17, and 11.18 into this expression yields
the desired solution

Pit) =1 — Mt — g™t + gAML, (11.20)

With the P;(#) known, we may now calculate the reliability. This, of course,
depends on the configuration of the two components, and there are only two
possibilities, series and parallel. In the series configuration any failure causes
system failure. Hence

R.(t) = P(¢) (11.21)
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or
R(1) = e~ AFh (11.22)

Since, for the active parallel configuration both components a and & must
fail to have system failure,

R,(t) = P (t) + P(t) + P(1), (11.23)
or, using Eq. 11.19, we have
R, (5 =1— Py(y). (11.24)
Therefore,
Ry(1) = M+ e M — Wt (11.25)

This analysis assumes that the failure rate of each component is indepen-
dent of the state of the other component. As can be seen from Fig. 11.2, the
transitions 1 — 2 and 3 — 4, which involve the failure of component a4, have
the same failure rate, even though one takes place with component & in
operating order and the other with failed component 4. The same argument
applies in comparing the transitions 1 — 3 and 2 — 4. Since the failure
rates—and therefore the failure probabilities—are independent of the system
state, they are mutually independent. Therefore, the expressions derived in
Chapter 9 should still be valid. That this is the case may be seen from the
following. For constant failure rates the component reliabilities derived in
Chapter 9 are

R(ty=eM,  I=ab (11.26)

Thus the series expression, Eq. 11.22, reduces to

R() = R,()R(D), (11.27)
and the parallel expression, Eq. 11.25, is
R() = R.(8) + R(D — R.(f) R(1). (11.28)

These are just the expressions derived earlier for independent components,
without the use of Markov methods.

Load-Sharing Systems

The primary value of Markov methods appears in situations in which compo-
nent failure rates can no longer be assumed to be independent of the system
state. One of the common cases of dependence is in load-sharing components,
whether they be structural members, electric generators, or mechanical pumps
or valves. Suppose, for example, that two electric generators share an electric
load that either generator has enough capacity to meet. It is nevertheless true
that if one generator fails, the additional load on the second generator is
likely to increase its failure rate.
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To model load-sharing failures, consider once again two components, a
and b, in parallel. We again have a four-state system, but now the transition
diagram appears as in Fig. 11.3. Here A} and A} denote the increased failure
rates brought about by the higher loading after one failure has taken place.

The Markov equations can be derived as for independent failures if the
changes in failure rates are included. Comparing Fig. 11.2 with 11.3, we see
that the resulting generalizations of Eqs. 11.7,11.9, 11.10, and 11.12 are

ditpl(t) = —(L+ M)A, (11.29)

Zdt Rt = MLP(D) — AFR(D), (11.30)

4 py( = MR() — AP (11.31)
and

dita(t) = AFPy(1) + AXP(2). (11.32)

The solution procedure is also completely analogous. The results are

Pi(t) = e 4, (11.33)
Py(1) = e — et (11.34)
Py(t) = e Mt — g~ Nt (11.35)
and
Pyl = 1 — ™M — e Mt — g AWt g ()t (Bt 1, (11.36)

FIGURE 11.3 State transition diagram
with load sharing.
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Finally, since both components must fail for the system to fail, the reliability
is equal to 1 — P,(#), yielding

R(t) = Ml M g AR A FE = (kAT (11.87)

It is easily seen that if A¥ = A, and AF = A, there is no dependence
between failure rates, and Eq. 11.37 reduces to Eq. 11.25. The effects of
increased loading on a load-sharing redundant system can be seen graphically
by considering the situation in which the two components are identical: A, =
Ay = A and A¥ = Af = A*. Equation 11.37 then reduces to

R(f) = 2¢"t + ¢ — 9~ +A)1, (11.38)

In Fig. 11.4 we have plotted R(¢) for the two-component parallel system, while
varying the increase in failure rate caused by increased loading (i.e., the ratio
A*/A). The two extremes are the system in which the two components are
independent, A* = A, and the totally dependent system in which the failure
of one component brings on the immediate failure of the other, A* = . Notice
that these two extremes correspond to Eqs. 11.25 and 11.22, for independent
failures of parallel and series configurations, respectively.

R()

FIGURE 11.4 Reliability of load-sharing
systems.

EXAMPLE 11.1

Two diesel generators of known MTTF are hooked in parallel. Because the failure of
one of the generators will cause a large additional load on the other, the design
engineer estimates that the failure rate will double for the remaining generator. For
how many MTTF can the generator system be run without the reliability dropping
below 0.95?

Solution Take A* = 2A. Then Eq. 11.38 is
R=095= 2672'” + 6’_2)“ - 26_3“,

where tis the time at which the reliability drops below 0.95. Let x = ¢*. Then

2% — 3x* + 0.95 = 0.
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The solution must lie in the interval 0 < x < 1. By plotting the left-hand side of the
equation, we may show that the equation is satisfied at only one place, at

x = 0.8647.

Therefore, At = In(1/x) = 0.1454. Since A = 1/MTTF for the diesel generators, the
maximum time of operation is t = 0.1454/A = 0.1454 MTTF. Note that if only a single
generator had been used, it could have operated for only ¢ = In(1/R)/A = 0.0513
MTTF without violating the criterion.

11.3 RELIABILITY WITH STANDBY SYSTEMS

Standby or backup systems are a widely applied type of redundancy in fault
tolerant systems, whether they be in the form of extra logic chips, navigation
components, or emergency power generators. They differ, however, from
active parallel systems in that one of the units is held in reserve and only
brought into operation in the event that the first unit fails. For this reason
they are often referred to as passive parallel systems. By their nature standby
systems involve dependency between components; they are nicely analyzed
by Markov methods.

Idealized System

We first consider an idealized standby system consisting of a primary unit a
and a backup unit b. If the states are numbered according to Table 11.2, the
system operation is described by the transition diagram, Fig. 11.5. When the
primary unit fails, there is a transition 1 — 2, and then when the backup unit
fails, there is a transition 2 — 4, with state 4 corresponding to system failure.
Note that there is no possibility of the system’s being in state 3, since we have

FIGURE 11.5 State transition diagram for
a standby configuration.
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assumed that the backup unit does not fail while in the standby state. Hence
‘Py(t) = 0. Later we consider the possibility of failure in this standby state
as well as the possibility of failures during the switching from primary to
backup unit.

From the transition diagram we may construct the Markov equations for
the three states quite easily. For state 1 there is only a loss term from the
transition 1 — 2. Thus

d [
:i—tPl(t) = —=AP (). (11.39)

For state 2 we have one source term, from the 1 — 2 transition, and one loss
term from the 2 — 4 transition. Thus

d
EPg(t) = AP (D) — MP(1). (11.40)
Since state 4 results only from the transition 2 — 4, we have

d%ﬂ(t) = LB, (11.41)

The foregoing equations may be solved sequentially in the same manner
as those of the preceding sections. We obtain

P(1) = e, (11.42)
) — a =A,l — oA 4
By(1) = )\a(e e, (11.43)
P =0 (11.44)
and
P =1-— Y (A M — Age ™), (11.45)

where we have again used the initial conditions, Eqs. 11.3 and 11.4. Since
state 4 is the only state corresponding to system failure, the reliability is just

R(t) = P(t) + P(v), (11.46)

or

A
R(H) = e+ . At — gAY, A7
() = M 2 (M = e (11.47)

This, in turn, may be simplified to

R(t) = (Mgt — A e, (11.48)

)\[,_A,,

The properties of standby systems are nicely illustrated by comparing
their reliability versus time with that of an active parallel system. For brevity
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we consider the situation A, = A, = A. In this situation we must be careful in
evaluating the reliability, for both Eqs. 11.47 and 11.48 contain A, — A, in the
denominator. We begin with Eq. 11.47 and rewrite the last term as

A
R(D) = e+ ——— M1 — W27, 11.49
( ) ] ( )

Then, going to the limit as A, approaches A,, we have (A; — A,)t < 1, and we
can expand

ehT=T1 — (A — AN+ 5, — A% — - .- (11.50)
Combining Egs. 11.49 and 11.50, we have
R(t) = e M+ A e[t —3(A, — A2+ - - -], (11.51)
Thus as A, and A, become equal, only the first two terms remain, and we have
for A, = A, = A:
Riy=0A+ e ™ (11.52)
In Fig. 11.6 are compared the reliabilities of active and standby parallel
systems whose two components have identical failure rates. Note that the
standby parallel system is more reliable than the active parallel system because
the backup unit cannot fail before the primary unit, even though the reliability
of the primary unit is not affected by the presence of the backup unit.
The gain in reliability is further indicated by the increase in the system
MTTF for the standby configuration, relative to that for the active configura-

tion. Substituting Eq. 11.52 into Eq. 6.22, we have for the standby parallel
system

MTTF =2/ (11.53)
compared to a value of

MTTF =3/2A (11.54)

for the active parallel system.

1

Standby
parallet

R()

] |
0 1 2 3

At

FIGURE 11.6 Reliability comparison for
standby and active parallel systems.
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Failures in the Standby State

We next model the possibility that the backup unit fails before it is required.
We generalize the state transition diagram as shown in Fig. 11.7. The failure
rate Aj represents failure of the backup unit while it is inactive; state 3 repre-
sents the situation in which the primary unit is operating, but there is an
undetected failure in the backup unit.

There are now two paths for transition out of state 1. Thus for P;(t) we have

%Pl(t) = —MP (1) — A P(0). (11.55)

The equation for state 2 is unaffected by the additional failure path; as in Eq.
11.40, we have

%Pg(t) = AP — AP0, (11.56)

We must now set up an equation to determine F;(7). This state is entered
through the 1 — 3 transition with rate A; and is exited through the 3 — 4
transition with rate A, Thus

L Pt = AP = AP (11.57)

Finally, state 4 is entered from either states 2 or 3;

L P() = PO + AP, (11.58)

The Markov equations may be solved in the same manner as before. We
obtain, with the initial conditions Egs. 11.3 and 11.4,

PU) = &0, (11.59)

FIGURE 11.7 State transition diagram with
failure in the backup mode.
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A

m [e ™t — E“(Aﬂ“;)l] (11.60)

By =

and
Py(f) = et — g At (11.61)

There is no need to solve for P,(z), since once again it is the only state for
which there is system failure, and therefore,

R(t) = P(t) + B(1) + Py(1), (11.62)

yielding
R(t) = e + m [ — g~ Ath)1], (11.63)
Once again it is instructive to examine the case A, = A, = A and

» = A*, in which Eq. 11.63 reduces to

R(1) = (1 + %) N — x)‘; e~ (11.64)
In Fig. 11.8 the results are shown, having values of A* ranging from zero to
A. The deterioration of the reliability is seen with increasing A*. The system
MTTF may be found easily by inserting Eq. 11.64 into Eq. 6.22. We have
1 . 1 A 1

MTTF = — + — —

A A ATAF AT (11.65)

When A* = A, the foregoing results reduce to those of an active parallel
system. This is sometimes referred to as a ‘‘hot-standby system,”’ since both
units are then running and only a switch from one to the other is necessary.
Fault-tolerant control systems, which can use only the output of one device
at a time but which cannot tolerate the time required to start up the backup

R@)

FIGURE 11.8 Reliability of a standby system
with different rates of failure in the backup
mode.
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unit, operate in this manner. Unlike active parallel systems, however, they must
“switch from primary unit to backup unit. We consider switching failures next.

EXAMPLE 11.2

A fuel pump with an MTTF of 3000 hr is to operate continuously on a 500-hr mission.
(@) What is the mission reliability?

(b) Two such pumps are put in a standby parallel configuration. If there are no failures
of the backup pump while in the standby mode, what is the system MTTF and
the mission reliability?

(o) If the standby failure rate is 15% of the operational failure rate, what is the system
MTTF and the mission reliability?

Solution

(@) The component failure rate is A = 1/3000 = 0.333 X 107%/hr. Therefore, the
~ mission reliability is
R(T) = ex L X 500 | = 0.846
P\ 73000 o

(b) In the absence of standby failures, the system MTTF is found from Eq. 11.53 to
be

MTTF = % = 2 X 3000 = 6000 hr.

The system reliability is found from Eq. 11.52 to be

1 1
= + —— X X _ X = (). .
R(500) <1 3000 500> exp( 3000 500) 0.988

(¢) We find the system MTTF from Eq. 11.65 with A* = 0.15/3000 = 0.5 X 107*/hr:

1 1
= +
MITTF = 5335 % 107 0510~
0333 X107 1

0.5 X 107 0.333 X 107° + 0.5 X 107
MTTT = 5609 hr.
From Eq. 11.64 the system reliability for the mission is R(500) = 0.986.

Switching Failures

A second difficulty in using standby systems stems from the switch from the
primary unit to the backup. This switch may take action by electric relays,
hydraulic valves, electronic control circuits, or other devices. There is always
the possibility that the switching device will have a demand failure probability
 large enough that switching failures must be considered. For brevity we do
not consider backup unit failure while it is in the standby mode.
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The state transition diagram with these assumptions is shown in Fig. 11.9.
Note that the transition out of state 1 in Fig. 11.5 has been divided into two
paths. The primary failure rate is multiplied by 1 — p to get the successful
transition into state 2, in which the backup system is operating. The second
path with rate pA, indicates a transition directly to the failed-system state that
results when there is a demand failure on the switching mechanism.

For the situation depicted in Fig. 11.9, state 1 is still described by Eq.
11.39. Now, however, the 1 — 2 transition is decreased by a factor 1 — p and
so, instead of Eq. 11.40, state 2 is described by

d
200 = A= pPAR() — LB (11.66)
and state 4 is described by
%P‘;(t) = MP(1) + pAP(2). (11.67)

Since Pi(?) is again given by Eq. 11.42, we need solve only Eq. 11.66
to obtain

Aa
/\1, - /\a

P(t) = (1~ p) (e — &My, (11.68)

Accordingly, since state 4 is the only failed state and P;(#) = 0, we may write
R(9) = Pi(0) + Pu(1), (11.69)

or inserting Eqgs. 11.42 and 11.68, we obtain for the reliability

FIGURE 11.9 State transition diagram with
standby switching failures.
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Once again it is instructive to consider the case A, = A, = A, for which
we obtain

R() = [1+ (1 — p)Ade™ (11.71)

Clearly, as p increases, the value of the backup system becomes less and less,
until finally if pis one (i.e., certain failure of the switching system), the backup
system has no effect on the system reliability.

EXAMPLE 11.3

An annunciator system has a mission reliability of 0.9. Because reliability is considered
too low, a redundant annunciator of the same design is to be installed. The design
engineer must decide between an active parallel and a standby parallel configuration.
The engineer knows that failures in standby have a negligible effect, but there is a
significant probability of a switching failure.

(a) How small must the probability of a switching failure be if the standby configuration
is to be more reliable than the active configuration?

(b) Discuss the switching failure requirement of a for very short mission times.

Solution

(a) Assuming a constant failure rate, we know that for the mission time 7,

- Lo (L) =
/\T—ln[R(T)]—ln(w) 0.1054.

To find the failure probability, we equate Eq. 11.71 with Eq. 9.11 for the active
parallel system:

[1 + (1 — p)AT]e*“‘= Qe-ATW 672/”.
Thus

p=1 —)‘I—T(l — )
1

= 1= 01054

(1 = ¢ = 0.05.

(b) For active parallel Eq. 9.19 gives the short mission time approximation:
R,=1- (AD2
For standby parallel we expand 11.71 for small At:
R,=[1+ A —=pAader=[1+(1—-pAdll —r+ A% -]
=1—pht— G- p A~
Then we calculate p for R, — R, = 0:
1— A= 1+pa+ G—p (A’ =0

or
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The shorter the mission, the smaller p must be, or else switching failures will be more
probable than the failures of the second annunciator in the active parallel configu-
ration.

The combined effects of failures in the standby mode and switching
failures may be included in the foregoing analysis. For two identical units the
reliability may be shown to be

R(1) = [1 + (1 ~-p %] et = (1-p) %e‘““”’, (11.72)

which reduces to Eq. 11.71 as A* — 0. For a hot-standby system in which
identical primary and backup systems are both running so that A* = A, we
obtain from Eq. 11.72

R(t) =2 —p)e— (1 — p)e ™ (11.73)

Thus the reliability is less than that of an active parallel system because there
is a probability of switching failure. As stated earlier, in hotstandby systems,
such as for control devices, the output of only one unit can be used at a time.
If the probability of switching failure is too great, an alternative is to add a
third unit and use a 2/3 voting system, as discussed in Chapter 9.

Primary System Repair

Two considerable benefits are to be gained by using redundant system compo-
nents. The first is that more than one failure must occur in order for the
system to fail. A second is that components can be repaired while the system
is on line. Much higher reliabilities are possible if the failed component has
a high probability of being repaired before a second one fails.

Component repair increases the reliability of either active parallel or
standby parallel systems. Moreover, either system may be analyzed using Mar-
kov methods. In what follows we derive the reliability for a system consisting
of a primary and a backup unit. We assume that the primary unit can be
repaired on line. For clarity, we assume that failure of the backup unit in
standby mode and switching failures can be neglected.

The state transition diagram shown in Fig. 11.10 differs from Fig. 11.5
only in that the repair transition has been added. This creates an additional
source term of vP(f) in Eq. 11.39,

L R() = =\ + VB, (11.74)
and the corresponding loss term is substracted from Eq. 11.40,
d
2R O0= AL = (A + V) A(). (11.75)

The reliability, once again, is calculated from Eq. 11.46.
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FIGURE 11.10 State transition diagram
with primary system repair.

The equations can no longer be solved one at a time, sequentially, as in
the previous examples, for now Pi({) depends on Py(¢). Laplace transforms
may be used to solve Eqs. 11.74 and 11.75, but to avoid introducing additional
nomenclature we use the following technique instead. Suppose that we look
for solutions of the form

P(f) = Ce™ Pty =Ce™, (11.76)

where C, C', and a are constants. Substituting these expressions into Eqgs.
11.74 and 11.75, we obtain

—aC=-AC+vC; —aC' =AC— (A+1)C. (11.77)

The constants Cand C’ may be eliminated between these expressions to yield
the form

al— A+ A+ v)atAn=0 (11.78)

Solving this quadratic equation, we find that there are two solutions for a:

+ At A
at=(—V—T——L)t%[(v+ A+ AN — 4002 (11.79)
Thus our solutions have the form
P(t) = Cie*'+ Coe™, (11.80)
P(t) = Cle'+ Cle™™, (11.81)

We must use the initial conditions along with Eq. 11.79 to evaluate C.
and C.. Combining Egs. 11.80 and 11.81 with the initial conditions P;(0) =
1 and P,(0) = 0, we have

C.+C.=1; C.+ CL=0. (11.82)
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Furthermore, adding Eqs. 11.77, we may write, for a; and o,
o Ce = (A — o) Ch. (11.83)

These four equations can be solved for C. and C.. Then, after some algebra,
we may add Egs. 11.80 and 11.81 to obtain from Eq. 11.46
o, o
R(t) = ——— %' — ———— ™%, (11.84)
a, — a o, — o
The improvement in reliability with standby systems is indicated in Fig.
11.11, where the two units are assumed to be identical, A, = A, = A, and plots
are shown for different ratios of v/A. In the usual case, where v >> A, it is
easily shown that oy >> «, so that the second term in Eq. 11.84 can be
neglected, and that a. =~ —A,A,/v. Hence we may write, approximately,

R(1) %exp(—/\—(:\—bt). (11.85)

In the situation in which » >> A,, A,, the deterioration of reliability is
likely to be governed not by the possibility that the backup system will fail
before the primary system is repaired, but rather by one of the two other
possibilities: (1) that switching to the backup system will fail, or (b) that the
backup system has failed. These failures are dealt with either by improving
the switching and standby mode reliabilities or by utilizing an active parallel
system with repairable components. Then the switching is obviated, and the
configuration is more likely to be designed so that failures in either component
are revealed immediately.

11.4 MULTICOMPONENT SYSTEMS

The models described in the two preceding sections concern the dependencies
between only two components. In order to make use of Markov methods in

R@)

At
FIGURE 11.11 The eftect of primary system
repair rate on the reliability of a standby
system.
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realistic situations, however, it is often necessary to consider dependencies
between more than two components or to build the dependency models into
many-component systems. In this section we first undertake to generalize
Markov methods for the consideration of dependencies between more than
two components. We then examine how to build dependency models into
larger systems in which some of the component failures are independent of
the others.

Multicomponent Markov Formulations

The treatment of larger sets of components by Markov methods is streamlined
by expressing the coupled set of state transition equations in matrix form.
Moreover, the resulting coefficient matrix can be used to check on the formula-
tion’s consistency and to gain some insight into the physical processes at
play. To illustrate, we first put one of the two-component, four-state systems
discussed earlier into matrix form. The generalization to larger systems is
then obvious.

Consider the backup configuration shown in Fig. 11.7, in which we allow
for failure of the unit in the standby mode. The four equations for the P(%)
are given by Eqs. 11.55 through 11.58. If we define a vector P(#), whose
components are P (f) through P(#), we may write the set of simultaneous
differential equations as

Pi(1) ~A=A 0 0 o|[A®
dlBpomf_| A A 0 0RO
Et IAGE AL 0 A, O] (0 (11.86)
Pi() 0 PV N | W XT)

Consider next a system with three components in parallel, as shown in
Fig. 11.14. Suppose that this is a Joad-sharing system in which the component
failure rate increases with each component failure:

A, = component failure rate with no component failures,

Ay = component failure rate with one component failure,

As
If we again enumerate the possible system states in Table 11.1, the state

transition diagram will appear as in Fig. 11.12. From this diagram we may
construct the equations for the P(f). In matrix form they are

fl

component failure rate with two component failures.

Py (1) -3\ 0 0 0 0 0 0 0||P®
Py(1) A 2% 0 0 0 0 0 O0||R®
Py(t) A 0 -2 0 0 0 0 Oo|[R”®
dlP@l_| A 0 0 =24 0 0 0 O[|P®
|l | o Ag A 0 —Xx O 0 oA/
Pi(9) 0 Ag 0 As 0 =X 0 O]|P®
Pi(1) 0 0 As As 0 0 —x O][P®
2] Lo 0 0 0 A A A O LR

(11.87)
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FIGURE 11.12 State transition diagram for
a three-component parallel system.

where there are now 2° = 8 states in all. The generalization to more compo-
nents is straightforward, provided that the logical structure of the dependen-
cies is understood.

Equations 11.86 and 11.87 may be used to illustrate an important property
of the coefficient matrix, one which serves as an aid in constructing the set
of equations from the state transition diagram. Each transition out of a state
must terminate in another state. Thus, for each negative entry in the coefficient
matrix, there must be a positive entry in the same column, and the sum of
the elements in each column must be zero. Thus the matrix may be constructed
systematically by considering the transitions one at a time. If the transition
originates from the ith state, the failure rate is subtracted from the ith diagonal
element. If the transition is to the jth state, the failure rate is then added to
the jth row of the same column.

A second feature of the coefficient matrix involves the distinction between
operational and failed states. In reliability calculations we do not allow a system
to be repaired once it fails. Hence there can be no way to leave a failed state.
In the coefficient matrix this is indicated by the zero in the diagonal element
of each failed state. This is not the case, however, when availability rather
than reliability is being calculated. Availability calculations are discussed in
the following section.

For larger systems of equations it is often more convenient to write Markov
equations in the matrix form

d —
—P() = MP(), (11.88)
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where P is a column vector with components Py (£), Py(t), . . . , and Mis referred
to as the Markov transition matrix. Instead of repeating the entire set of
equations, as in Eqs. 11.86 and 11.87, we need write out only the matrix.
Thus, for example, the matrix for Eq. 11.86 is

A=A 0 0 0

_ /\a ""/\b O O
M= 3 o - 0] (11.89)

0 Ao A, O

The dimension of the matrix increases as 2%, where N is the number of
components. For larger systems, particularly those whose components are
repaired, the simple solution algorithms discussed earlier become intractable.
Instead, more general Laplace transform techniques may be required. If there
are added complications, such as time-dependent failure rates, the equations
may require solution by numerical integration or by Monte Carlo simulation.

EXAMPLE 11.4

A 2/3 system is constructed as follows. After the failure of either component g or ¢,
whichever comes first, component b is switched on. The system fails after any two of
the components fail. The components are identical with failure rate A.

(@) Draw a state transition diagram for the system.

(b) Write the corresponding Markov transition matrix.

(¢) Find the system reliability R(?).

(d) Determine the reliability when time is set equal to the MTTF one component.

Solution  For this three-component system, there are eight states. We define these
according to Table 11.1.

(a) The state transition diagram is shown in Fig. 11.13. Note that states 3 and 8 are
not reachable.

(b) The Markov transition matrix is

T—2A4 0 0 0 0 0 0 0
A =240 0 0 0 0 0
0 0 0 0 000 0
A0 0 220 0 0 0
M=1 o A 0 0 0000 4
0 A 0 A 0000
0 0 0 A 00 0 0
0 0 0 0 000 0

(¢) The reliability is given by R(f) = P,(f) + P(f) + Pi(2); thus only three of the eight
equations need be solved. First, dP,/dt = —2AP;, with P,(0) = 1 yields P (¢) =
¢ **. The equations for P, + P, are the same:

n

dt

= AP, —2AP,, P,(0)=0; n=24.
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FIGURE 11.13 State transition diagram for
Example 11.4.

Therefore,

dP,

=A™ = 2)P,.
dt !
We use the integrating factor ¢* to obtain

%(Pne’”“) =A.

Then integrating between 0 and ¢, we obtain

P,(9)e* — P,(0) = AL
Thus

P, () = Ate™ ™, n=24.

Substituting into R(f) = P, + P, + P, yields

R(t) = (1 + 2A0) e,

(d) t= MTTF = 1/A. Then
RMMTTF) = (1 +2 X 1) = 0.406.

Combinations of Subsystems

In principle, we can treat systems of many components using Markov methods.
However, with 2" equations the solutions soon become unmanageable. A
more efficient approach is to define one or more subsystems containing the
components with dependencies between them. These subsystems can then
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FIGURE 11.14 Standby configurations.

be treated as single blocks in a reliability block diagram, and the system
reliability can be calculated using the techniques of Chapter 9, since the
failures in the subsystem defined in this way are independent of one another.
To understand this procedure, consider the system configurations shown
in Fig. 11.14. In Fig. 11.14a is shown the convention for drawing a two-
component standby system of the type discussed in the preceding section as
a reliability block diagram. In Fig. 11.14) the standby parallel subsystem,
consisting of components a and b, is in series with two other components.
The reliability of the standby subsystem (with no switching errors) is given by
Eq. 11.63. Therefore, we define the reliability of the standby subsystem as

Ry(t) = e M + [eM — e~ AtA]. (11.90)

A+ A=A
Then, if the failures in components ¢ and d are independent of those in the
standby subsystem, the system reliability can be calculated using the prod-
uct rule

R(?) = Ry () RO R,(2). (11.91)

Generalization of this technique to more complex configurations is straight-
forward.

The configuration in Fig. 11.14cillustrates a somewhat different situation.
Here the primary and standby subsystems themselves each consist of two
components, a and ¢, and b and d, respectively. Here we may simplify the
Markov analysis by first combining the four components into two subsystems,
each having a composite failure rate. Thus we define

Aw = A+ A, (11.92)

A = A+ Ay (11.93)
and

A=A+ AL (11.94)

We may again apply Eq. 11.90 to calculate the system reliability if we replace
Aos Ay, and Af with A, Ay, and Aj, respectively.

11.5 AVAILABILITY

In availability, as well as in reliability, there are situations in which the compo-
nent failures cannot be considered independent of one another. These in-
clude shared-load and backup systems in which all the components are repair-
able. They may also include a variety of other situations in which the
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dependency is introduced by the limited number of repair personnel or by
replacement parts that may be called on to put components into working
order. Thus, for example, the repair of two redundant components cannot be
considered independent if only one crew is on station to carry out the repairs.

The dependencies between component failure and repair rates may be
approached once more with Markov methods, provided that the failures are
revealed, and that the failure and repair rates are time-independent. Although
we have already treated the repair of components in reliability calculations,
there is a fundamental difference in the analysis that follows. In reliability
calculations components can be repaired only as long as the system has not
failed; the analysis terminates with the first system failure. In availability calcula-
tions we continue to repair components after a system failure in order to
bring the system back on line, that is, to make it available once again.

The differences between Markov reliability and availability calculations
for systems with repairable components can be illustrated best in terms of the
matrix notion developed in the preceding section. For this reason we first
illustrate an availability calculation with a system for which the reliability was
calculated in the preceding section, standby redundance. We then illustrate
the limitation placed on the availability of an active parallel configuration by
the availability of only one repair crew.

Standby Redundancy

Suppose that we consider the reliability of a two-component system, consisting
of a primary and a backup unit. We assume that switching failures and failure
in the standby mode can be neglected. In the preceding section the analysis
of such a system is carried out assuming that the primary unit can be repaired
with a rate . Since there are only three states with nonzero probabilities the
state transition diagram may be drawn as in Fig. 11.154, where state 3 is the

Ap

(a) {b)
FIGURE 11.15 State transition diagrams for a standby sys-
tem: (a) for reliability, (4) for availability.
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failed state. The transition matrix for Eq. 11.88 is then given by

—A, v 0
M=| A, —A—v 0O}. (11.95)
0 A 0

The estimate of the availability of this system involves one additional state
transition. In order for the system to go back into operation after both units
have failed, we must be able to repair the backup unit. This requires an added
repair transition from state 3 to state 2, as indicated in Fig. 11.155. This repair
transition is represented by two additional terms in the Markov transition
matrix. We have

—A, v 0
M=| A —A—v v | (11.96)
O /\}, -V

Here we assume that when both units have failed, the backup unit will be
repaired first; we also assume that the repair rates are equal. More general
cases may also be considered.

An important difference can be seen in the structures of Egs. 11.95 and
11.96. In Eq. 11.96 all the diagonal elements are nonzero. This is a fundamen-
tal difference from reliability calculations. In availability calculations the system
must always be able to recover from any failed state. Thus there can be no
zero diagonal elements, for these would represent an absorbing or inescapable
failed state; transitions can always be made out of operating states through
the failure of additional components.

The availability of the system is given by

A(t) =D P(2), (11.97)
€0
where the sum is over the operational states. The Markov equations, Eq. 11.88,
may be solved using Laplace transforms or other methods to determine the
P(#), and Eq. 11.97 may be evaluated for the detailed time dependence of
the point availability.

We are usually interested in the asymptotic or steady-state availability,
A(%), rather than in the time dependence. This quantity may be calculated
more simply. We note that as { — %, the derivative on the right-hand side of
Eq. 11.88 vanishes and we have the time-independent relationship

MP () = 0. (11.98)

In our problem this represents the three simultaneous equations
—A P () + vPy() =0, (11.99)
AP () = (A + V) Py(®) + vP(») =0, (11.100)

and

A Py(0) — vP(0) = 0. (11.101)
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This set of three equations is not sufficient to solve for the P,(e). For all
Markov transition matrices are singular; that is, the equations are linearly
dependent, yielding only N — 1 (in our case two) independent relationships.
This is easily seen, since adding Eqgs. 11.99 and 11.101 yields Eq. 11.100.
The needed piece of additional information is the condition that all of the
probabilities must sum to one:

ER(oo) =1. (11.102)

In the situation in which we take A, = A; = A, our problem is easily solved.
Combining Egs. 11.99, 11.101, and 11.102, we obtain

Pi() = [l +%+ (éﬂ_l, (11.108)

14
2]-1
Py() = [1 +% (%) ] % (11.104)

and

P(w) = [1 +hy (%)] (ﬁy) (11.105)

The steady-state availability may be found by setting ¢ = © Eq. 11.97:

Aw) =1 - [1 22y (%)] (%)z (11.106)

If we further assume that A/v << 1, we may write

A(0) =1 — <§>2. (11.107)

14

EXAMPLE 11.5

Suppose that the system availability for standby systems must be 0.9. What is the
maximum acceptable value of the failure to repair rate ratio A/v?
Solution Let x = A/vin Eq. 11.106. Then
A(w) =1— (1 +x+x)7"(x).

Converting to a quadratic equation, we have x> — yx — vy = 0, where
g q q A Y Y

and
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If instead the rare-event approximation is used,

%z VI = A(») = V1 =009 = 0.316.

Other configurations are also possible. If two repair crews are available,
repairs may be carried out on the primary and backup units simultaneously;
the result is the four-state system of Table 11.2. As indicated in Fig. 11.164,
itis possible to get the primary unit running before the backup unitis repaired.
In this situation states 1, 2, and 3 are operating states and must be included
in the sum in Eq. 11.97. The Markov matrix now becomes

—A, v v 0
_ A, —V— A 0 v
M = 0 0 —v—A, v (11.108)
0 A, A —2v

Other possibilities may also be added. For example, if switching failures
and failures of the backup unit while in standby are not negligible, the state
transition diagram is modified as shown in Fig. 11.165, where p represents
the probability of failure in switching from the primary to the backup, and
Aj the standby failure rate of the backup unit. The Markov transition matrix
corresponding to Fig. 11.164 is

—Aa — AL v v 0
1= WA, —A,— 0
M=] ¢ /\bf’) RS | (11.109)
l’Aa /\b )\(L _—21/

(a) (b)
FIGURE 11.16 State transition diagrams for repairable standby systems.
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To recapitulate, steady-state availability problems are solved by the same
procedure. Any N — 1 of the N equations represented by Eqg. 11.98 are
combined with the condition, Eq. 11.102, that the probabilities must add to
one, to solve for the components of P(). These are then substituted into
Eq. 11.97 with the sum taken over all operating states to obtain the availability.

Shared Repair Crews

We conclude with the analysis of an active parallel system consisting of two
identical units. We assume that the failure rates are identical and that they
are independent of the state of the other unit. We also assume that the repair
rates for the two units are the same. In this situation the failures and repairs
of the two units are independent, provided that each unit has its own repair
crew. The availability is then given by Eq. 10.95. The dependency is introduced
not by a hardware failure, as in the case of standby redundance, but by an
operational decision to provide a single repair crew that can handle only one
unit at a time.

The state transition diagram for the system using two repair crews is shown
in Fig. 11.17a. Since the availability can be calculated from the component
availabilities, as in Eq. 10.95, we shall not pursue the Markov solution further.
Our attention is directed to the system using one repair crew, indicated by
the state transition diagram given in Fig. 11.175.

The transition matrix corresponding to Fig. 11.17b is

—2A v v 0
A —A—vw 0 v
0 A A -y

(a) (b)
FIGURE 11.17 State transition diagrams for an active parallel system: (a) two repair crews,
(b) one repair crew.
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We solve the equations obtained from this matrix along with Eq. 11.102 to
yield, after some algebra,

2 1-1
Pi(o) = [1+2§+2<§>] , (11.111)
14 14
211
Py(0) + Py() = [1 +otio <§> ] 2, (11.112)
14 14 14
and
271 9 y9
Py() = [1 +otio <A> ] 2’:2. (11.113)
14 14 v

Substitution of the results into Eq. 11.97 then yields for the steady-state
availability

2 1-1 I3
A() =1—[1+2—4+2<§>] 2—): (11.114)
v v v
For the usual case where A/vy << 1, this may be approximated by
A 2
A(o)=1—-2 (1_/) . (11.115)

The loss in availability because a second repair crew is not on hand can be
determined by comparing these expressions to those obtained for system
availability when there are two repair crews. From Eq. 10.95, with N = 2,

we have
A(o) =1— [1 + QA + <A>2]_l <&>2, (11.116)
v v v

or for the case where A/v << 1,
A2
A(o) =1 — (—) . (11.117)

14

Thus the unavailability is roughly doubled if only one repair crew is present.

EXAMPLE 11.6

A system has an availability of 0.90. Two such systems, each with its own repair crew,
are placed in parallel. What is the availability

(@) for a standby parallel configuration with perfect switching and no failure of the
unit in standby;
(b) for an active parallel configuration?

(¢) Whatis the availability if only one repair crew is assigned to the active parallel con-
figuration?



356  Introduction to Reliability Engineering

Solution The system availability is given by A(®) = v/ (v + A). Therefore v/A =
A(®)/[1 — A(®)] =0.9/(1 — 09) = 9; A/v = 0.1111.

(@) From Eq. 11.106,

L (0.1111)2 _
AC) =1~ 0T 5 oat): 98
(b) From Eq. 11.1186,
2
A() =1~ (0.1111) ~ 0.990.

1+2x0.1111 + (0.1111)?
(¢) From Eq. 11.114,

B 2 X (0.1111)?
T+2X0.1111 + 2 X (0.1111)?

A(>) =1 = 0.980.
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Exercises

11.1 Two stamping machines operate in parallel positions on an assembly
line, each with the same MTTF at the rated speed. If one fails, the other
takes up the load by doubling its operating speed. When this happens,
however, the failure rate also doubles. Assuming no repair, how many
MTTF for a machine at the rated speed will elapse before the system
reliability drops below (a) 0.99, (6) 0.95, (¢) 0.90?

11.2 Enumerate the 16 possible states of a four-component system by writing
a table similar to Table 11.1. For the following configurations which are
the failed states?

(a) (b) (c)



11.3

11.4

11.5

11.6

11.7

11.8

11.9
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Consider a system consisting of two identical units in an active parallel
configuration. The units cannot be repaired. Moreover, because they
share loads, the failure rate A* of the remaining unit is substantially
larger than the unit failure rates when both are operating.

(a) Find an approximatioh for the system reliability for a short period
of time (i.e., At << 1 and A¥*¢ << 1).

(b) How large must the ratio of A*/A become before the MTTF of the
system is no greater than that for a single unit with failure rate A?

Repeat Exercise 11.1 for the standby configurations shown in Fig. 11.14.

For the idealized standby system for which the reliability is given by
Eq. 11.52,

(a) Calculate the MTTF in terms of A.

(b) Plot the time-dependent failure rate A(f) and compare your results
to the active parallel system depicted in Fig. 9.25.

Verify Egs. 11.42 through 11.45.

Calculate the variance for the time-to-failure for two identical units,
each with a failure rate A, placed in standby parallel configuration, and
compare your results to the variance of the same two units placed in
active parallel configuration. (Ignore switching failures and failures in
the standby mode.)

Derive Eq. 11.52 assuming that A, = A, from the beginning.

Under a specified load the failure rate of a turbogenerator is decreased
by 30% if the load is shared by two such generators. A designer must
decide whether to put two such generators in active or standby parallel
configuration. Assuming that there are no switching failures or failures
in the standby mode,

(a) Which system will yield the larger MTTF?
(b) What is the ratio of MTTF for the two systems?

11.10 Show that Eq. 11.64 reduces to Eq. 11.52 as A" — 0.

11.11 Consider the following configuration consisting of four identical units

with failure rate A and with negligible switching and standby failure
rates. There is no repair.

(a) Show that the reliability can be expressed in terms of the Poisson
distribution discussed in Chapter 6.

(b) Evaluate the reliability in the rare-event approximation for small Az
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(c) Compare the result from b to the rare-event approximation for
four identical units in active parallel configuration, as developed
in Chapter 9, and evaluate the reliabilities for A¢ = 0.1.

11.12 Verify Eq. 11.68.

11.13 For the following system, assume unit failure rates A, no repair, and
no switching or standby failures.

N\
AN

N\ "'—

(a) Calculate the reliability.

(b) Approximate the result by the rare-event approximation for small
At, and compare your result to that for four units in an active
parallel configuration.

11.14 Consider a standby system in which there is a switching failure probabil-
ity p and a failure rate in the standby mode of A;.

(a) Draw the transition diagram.

(b) Write the Markov equations.

(c) Solve for the system reliability.

(d) Reduce the reliability to the situation in which the units are identi-
cab A, = A, = A A = A

11.15 A design team is attempting to optimize the reliability of a navigation
device. The choices for the rate gyroscopes are (a) a hot standby system



11.16
11.17

11.18

11.19

11.20
11.21

11.22

11.23
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consisting of two gyroscopes, and (b) a 2/3 voting system consisting of
three gyroscopes. The mission time is 20 hr, and the gyroscope failure
rate is 3 X 107°/hr. What is the greatest probability of switching failure
in the hot standby system for which mission reliability is greater than
that of the § system? Assume that failures in logic on the 2/3 system
can be neglected. (Hint: Assume rare-event approximations for the
gyroscope failures.)

Derive Eq. 11.72.

(a) Find the asymptotic availability for a standby system with two repair
crews; the Markov matrix is given by Eq. 11.108. Assume that
A, = Ay = 0.01/hr and v = 0.5/hr.

(b) Evaluate the asymptotic availability for a standby system for the
same data, except that there is only one repair crew. The Markov
matrix is given by Eq. 11.96.

Derive Eqgs. 11.82 and 11.83.

A system has an asymptotic availability of 0.93. A second redundant
system is added, but only the original repair crew is retained. Assuming
that all failures are revealed, estimate the asymptotic availability.

Derive Egs. 11.103 through 11.105.

Assume that the units in Exercise 11.11 all have failure and repair rates
A and ». A single crew repairs the most recently failed unit first.

(a) Determine the asymptotic availability in terms of v and A.
(b) Approximate your result for the case A/v << 1.

(c) Compare your result to that for the same units in active parallel
configuration when A/v = 0.02.

Consider the 2/3 standby configuration shown on the following page.
It consists of three identical units; two units are required for operation.
If either unit a or cfails, unit bis switched on. Ignore switching failures
and repair, but assume failure rate A and A* in the operating and
standby modes.

(a) Enumerate the possible system states and draw a transition di-
agram.

(b) Write the Markov equations for the system.

Two ventilation units are in active parallel configuration. Each has an
MTTF of 120 hr. Each is attended by a repair crew, and the MTTR is
known to be 8 hr.

(a) Calculate the availability, assuming that either unit can provide
adequate ventilation.
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(b) The units are replaced by new models with an MTTF of 200 hr.
Can the staff be reduced to one repair crew without a net loss of
availability? (Assume that the MTTR remains the same.)

4

11.24 Assume that the units in Exercise 11.22 have identical repair rates v.

(a) Enumerate the system states and draw a transition diagram.
(b) Write the transition matrix, M, for the Markov equations.
(¢) Determine the asymptotic value of the system availability.



CHAPTER 12

System Safety Analysis

‘Human error, lack cyf imagination, and blind lgnorance. The practice gy[
engineering s in ézrge measure a con/inuizzy x/ruyg/e fo avoid maéiny

. 2
mistabes /for these reasons.

Samuel C 37/0rmcm,
The Existential Tleasures o/[ (Snyz'neeriny,
1976

12.1 INTRODUCTION

The discussion of system safety analysis in this chapter presents a different
emphasis from the more general reliability considerations considered thus
far. Whereas all failures are included in the determination of reliability, our
attention now is turned specifically to those that may create safety hazards.
The analysis of such hazards is often difficult, for with proper precautions
taken in design, manufacture, and operation, failures causing safety problems
should occur infrequently. Thus, the small probabilities encountered compli-
cates the collection of data needed for analysis and making improvements.
As a result, increased importance is assumed by more qualitative methods as
well as by the engineer’s understanding of the hazards that may arise. These
difficulties notwithstanding, the potentially life-threatening nature of the haz-
ards under consideration make safety analysis an indispensable component
of reliability engineering.

Safety systems analysis has derived much of its importance from its associa-
tion with industrial activities that may engender accidents of grave conse-
quences. If we examine, in detail, historic accidents such as the disastrous
chemical leak at Bhopal, India in 1984, or the 1986 destruction of the nuclear
reactor at Chernobyl, some of the difficulties in the safety assessment of such
systems begins to become apparent. First, the system is likely to have very
small probabilities of a catastrophic failure, because it has redundant configu-
rations of critical components. It then follows that the events to be avoided

361



362  Introduction to Reliability Engineering

have either never occurred, or if they have, only rarely. There are few if any
statistics on the probabilities of failures of the system as a whole, and reliability
testing on the system level is likely to be impossible. Secondly, whatever acci-
dents have occurred have rarely been the result of component failures of a
type that would be easy to predict through reliability testing. Rather, the web
of events leading to the accident is usually a complex of equipment failures,
faulty maintenance, instrumentation and control problems, and human
€errors.

Safety analysis is essential for the full range of products and systems, from
the large technological systems just discussed to small consumer items. For
even though the later may not pose the threat of single catastrophic accidents,
their production in large quantities leads to the possibility of many individual
incidents, each capable of causing injury or death. Here again, the limitations
of standard reliability testing and evaluation procedures are apparent. The
primary challenge to the product development personnel is to understand
the wide variety of environments and circumstances under which the product
will be used, and to try to anticipate and protect against faulty installation or
maintenance, misuse, inappropriate environments, and other hazards that
may not be revealed through standard reliability tests. An additional imperative
is to examine not only how the product may fail in a hazardous manner,
but also how the user may be harmed during normal operation. Adequate
protection must be afforded from the rotating blades, electrical filaments,
flammable liquids, heated surfaces, and other potential hazardous features
that are necessary constituents of many industrial and consumer products.

Even though hazard creation most often involves the intertwined effects
of equipment failure and human behavior, analysis is expedited by examining
them separately. Thus in the following section we build on the discussion in
the preceding chapters to focus on those particular aspects of equipment
failure most closely related to safety hazards. In Section 12.3 the importance
of the human element is emphasized. In that discussion the primary focus is
on the operations of industrial facilities where efforts may be much more
effective in reducing human error than they are likely to be in modifying
consumer psychology. With the background gained in examining the hazard-
ous aspects of equipment and of human causes, we are prepared in Section
12.4 for an overview of those analytical methods that have been developed to
rationalize the discussion of safety analysis. Sections 12.5 through 12.7 then
focus on the construction and evaluation of fault trees.

12.2 PRODUCT AND EQUIPMENT HAZARDS

In examining equipment with safety repercussions, it is useful once again to
frame the analysis in terms of the bathtub curve, and consider infant mortality,
random events, and aging as hazard causes. Most of the materials discussed
in earlier chapters regarding these causes remains relevant. Now, however,
we must extend the level of analysis to even less probable and therefore
possibly more bizarre sets of causes. We also must consider not only product
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or equipment failures but also potential hazards created in the course of
product usage.

Design shortcomings or variability in the production process are the most
likely causes of early or infant mortality failures. Changes in details late in
the design process to facilitate manufacture or construction, which are not
thoroughly checked to ensure that a new hazard hasn’t been introduced, may
be particularly dangerous. Such a change was implicated, for example, in the
1981 collapse of the Kansas City Hyatt Regency walkways that resulted in 114
fatalities. Failure to meet materials specification, improvisation in construction
procedures or unsafe economic choices made in manufacturing processes
may all defeat the integrity of the original design and result in weakened
systems that are then prone to infant mortality hazards. Faulty installations
of hot water heaters, stoves or other consumer products are also prone to
create infant mortality hazards.

Random failures or hazards are characterized by chance occurrences that
are independent of product age. In general they are caused by an environment
that is unanticipated or for which the product does not have the strength to
withstand. They tend to be brought about because the product is used—or
misused—under conditions that were not contemplated in the design, or
were thought to be so improbable that they were lost in the cost-performance
trade-offs. The largest danger in creating a new product is arguably not that
there is an inadequate safety margin against a known hazard, but that a
potential hazard completely escapes the attention of the design team. Even
if a thorough study reveals all significant hazards, however, many decisions
must be faced with safety implications.

Governmental bodies, professional organizations and insurance under-
writers’ codes of standards provide a basis for assessing the level of potential
hazards for many products. Often such standards must be promulgated by
specialized bodies cognizant of unique hazard combinations of particular
industries. The safety of food processing equipment, for example, is compli-
cated by the conflicting requirements that machinery be readily accessible
for cleaning to prevent unsanitary conditions from arising, and the need for
extensive guard equipment to protect workers from hot surfaces, cutting
blades, and other mechanical hazards. While standards and codes of good
practice provide a point of departure for the analysis of hazards, new designs
and novel applications may be expected to present potentially hazardous
conditions that have not been contemplated in the standards. Thus to make
informed safety decisions it is incumbent upon the product development
personnel to gain a thorough understanding of the product and its re-
quired use.

To understand the difficult trade-offs that must be faced, consider a
television monitor. Ventilation slits are required to prevent overheating and
to allow the electronics to operate at a reasonable temperature. More and
larger ventilation paths will likely improve reliability and prolong the life of
the set. However, the designer must also consider unusual locations where
ventilation is curtailed, where debris is piled on top or stacked against the
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monitor or where other cooling impediments are encountered. Safety analysis
then requires not only the determination of the effects of these situations on
set life, but also whether there is an unacceptable risk of fire. Conversely, if
the ventilation slits are made larger to add an extra margin of cooling capacity,
then the increased danger that a child will succeed in inserting a kitchen
knife or other object through a slit and come into contact with high voltage
must be addressed. Thirdly, the magnitude of the hazard created if fluid is
spilled or the monitor immersed must be considered to determine whether
fluid entering through the ventilation slits will result in a benign failure or
an unacceptable risk of electrical shock.

The engineering for safety must go beyond the contemplation of unusual
accidents and inadvertent misuse to consider situations where the user behav-
ior compounds potential hazards. From the nineteenth-century captains of
Mississippi river boats, who blocked safety valves in order to get more pressure
and more performance from their boilers, to present day motorists, who
negate the effects of antilock breaks by driving more aggressively on wet
pavements, product users frequently overcome safety features in order to
enhance performance at the cost of increased risk. Operational limits ex-
ceeded to increase performance, safety guards removed to facilitate mainte-
nance, and warnings ignored as a result of past false alarms are among the
plethora of causes of increased risk induced by unintended usage. Such behav-
ior further complicates the already difficult legal and ethical issues raised in
determining the extent to which users must be protected from their deliberate
unsafe practices.

Product modifications or modernizations likewise may introduce new and
unanticipated hazards. Motors modified for racing, aircraft converted from
civilian to military or from passenger to cargo use, robots or machinery devoted
to new and novel manufacturing tasks all require careful scrutiny to ensure
that the safety integrity of the original design is not compromised. But often
modifications take place years into the product life, when knowledge of the
original design calculations has faded, components suppliers have changed,
and technology has evolved. An example of particularly ill-conceived design
modifications were those made to the steamship Bérkenhead. In converting this
warship to a troop carrier large passageways were cut through the water-tight
bulkheads to provide more light, air and spaciousness for the troops. But the
penetrations not only destroyed the water-tight compartmentalization of the
ship but also greatly weakened the bulkheads. Thus when the ship struck a
rock in 1852, it both flooded very rapidly and broke in two, resulting in over
400 fatalities. While engineering safety practices have matured a great deal
since that time, it, like other historical disasters, serves as a reminder of
the potential consequences of ignorance in making ad-hoc modifications to
existing systems.

Even after provisions have been made to minimize the dangers of infant
mortality or random hazards, there remains the problem of dealing with the
aging failures that may be expected to become increasingly pronounced as
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the product approaches the end of its useful life. Normally, a target life is
stipulated as a part of the design process. Assuming adequate maintenance
is provided to replace those components with shorter lives—such as spark
plugs, brake linings, and tires on automobiles, for example——failures attribut-
able to aging should not create significant risk within the design life. In
relatively few situations, however, can it be guaranteed that a product or
system will not continue to be used well beyond its design life. To be sure,
in some areas of rapid technological development, such as in microprocessor
development, products may become obsolescent and be replaced long before
aging effects become important. Likewise, safety-critical systems may be li-
censed or controlled for removal from service after the number of operating
hours for which previous analysis and/or life tests have verified their capability.
Military aircraft and nuclear reactor pressure vessels, for example may fall
into this category. More often than not however, the increasing cost of mainte-
nance and recovery from breakdown is weighed against replacement cost in
determining at what point a product is retired.

Even where there are strong safety implications, a system can be allowed
to operate well beyond its target design life provided dependable inspection
and repair protocols are employed. The knowledge of the aging process
that has been gained through the years of operation, however, must provide
inspection methods capable of detecting the aging phenomena early enough
to repair or take the system out of service before the deterioration reaches a
hazardous threshold. Many commercial aircraft, for example, have been al-
lowed to operate under such scrutiny beyond the design life originally targeted.

With consumer products the situation is likely to be quite different. For
unless there is a clear and obvious danger, the user is prone to run the product
until it fails and then decide whether to replace or repair it. The critical
design consideration here is to ensure that the wearout modes are benign.
The challenge is simply illustrated with a hot plate, coffee maker, or other
appliance with a heating element. Suppose the design includes a fuse to
prevent fire in the event that the heater fails in a dangerous mode. Then,
the heater failure had better occur before the fuse deterioration becomes a
problem. One complicated situation, in fact, was recently in the courts, where
a consumer product design was “‘improved’’ by incorporating a heater with
a longer design life. However, after the new design resulted in a number of
fires it was discovered that the melting temperature of the fuse gradually
increased with time to the point where by the time the heater finally failed,
the fuss was no longer operable.

The foregoing discussion provides only the beginnings for the level of
sophistication needed to ferret out the potential hazards that may be brought
about by infant mortality, random and aging phenomena, and their interac-
tions. The analytical methods introduced in Section 12.4 provide techniques
for more structured analysis. Use of these should reduce the possibility of
potentially significant hazards that escape consideration altogether. In addi-
tion, the reading of case histories in newspapers and the professional literature
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over a period of years is invaluable in enhancing one’s ability to identify and
eliminate potential hazards before they become safety problems.

12.3 HUMAN ERROR

All engineering is 2 human endeavor, and in the broadest sense most failures
are due to human causes, whether they be ignorance, negligence, or limita-
tions of vigilance, strength, and manual dexterity. Designers may fail to fully
understand system characteristics or to anticipate properly the nature and
magnitudes of the loading to which a system may be subjected or the environ-
mental conditions under which it must operate. Indeed, much of engineering
education is devoted to understanding these and related phenomena. Simi-
larly, errors committed during manufacture or construction are attributable
either to the personnel involved or to the engineers responsible for the setup
of the manufacturing process. Quality assurance programs have a central role
in detecting and eliminating such errors in manufacture and construction.

We shall consider here only human errors that are committed after design
and manufacture; those that are committed in the operation and maintenance
of a system. This is a convenient separation, since design and manufacturing
errors, whether they are considered human or not, appear in the as-built
system as shortcomings in the reliability of the hardware.

Even with our attention confined to human errors appearing in the
operation and maintenance of a system, we find that the uncertainties involved
are generally much greater than in the analysis of hardware reliability. There
are three categories of uncertainty. First, the natural variability of human
performance is considerable. Not only do the capabilities of people differ,
but the day-to-day and hour-to-hour performance of any one individual also
varies. Second, there is a great deal of uncertainty about how to model probabi-
listically the variability of human performance, since the interactions with the
environment, with stress, and with fellow workers are extremely complex and
to a large extent psychological. Third, even when tractable models for limited
aspects of human performance can be formulated, the numerical probabilities
or model parameters that must be estimated in order to apply them are usually
only very approximate, and the range of situations to which they apply is
relatively narrow.

It is, nevertheless, necessary to include the effects of human error in the
safety analysis of any complex system. For as the consequences of accidents
become more serious and more emphasis is put on reliable hardware and
highly redundant configurations, an increasing proportion of the risk is likely
to come from human error, or more accurately from complex interactions
of human shortcomings and equipment problems. Even though accurate
predictions of failure probabilities are problemmatical, a great deal may be
gained from studying the characteristics of human reliability and contrasting
them with those of hardware. From such study comes an insight into how
systems may be designed and operated in order to minimize and mitigate
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Human performance

Stress level
FIGURE 12.1 The effect of stress level on human performance.

accidents in which the operating and maintenance staff may play an im-
portant role.

It has been pointed out* that increasingly there is a centralization of
systems, whether they be larger-capacity power and chemical plants, aircraft
carrying greater number of passengers, or structures with larger capacities.
Since human error in the operation of many such centralized systems may
lead to accidents of major consequence to life and property, there has been
an increased emphasis on plant automation. There are certainly limitations
on such automation, particularly when the uncertainty of how an operator
may react to a situation is overriden by the need for human adaptability in
dealing with conditions that have not or could not be incorporated into the
automated control system. Moreover, automated operation does not tend to
eliminate humans from consideration, but rather to remove them to tasks
of two quite dissimilar varieties; routine tasks of maintaining, testing, and
calibrating equipment; and protective tasks of watching for plant malfunctions
and preventing their accident propagation. These two classes of tasks tend to
enter system safety considerations in different ways. When humans err in
routine testing, maintenance, and repair work, they may introduce latently
risky conditions into the plant. Any errors that they make in taking protective
actions under emergency conditions may increase the severity of an accident.

The problems inherent in maximizing human reliability for the two classes
of tasks may be viewed graphically in Fig. 12.1. Generally, there is an optimum
level of psychological stress for human performance. When the level is too
low, humans are bored and make careless errors; too high a level may cause
them to make a number of inappropriate, near-panic responses to a situation.
To illustrate, consider the example of flying a commercial airliner. The pilot’s
monitoring of controls during level, uneventful flight in a highly automated

* J. Rasmussen, ‘‘Human Factors in High Risk Technology,” in High Risk Technology, A. E. Green
(ed.), Wiley, NY, 1982.
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aircraft would fall on the low level of the curve. The principal danger here
is carelessness or lack of attention. Normal take-offs and landings are likely
to be closer to the optimum stress level for attentive behavior. At the other
extreme pilot reaction to major inflight emergencies, such as onboard fires
or power failures, is likely to be degraded by the high stress level present.
Because of the quite different factors that come into play, we shall now consider
human reliability and its degradation under the two limiting situations of very
routine tasks and tasks performed in emergency situations.

Routine Operations

For purposes of analysis it is useful to classify human errors as random, system-
atic, or sporadic. These classes may be illustrated by considering the simple
example, shown in Fig. 12.2, of the ability to hit a target.* Random errors are
dispersed about the desired value without bias; that is, they have the true
mean value (in x and y), but the variance may be too large. These errors may
be corrected if they are attributable to an inappropriate tool or man—machine
interface. For example, if it is not possible to read instruments finely enough or
to adjust setting precisely enough, such improvements are in order. Similarly,
training in the particular task may reduce the dispersion of random errors.
Figure 12.2billustrates systematic errors whose dispersion is sufficiently small,
but with a bias departing from the mean value. Such bias may be caused by
tools or instruments that are out of calibration, or it may come from incorrect
performance of a procedure. In either case corrective measures may be taken.
More subtle psychological factors—such as the desire of an inspector not to
miss any faulty parts, and thus declaring a good many faulty even though they
are not—may also cause bias errors.

Perhaps sporadic errors, pictured in Fig. 12.2¢, are the most difficult to
deal with, for they rarely show observable patterns. They are committed when
the person acts in an extreme or careless way: forgetting to do something
altogether, performing an action that was not called for, or reversing the
order in which things are done. For example, a meter reader might, in taking
a series of meter readings, read a wrong meter. Again, careful design of the
man—machine interface can minimize the number of sporadic errors. Color,
shape, and other means can be used to differentiate instruments and control
and to minimize confusion. Sporadic errors, in particular, are amplified by
the carelessness inherent in low-stress situations, as well as by the confusion
of high-stress situations.

Let us first examine sporadic errors made in routine situations. Certainly,
under any circumstances, errors are minimized by a well-designed work envi-
ronment. Such design would take into account all the standard considerations
or human factors engineering: comfortable seating, adequate light, tempera-
ture and humidity control, and well-designed control and instrument panels
to minimize the possibilities for confusion. The attention span that can be

* H. R. Gutunann, unpublished lecture notes, Northwestern University, 1982.
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(a) Random error (b) Systematic error (c) Sporadic error
FIGURE 12.2 Classes of human error.

expected for routine tasks is still limited. As indicated in Fig. 12.3, attention
spans for detailed monitoring tend to deteriorate rapidly after about half an
hour, indicating the need for frequent rotation of such duties for optimal
performance. The same deterioration may be expected for very repetitive
tasks, unless there is careful checking or other intervention to insure that
such deterioration does not take place.

Probably one of the most important ways in which system reliability is
degraded is through the dependencies introduced between redundant compo-
nents during the course of routine maintenance, testing, and repair. An
example is the turning off of both of the redundant auxiliary feedwater systems
at the Three Mile Island reactor. The point is that if technicians perform a
task incorrectly on one piece of equipment, they are likely to do it incorrectly
on all like pieces of equipment. This problem may be countered, at least in
part, by a variety of techniques. Diversity of equipment is one, for just as the
hardware will not be subjected to the same failure modes, the maintenance
procedures will also be different. Staggering the times or the personnel doing
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FIGURE 12.3 Vigilance versus time.
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maintenance on redundant equipment also tends to reduce dependencies,
although some smaller degree of dependency may remain through the use
of common tools or incorrect training procedures.

Independent checking of procedures also decreases both the probability
of failure and the degree of dependency. Even here, however, psychological
factors limit effectiveness. When the inspector and the person performing
the maintenance have worked with each other for an extended period of
time, the inspector may tend to become less careful as he or she grows more
confident of the colleague’s abilities. Similarly, if two independent checks are
to be performed, they are unlikely to be truly independent, for often the very
knowledge that a procedure is being checked twice will tend to decrease the
care with which it is done.

Reliability is also degraded when operating and maintenance personnel
inappropriately modify or make shortcuts in operating and maintenance pro-
cedures. Often operating and maintenance personnel gain an understanding
of the system that was not available at the time of design and modify procedures
to make them more efficient and safer. The danger is that, without a thorough
design review, new loadings and environment degradation may be introduced,
and component dependencies may increase inadvertently. For example, in
the 1979 crash of the DC-10 in Chicago, it is thought that a modified procedure
for removing the engines for inspection and preventive maintenance led to
excessive fatigue stresses on the engine support pylon, causing the engine to
break off during takeoff.

Although the methodology is not straightforward, data are available on
the errors committed in the course of routine tasks. Extensive efforts have
been made to develop task analysis and simulation methods.* Failure probabili-
ties are first estimated for rudimentary functions. Then, by combining these
factors, we can estimate probabilities that more extensive procedures will
engender errors.

Emergency Operations

At the high-stress end of the spectrum shown in Fig. 12.1 are the protective
tasks that must be performed by operations personnel under emergency condi-
tions to prevent potentially dangerous situations from getting completely out
of hand. Here a well-designed, man-machine interface, clear-cut procedures,
and thorough training are critical, for in such situations actions that are not
familiar from routine use must be taken quickly, with the knowledge that
mistakes may be disastrous. Moreover, since such situations are likely to be
caused by subtle combinations of malfunctions, they may be confusing and
call for diagnostic and problem-solving ability, not just the skill and rule-based
actions exercised for routine tasks.

* A. D. Swain, and H. R. Guttmann, Handbook of Human Reliability Analysis with Emphasis on Nuclear
Power Plant Applications, U.S. Nuclear Regulatory Commission, NUREG /CR-1287, 1980.
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Under emergency conditions conflicting information may well confuse
operators who then act in ways that further propagate the accident. With
proper training and the ability to function under psychological stress, however,
they may be able to solve the problem and save the day. For example, the
confusion of the operators at the Three Mile Island reactor caused them to
turn off the emergency core-cooling system, thus worsening the accident. In
contrast, the pilot of a Boeing 767 managed to make use of his earlier experi-
ence as an amateur glider pilot and safely land his aircraft after a series of
equipment failures and maintenance errors had caused the plane to run out
of fuel while in flight over Canada.

There are a number of common responses to emergency situations that
must be taken into consideration when designing systems and establishing
operating procedures. Perhaps the most important is the incredulity response.
In the rare event of a major accident, it is common for an operator not to
believe that an accident is taking place. The operator is more likely to think
that there is a problem with the instruments or alarms, causing them to
produce spurious signals. At installations that have been subjected to substan-
tial numbers of false alarms, a real one may very well be disbelieved. Systems
should be carefully designed to keep spurious alarms to a minimum, and
straightforward checks to distinguish accidents from faulty instrument perfor-
mance should be provided. In some situations it is desirable to mandate
that safety actions be taken, even though the operator may feel that faulty
instruments are the cause of the problem.

A second common reaction to emergencies is reverting to stereotype.
The operator reverts to the stereotypical response of the population of which
he or she is a part, even though more recent training has been to the contrary.
For example, in the United States turning a light or other switch “‘up’” means
that it is “‘on.”” In Europe, however, ‘‘down’’ is “on.” Thus, although Ameri-
cans may be trained to put a particular switch down to turn it on, under the
time pressure of an emergency they are likely to revert to the population
stereotype and try to put the switch up. The obvious solution to this problem
is to take great care in human factors engineering not to violate population
stereotypes in the design of instrumentation and control systems. This problem
may be aggravated if operators from one culture are transferred to another,
or if care is not taken in the use of imported equipment.

Finally, once a mistake is made, such as placing a switch in the wrong
position, in a panic an operator is likely to repeat the mistake rather than
think through the problem. This reaction, as well as other inappropriate
emergency responses, must be considered when deciding the extent to which
emergency actions should or can be automated. On the one hand, when there
is extreme time pressure, automated protection systems may eliminate the
errors discussed. At the same time, such systems do not have the flexibility
and problem-solving ability of human operators, and these advantages may
be of overwhelming importance, assuming that there is time for the situation
to be properly assessed.
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In summary, to ensure a high degree of human reliability in emergency
situations, control rooms, whether they be aircraft cockpits or chemical plant
control installations, must be carefully designed according to good human
factors practice. It is also important that the procedures for all anticipated
situations are readily understandable, and finally, that operators are drilled
at frequent intervals on emergency procedures, preferably with simulators
that model the real conditions.

Even though we may characterize human behavior under emergency
conditions and suggest actions that will improve human reliability, it is difficult
indeed to obtain quantitative data on failure probabilites. As we have indicated,
such situations happen only infrequently and often they are not well docu-
mented. Moreover, it is difficult to obtain a realistic response from simulator
experiments when the subjects know that they are in an experiment and not
a life-threatening situation.

124 METHODS OF ANALYSIS

Probably the most important task in eliminating or reducing the probability
of accidents is to identify the mechanisms by which they may take place. The
ability to make such identifications in turn requires that the analyst have a
comprehensive understanding of the system under consideration, both in
how it operates and in the limitations of its components. Even the most
knowledgeable analysts are in danger of missing critical failure modes, how-
ever, unless the analysis is carried out in a very systematic manner. For this
reason a substantial number of formal approaches have been developed for
safety analysis. In this section we introduce three of the most widely used:
failure modes and effects analysis, event trees, and fault trees. In later sections
the use of fault trees is developed in more detail.

Failure Modes and Effects Analysis

Failure modes and effects analysis, usually referred to by the acronym FMEA,
is one of the most widely employed techniques for enumerating the possible
modes by which components may fail and for tracing through the characteris-
tics and consequences of each mode of failure on the system as a whole. The
method is primarily qualitative in nature, although some estimates of failure
probabilities are often included.

Although there are many variants of FMEA, its general characteristics
can be illustrated with the analysis of a rocket shown in Fig. 12.4. In the left-
hand column the major components or subsystems are listed; then, in the
next column the physical modes by which each of the components may fail
are given. This is followed, in the third column, by the possible causes of each
of the failure modes. The fourth column lists the effects of the failure. The
method becomes more quantitative if an estimate of the probability of each
failure mode is made. Criticality or an alternative ranking of the failure’s
importance is usually included to separate failure modes that are catastrophic
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from those that merely cause inconvenience or moderate economic loss. The
final column in most FMEA charts is a listing of possible remedies.

In a more extensive FMEA the information shown in Figure 12.4 may be
expanded. For example, failures are not categorized as simply critical or not
critical but by four levels denoting seriousness.

1. Negligible—Tloss of function that has no effect on the system.

2. Marginal—a fault that will degrade the system to some extent but will not
cause the system to be unavailable, for example, the loss of one of two
redundant pumps, either of which can perform a required function.

3. Critical—a fault that will completely degrade system performance, for
example, the loss of a component that renders a safety system unavailable.

4. Catastrophic—a fault that will have severe consequences and perhaps cause
injuries or fatalities, for example, catastrophic pressure vessel failure.

Additional columns also may be included in FMEA. A list of symptoms
or methods of detection of each failure mode may be very important for safe
operations. A list of compensating provisions for each failure mode may be
provided to emphasize the relative seriousness of the modes. In order to
concentrate improvement efforts on eliminating those having the widest ef-
fects, it is common also to rank the various causes of a particular mode
according to the percentage of the mode’s failures that they incur.

The emphasis in FMEA is usually on the basic physical phenomena that
can cause a device or component to fail. Therefore, it often serves as a suitable
starting point for enumerating and understanding the failure mechanisms
before proceeding to one of the other techniques for safety analysis. To
understand better the progression of accidents when they pass through several
stages and to analyze the effects of component redundancies on system safety,
engineers often supplement FMEA with the more graphic event-tree and fault-
tree methods for quantifying system behavior during accidents.

Event Trees

In many accident scenarios the initiating event—say, the failure of a compo-
nent-—may have a wide spectrum of results, ranging from inconsequential to
catastrophic. The consequences may be determined by how the accident
progression is affected by subsequent failure or operation of other components
or subsystems, particularly safety or protection devices, and by human errors
made in responding to the initiating event. In such situations an inductive
method may be very useful. We begin by asking “‘what if "’ the initiating event
occurs and then follow each of the possible sequences of events that result
from assuming failure or success of the components and humans affected as
the accident propagates. After such sequences are defined, we may attempt
to attach probabilities to them if such a quantitative estimate is needed.
The event tree is a quantitative technique for such inductive analysis. It
begins with a specific initiating event, a particular cause of an accident, and
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then follows the possible progressions of the accident according to the success
or failure of other components or pieces of equipment. Event trees are a
particular adaptation of the more general decision-tree formalism that is
widely employed for business and economic analysis. They are quite useful
in analyzing the effects of the functioning or failure of safety systems in
response to an accident, particularly when events follow with a particular time
progression. The following is a very simple application of event-tree analysis.

Suppose that we want to examine the effects of the power failure in a
hospital in order to determine the probability of a blackout, along with other
likely consequences. For simplicity we assume that the situations may be ana-
lyzed in terms of just three components: (1) the offsite local utility power
system that supplies electricity to the hospital; (2) a diesel generator that
supplies emergency power, and (3) a voltage-monitoring system that monitors
the offsite power supply and, in the event of a failure, transmits a signal that
starts the diesel generator.

We are concerned with a sequence of three events. The initiating event
is the loss of off-site power. The second event is detection of the loss and
subsequent functioning of the voltage-monitoring system; and the third event
is the start-up and operation of the diesel generator. This sequence is shown
in the event tree in Fig. 12.5. Note that at each event there is a branch
corresponding to whether a system operates or fails. By convention, the upward
branches signify successful operation, and the lower branches failure.

Note that for a sequence of N events there will be 2" branches of the
tree. The number may be reduced, however, by eliminating impossible
branches. For example, the generator cannot start unless the voltage monitor
functions. Thus the path is impossible (has a zero probability) and can be
pruned from the tree, as in Fig. 12.6.

We may follow an event tree from left to right to find the probabilities
and consequences of differing sequences of events. The probabilities of the
various outcomes are determined by attaching a probability to each event on
the tree. In our tree the probabilities are P, for the initial event, P, for the
failure of the voltage monitoring system, and P, for the failure of the diesel
generator. With the assumption that the failures are independent, the proba-
bility of a blackout is therefore PP, + P(1 — P)F,.

Off-site Voltage Diesel
power monitor generator
Operate
Operate No blackout
Fail
Fail b Blackout
Operate
Fail e Blackout
Fail
Blackout

FIGURE 12.5 Event tree for power failure.
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Off-site Voltage Diesel
power monitor generator
Operate
Operate e No blackout
Fail i Blackout
Fail Blackout

FIGURE 12.6 Reduced event tree for power failure.

Fault Trees

Fault-tree analysis is a deductive methodology for determining the potential
causes of accidents, or for system failures more generally, and for estimating
the failure probabilities. In its narrowest sense fault-tree analysis may be looked
on as an alternative to the use of reliability block diagrams in determining
system reliability in terms of the corresponding components. However, fault-
tree analysis differs both in the approach to the problem and in the scope of
the analysis.

Fault-tree analysis is centered about determining the causes of an unde-
sired event, referred to as the top event, since fault trees are drawn with it at
the top of the tree. We then work downward, dissecting the system in increasing
detail to determine the root causes or combinations of causes of the top event.
Top events are usually failures of major consequence, engendering serious
safety hazards or the potential for significant economic loss.

The analysis yields both qualitative and quantitative information about
the system at hand. The construction of the fault tree in itself provides the
analyst with a better understanding of the potential sources of failure and
thereby a means to rethink the design and operation of a system in order to
eliminate many potential hazards. Once completed, the fault tree can be
analyzed to determine what combinations of component failures, operational
errors, or other faults may cause the top event. Finally, the fault tree may be
used to calculate the demand failure probability, unreliability, or unavailability
of the system in question. This task of quantitative evaluation is often of
primary importance in determining whether a final design is considered to
be acceptably safe.

The rudiments of fault-tree analysis may be illustrated with a very simple
example. We use the same problem of a hospital power failure treated induc-
tively by event-tree analysis earlier to demonstrate the deductive logic of fault-
tree analysis. We begin with blackout as the top event and look for the causes,
or combination of causes, that may lead to it. To do this, we construct a fault
tree as shown in Fig. 12.7. In examining its causes, we see that both the off-site
power system and the emergency power supply must fail. This is represented by
a N gate in the fault tree, as shown. Moving down to the second level, we see
that the emergency power supply fails if the voltage monitor or the diesel
generator fails. This is represented by a U gate in the fault tree as shown.
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Blackout

[ |

Off-site Emergency
power loss system failure
U
Voltage Diesel
monitor generator
failure failure

FIGURE 12.7 Fault tree for blackout.

We see that the fault tree consists of a structure of OR and AND gates,
with boxes to describe intermediate events. Using the same probabilities as
in the event tree, we can determine the probability of a blackout in terms of
P, and P,, and P,, the failure probabilities for offsite power, voltage monitor,
and diesel generator.

The most straightforward fault trees to draw are those, such as in the
preceding example, in which all the significant primary failures are component
failures. If a reliability block diagram can be drawn, a fault tree can also be
drawn. This can be seen in an additional example.

Consider the system shown in Fig. 9.9. We may look at the system as
consisting of an upper subsystem (al, a2, and bl) and a lower subsystem (a3,
a4, and 52), in addition to component c. For a system to fail, either component
¢must fail or the upper and lower subsystems must fail. Proceeding downward,
for the upper subsystem to fail either component 41 must fail or both al and
a2 must fail. Treating the lower subsystem analogously, we obtain the tree
shown in Fig. 12.8.

EXAMPLE 12.1

Construct a reliability block diagram corresponding to the fault tree in Fig. 12.7.

Solution The reliability block diagram having the same logic and failure probabil-
ity as the fault tree of Fig. 12.7 is depicted in Fig. 12.9.

12.5 FAULT-TREE CONSTRUCTION

Of the methods discussed in the preceding section, fault-tree analysis has
been the most thoroughly developed and is finding increased use for system
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FIGURE 12.8 Fault tree.

safety analysis in a wide variety of applications. It is particularly well suited to
situations in which tracing a failure to its root causes requires dissecting the
system into subsystems, components, and parts to get at the level where failure
data are available. For example, in the aforetreated hospital blackout we may
not have the test data that is required to determine P, for the voltage monitor
or P, for the diesel generator. We must then delve more deeply and examine
the components of these devices; we may need to construct the probability
that the voltage monitor will fail from the failure rates of its components.

Off-site
power

Voltage Diesel
monitor generator

FIGURE 12.9 Reliability block diagram for electri-
cal power.
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It may be argued that such dissection can also be done by subdividing
the blocks appearing in reliability block diagrams. Although this is true, there
are some important differences. Reliability block diagrams are success-
oriented; that is, all failures are lumped together to obtain the probability
that a system will fail. In most reliability studies we are interested only in
knowing the reliability (i.e., the probability that the system does not fail).
Conversely, in fault-tree analysis we are often interested only in a particular
undesirable event (i.e., a failure that leads to a safety hazard) and in calculating
the probability that it will happen. Hence failures that do not cause the safety
hazard defined by the top event are excluded from consideration.

The difference between reliability analysis and safety analysis may be
illustrated by the example of a hot-water heater. In reliability analysis—carried
out with a reliability block diagram—failure of any kind will cause failure of
the system to supply hot water. Most of these failures have no safety implica-
tions: The heater unit fails to turn on, the tank develops a leak, and so on.
In safety analysis—using a fault tree—we would be interested in a particular
safety hazard such as the explosion of the tank. The other failures listed would
not be included in the fault-tree construction.

Because of the increasing importance of fault-tree analysis, the remainder
of this chapter is devoted to it. In this section we discuss the construction of
fault trees by first giving the standardized nomenclature. Then following a
brief discussion of fault classifications, we supply several illustrative examples.
In Sections 12.6 and 12.7 fault trees are evaluated. In qualitative evaluation
the fault tree is reduced to a logical expression, giving the top event in
terms of combinations of primary-failure events. In quantitative evaluation
the probability of the top event is expressed in terms of the probabilities of
the primaryfailure events.

Nomenclature

As we have seen, the fault tree is made up of events, expressed as boxes, and
gates. Two types of gates appear, the OR and the AND gate. The OR gate as
indicated in Fig. 12.10a is used to show that the output event occurs only if
one or more of the input events occur. There may be any number of input
events of an OR gate. The AND gate as indicated in Fig. 12.105 is used to

(1)

St Sooh

FIGURE 12.10 Fault-tree gates: (@) OR, (b) AND.
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show that the output fault occurs only if all the input faults occur. There may
be any number of input faults to an AND gate.

Generally, OR and AND gates are distinguished by their shape. In free-
hand drawings, however, it may be desirable to put the U and N symbols on
the gates. Or the so-called engineering notation, in which OR is represented
by a ““+” and AND by *:”, may be used. Obviously, if these notations are
included, the care with which the shape of the gate is drawn becomes of
secondary importance.

In addition to the AND and OR gates, the INHIBIT gate shown in Fig.
12.11a is also widely used. It is a special case of the AND gate. The output is
caused by a single input, but some qualifying condition must be satisfied
before the input can produce the output. The condition that must exist is
indicated conventionally by an ellipse, which is located to the right of the
gate. In other words the output happens only if the input occurs under the
conditions specified within the ellipse. The ellipse may also be used to indicate
conditions on OR or AND gates. This is shown in Figs. 12.11b and c.

The rectangular boxes in the foregoing figures indicate top or intermedi-
ate events; they appear as outputs of gates. Shape also distinguishes different
types of primary or input events appearing at the bottom of the fault tree.
The primary events of a fault tree are events that, for one of a number of
reasons, are not developed further. They are events for which probabilities
must be provided if the fault tree is to be evaluated quantitatively (i.e., if the
probability of the top event is to be calculated).

In general, four different types of primary events are distinguished. These
make up part of the list of symbols in Table 12.1. The circle describes a
basic event. This is a basic initiating fault event that requires no further
development. The circle indicates that the appropriate resolution of the fault
tree has been reached.

The undeveloped event is indicated by a diamond. It refers to a specific
fault event, although it is not further developed, either because the event is
of insufficient consequence or because information relevant to the event is
unavailable. In contrast, the external event, signified by a house-shaped figure,
indicates an event that is normally expected to occur. Thus house symbol
displays are not of themselves faults.

The last symbols in Table 12.1 are the triangles indicating transfers into

(a) (b (c)
FIGURE 12.11 Fault-tree conditional gates.
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TABLE 12.1 Fault-Tree Symbols Commonly Used

Description

Symbol Name
(:::J Rectangle
C) Circle
f Diamond
D House
@ OR Gate
Q AND Gate
f INHIBIT Gate
X
A Triangle-in
& Triangle-out

Fault event; it is usually the result of the logi-
cal combination of other events.

Independent primary fault event.

Fault event not fully developed, for its causes
are not known; it is only an assumed pri-
mary fault event.

Normally occurring basic event; it is not a
fault event.

The union operation of events; i.e., the out-
put event occurs if one or more of the in-
puts occur.

The intersection operation of events; ie.,
the output event occurs if and only if all
the inputs occur.

Output exists when X exists and condition A
is present; this gate functions somewhat
like an AND gate and is used for a second-
ary fault event X.

Triangle symbols provide a tool to avoid re-
peating sections of a fault tree or to trans-
fer the tree construction from one sheet
to the next. The triangle-in appears at the
bottom of a tree and represents the
branch of the tree (in this case A) shown
someplace else. The triangle-out appears
at the top of a tree and denotes that the
tree A is a subtree to one shown some-
place else.

Source: Adapted from H. R. Roberts, W. E. Vesley, D. F. Haast, and F. F. Goldberg, Faull Tree Handbook, U.S.

Nuclear Regulatory Commission, NUREG-0492, 1981,

and out of the fault tree. These are used when more than one page is required
to draw a fault tree. A transfer-in triangle indicates that the input to a gate
is developed on another page. A transfer-out triangle at the top of a tree
indicates that it is the input to a gate appearing on another page.

In fault-tree construction a distinction is made between a fault and a
failure. The word failure is reserved for basic events such as a burned-out
bearing in a pump or a short circuit in an amplifier. The word fault is more
all-encompassing. Thus, if a valve closes when it should not, this may be
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considered a valve fault. However, if the valve fault is due to a spurious signal
from the shorted amplifier, it is not a valve failure. Thus all failures are faults,
but not all faults are failures.

Fault Classification

The dissection of a system to determine what combinations of primary failures
may lead to the top event is central to the construction of a fault tree. This
dissection is likely to proceed most smoothly when the system can be divided
into subsystems, components, or parts in order to associate the faults with
discrete pieces of the system. Even then, a great deal of attention must be
given to the component interactions, particularly common-mode failures.
Beyond decomposing the system into components, however, we must also
examine which components are more likely to fail and study with care the
various modes by which component failure may occur.

In the material already covered, we have examined several ways of classify-
ing failures that are very useful for fault-tree construction. Distinguishing
between hardware faults and human error is essential, as is the classification
of hardware failures into early, random, and aging, each with its own character-
istics and causes. In what follows we discuss briefly two additional classifications.
The division of failures into primary, secondary, and command faults is particu-
larly useful in determining the logical structure of a fault tree. The classifica-
tion of components as passive or active is important in determining which
ones are likely to make larger contributions to system failure.

Primary, Secondary, and Command Faults Failures may be usefully classified
as primary, secondary, and command faults.* A primary fault by definition
occurs in an environment and under a loading for which the component is
qualified. Thus a pressure vessel’s bursting at less than the design pressure is
classified as a primary fault. Primary faults are most often caused by defective
design, manufacture, or construction and are therefore most closely correlated
to wear-in failures. Primary faults may also be caused by excessive or unantici-
pated wear, or they may occur when the system is not properly maintained
and parts are not replaced on time.

Secondary faults occur in an environment or under loading for which
the component is not qualified. For example, if a pressure vessel fails through
excessive pressure for which it was not designed, it has a secondary fault. As
indicated by the name, the basic failure is not of the vessel but in the excessive
loading or adverse environment. Such failures often occur randomly and are
characterized by constant failure rates.

Although a component fails when it has primary and secondary faults, it
operates correctly when it has a command fault, but at the wrong time or
place. Thus, our pressure vessel might lose pressure through the unwanted
opening of a relief valve, even though there is no excessive pressure. If the
valve opens through an erroneous signal, it has a command fault. For com-

* Fault Tree Handbook, op. cit.
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mand failures we must look beyond the component failure to find the source
of the erroneous command.

Passive and Active Faults Components may be designated as either passive or
active. Passive components include such things as pipes, cables, bearings,
welds, and bolts. They function in a more or less static manner, often acting
as transmitters of energy, such as a buss bar or cable, or of fluids such as
piping. Transmitters of mechanical loads, such as structural members, beams,
columns, and so on, and connectors, such as welds, bolts, or other fasteners,
are also passive components. A passive component may usually be thought of
as a mechanism for transmitting the output of one active component to the
input of another. In the broadest sense, the quantity transmitted may be an
electric signal, a fluid, mechanical loading, or any number of other quantities.

Active components contribute to the system function in a dynamic man-
ner, altering in some way the system’s behavior. For example, pumps and
valves modify fluid flow; relays, switches, amplifiers, rectifiers, and computer
chips modify electric signals; motors, clutches, and other machinery modify
the transmission of mechanical loading.

Our primary reason for distinguishing between active and passive compo-
nents is that failure rates are normally much higher for active components
than for passive components, often by two or three orders of magnitude. The
terms active and passive refer to the primary function of the component.
Indeed, an active component may have many passive parts that are prone to
failure. For example, a pump and its function are active, but the pump housing
is considered passive, even though a housing rupture is one mode by which
the pump may fail. In fact, one of the reasons that active components have
higher failure rates than passive ones is that they tend to be made up of many
nonredundant parts both active and passive.

Examples

We present here four examples of rather simple systems, and ones that are,
moreover, readily understandable without specialized knowledge. This is con-
sistent with the philosophy that one should not attempt to construct a fault
tree until the design and function of the system is thoroughly understood.
The first example is a demand failure, the failure of a motor to start; and the
second is the failure of a continuously operating system. The third involves
both start-up and operation; in the fourth the top event is a catastrophic
failure, and its causes involve faulty procedures and operator actions as well
as equipment failures.

EXAMPLE 12.2%

Draw a fault tree for the motor circuit shown in Fig. 12.12. The top event for the fault-
tree analysis is simply failure of the motor to operate.

* Adapted from J. B. Fussel in Generic Techniques in System Reliability Assessment, E. J. Henley and
J- W. Lynn (eds.), Nordhoff, Leyden, Holland, 1976.
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FIGURE 12.12 Electric motor circuit. (From J. B. Fussel, in Generic Techniques
in System Reliability Assessment, pp. 133-162, E. J. Henley and J. W. Lynn (eds.),
Martinus Nijhoff/Dr. Junk Publishers (was Sijthoff Noordhoff), Leyden, 1976,
reprinted by permission.)

Solution The fault tree is shown in Figure 12.13. Note that failures are distin-
guished as primary and secondary. For primary failures we would expect data to
be available to determine the failure probabilities. If not, further dissection of the
component into its parts might be necessary. The secondary faults are either command
faults, such as no current to the motor, or excessive loading, such as an overload in
the circuits. For these we must delve deeper to locate the causes of the faults.

EXAMPLE 12.3%*

Draw a fault tree for the coolant supply system pictured in Fig. 12.14. Here the top
event is loss of minimum flow to a heat exchanger.

Solution The fault tree is shown in Fig. 12.15. Not all of the faults at the bottom
of the tree are primary failures. Thus it may be desirable to develop some of the faults,
such as loss of the pump inlet supply, further. Conversely, the faults may be considered
too insignificant to be traced further, or data may be available even though they are
not primary failures.

EXAMPLE 12.4}

Consider the sump pump system shown in Fig. 12.16. Redundance is provided by a
battery-driven backup system that is activated when the utility power supply fails. Draw
a fault tree for the flooding of a basement protected by this system.

* Adapted from J. A. Burgess, ‘‘Spotting Trouble Before It Happens,” Machine Design, 42, No.
23, 150 (1970).

t Adapted from A. H-S. Ang and W. H. Tang, Probability Concepts in Engineering Planning and
Design, Vol. 2, Wiley, New York, 1984.
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FIGURE 12.13 Fault tree for electric motor circuit. (From J. B. Fussel in Generic Techniques in
System Reliability Assessment, pp. 133-162, E. J. Henley and J. W. Lynn (eds.), Martinus Nijhoff/
Dr. Junk Publishers (was Sijthoff Noordhoff), Leyden, 1976, reprinted by permission.)

Solution The fault tree is shown in Fig. 12.17. The tree accounts for the fact that
flooding can occur if the rate of inflow from the storm exceeds the pump capacity.
Moreover, flooding can occur from storms within the system’s capacity if there are
malfunctions of both pumps and the inflow is large enough to fill the sump. Primary
pump failures may be caused either by the failure of the pump itself or by loss of ac
power. Similarly, the second pump may malfunction or it may be lost through failure
of the battery. The battery fails only if all three events at the bottom of the tree
take place.
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FIGURE 12.14 Coolant supply system. (Reprinted from Machine Design, © 1984, by Penton /
IPC, Cleveland, Ohio.)

EXAMPLE 12.5%

The final example that we consider is the pumping system shown in Fig. 12.18. The
top event here is rupture of the pressure tank. This situation has the added complication
that operator errors as well as equipment failures may lead to the top event. Before
a fault tree can be drawn, the procedure by which the system is operated must be
specified. The tank is filled in 10 min and empties in 50 min. Thus there is a l-hr
cycle time. After the switch is closed, the timer is set to open the contact in 10 min.
If there is a failure in the mechanism, the alarm horn sounds. The operator then
opens the switch to prevent the tank from overfilling and therefore rupturing.

Solution A fault tree for the tank rupture is shown in Fig. 12.19. Notice how the
analyst has used primary (i.e., basic), secondary, and command faults at several points
in developing the tree. The operator’s actions, a primary failure, are interpreted as
the operator’s failing to push the button when the alarm sounds. A secondary fault
would occur, for example, if the operator is absent or unconscious when the alarm
sounded, and the command fault for the operator would take place if the alarm does
not sound.

The foregoing examples give some idea of the problems inherent in
drawing fault trees. The reader should consult more advanced literature for

* Adapted from E. J. Henley and H. Kumamoto, Reliability Engineering and Risk Assessment, Prentice-
Hall, Englewood Cliffs, NJ, 1981.
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FIGURE 12.16 Sump pump system. (From A. H-S. Ang and
W. H. Tang, Probability Concepts in Engineering Planning and De-
sign, Vol. 2, p. 496. Copyright © 1984, by John Wiley and
Sons, New York. Reprinted by permission.)
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FIGURE 12.17 Fault tree for basement flooding. (From A. H-S. Ang and W. H. Tang, Proba-

bility Concepts in Engineering Planning and Design, Vol. 2, p. 496. Copyright © 1984, by John
Wiley and Sons, New York. Reprinted by permission.)
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FIGURE 12.18 Schematic diagram for a pumping sys-
tem. (From Ernest J. Henley and Hiromitsu Kumamoto,
Reliability Engineering and Risk Assessment, p. 73, © 1981,

with permission from Prentice-Hall, Englewood Cliffs,

NJ.)
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fault-tree constructions for more complex configurations, keeping in mind
that the construction of a valid fault tree for any real system (as opposed to
textbook examples) is necessarily a learning experience for the analyst. As
the tree is drawn, more and more knowledge must be gained about the details
of the system’s components, its failure modes, the operating and maintenance
procedures and the environment in which the system is to be located.

12.6 DIRECT EVALUATION OF FAULT TREES

The evaluation of a fault tree proceeds in two steps. First, a logical expression
is constructed for the top event in terms of combinations (i.e., unions and
intersections) of the basic events. This is referred to as qualitative analysis.
Second, this expression is used to give the probability of the top event in
terms of the probabilities of the primary events. This is referred to as quantita-
tive analysis. Thus, knowing the probabilities of the primary events, we can
calculate the probability of the top event. In these steps the rules of Boolean
algebra contained in Table 12.2 are very useful. They allow us to simplify the
logical expression for the fault tree and thus also to streamline the formula
giving the probability of the top event in terms of the primary-failure probabil-
ities.

In this section we first illustrate the two most straightforward methods
for obtaining a logical expression for the top event, top-down and bottom-
up evaluation. We then demonstrate how the resulting expression can be
reduced in a way that greatly simplifies the relation between the probabilities
of top and basic events. Finally, we discuss briefly the most common forms
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FIGURE 12.19 Fault tree for pumping system. (From Ernest J. Henley and Hiromitsu Kuma-
moto, Reliability Engineering and Risk Assessment, p. 73, © 1981, with permission from Prentice-
Hall, Englewood Cliffs, NJ.)
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TABLE 12.2 Boolean Logic

A B AN B AUB
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 1

that the primary-failure probabilities take and demonstrate the quantitative
evaluation of a fault tree.

The so-named direct methods discussed in this section become unwieldy
for very large fault trees with many components. For large trees the evaluation
procedure must usually be cast in the form of a computer algorithm. These
algorithms make extensive use of an alternative evaluation procedure in which
the problem is recast in the form of so-called minimum cut sets, both because
the technique is well suited to computer use and because additional insights
are gained concerning the failure modes of the sytem. We define cut sets and
discuss their use in the following section.

Qualitative Evaluation

Suppose that we are to evaluate the fault tree shown in Fig. 12.20. In this tree
we have signified the primary failures by uppercase letters A through C. Note

g

()
© ©

FIGURE 12.20 Example of a fault tree.
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that the same primary failure may occur in more than one branch of the tree.
This is typical of systems with m/Nredundancy of the type discussed in Chapter
9. The intermediate events are indicated by E;, and the top event by 7.

Top Doun To evaluate the tree from the top down, we begin at the top event
and work our way downward through the levels of the tree, replacing the
gates with the corresponding OR or AND symbol. Thus we have

T=ENE, (12.1)
at the highest level of the tree, and
E =AUL; E,= CUE, (12.2)
at the intermediate level. Substituting Eq. 12.2 into Eq. 12.1, we then obtain
T=(AUE;) N(CUE,). (12.3)
Proceeding downward to the lowest level, we have
E;=BU G E,=ANB (12.4)
Substituting these expressions into Eq. 12.3, we obtain as our final result
T=[AU(BUQO]IN[CUANBDB]I. (12.5)
Bottom Up Conversely, to evaluate this same tree from the bottom up, we
first write the expressions for the gates at the bottom of the fault tree as
E;=BU G E,=ANB. (12.6)
Then, proceeding upward to the intermediate level, we have
E =AU E; E,=CUE,. (12.7)
Hence we may substitute Eq. 12.6 into Eq. 12.7 to obtain
E, =AU (BUCQ) (12.8)
and
E,=CU (AN B). (12.9)

We now move to the highest level of the fault tree and express the AND gate
appearing there as

T=E NE,. (12.10)
Then, substituting Eqs. 12.8 and 12.9 into Eq. 12.10, we obtain the final form:
T=[AU(BUO]IN[CU AN B)]. (12.11)

The two results, Eqs. 12.5 and 12.11, which we have obtained with the
two evaluation procedures, are not surprisingly the same.
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Logical Reduction For most fault trees, particularly those with one or more
primary failures occurring in more than one branch of the tree, the rules of
Boolean algebra contained in Table 2.1 may be used to simplify the logical
expression for 7, the top event. In our example, Eq. 12.11 can be simplified
by first applying the associative and then the commutative law to write
AU BUC)=(AUB UC=CU (AU B). Then we have

T'=[CUAUB]IN[CU AN B]. (12.12)

We then apply the distributive law with X= C, Y= AU B,and Z= AN B
to obtain

T=CUI[(AUB) N (AN B)]. (12.13)

From the associative law we can eliminate the parenthesis on the right. Then,
since AN B= BN A, we have

T=CUI[(AUB) NBNA]. (12.14)
Now, from the absorption law (A U B) N B = B. Hence
T=CU (BN A). (12.15)

This expression tells us that for the fault tree under consideration the failure
of the top system is caused by the failure of C or by the failure of both A and
B. We then refer to M; = Cand M, = A N B as the two failure modes leading
to the top event. The reduced fault tree can be drawn to represent the system
as shown in Fig. 12.21.

Quantitative Evaluation

Having obtained, in its simplest form, the logical expression for the top event
in terms of the primary failures, we are prepared to evaluate the probability

FIGURE 12.21 Fault-tree equiva-
lent to Fig. 12.20.
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that the top event will occur. The evaluation may be divided into two tasks.
First, we must use the logical expression and the rules developed in Chapter
2 for combining probabilities to express the probability of the top event in
terms of the probabilities of the primary failures. Second, we must evaluate
the primary-failure probabilties in terms of the data available for component
unreliabilities, component unavailabilities, and demand-failure probabilities.

Probability Relationships To illustrate the quantitative evaluation, we again
use the fault tree that reduces to Eq. 12.15. Since the top event is the union
of Cwith BN A, we use Eq. 2.10 to obtain

P{T} = P{C} + P{BN A} — P{AN BN C}, (12.16)

thus expressing the top events in terms of the intersections of the basic events.
If the basic events are known to be independent, the intersections may be
replaced by the products of basic-event probabilities. Thus, in our example,

P{T} = P{C} + P{A}P{B} — P{A}P{B}P{C}. (12.17)

If there are known dependencies between events, however, we must determine
expression for P{A N B}, P{A N BN C}, or both through more sophisticated
treatments such as the Markov models discussed in Chapter 11. Alternatively,
we may be able to apply the B-factor treatment of Chapter 9 for common-
mode failures.

Even where independent failures can be assumed, a problem arises when
larger trees with many different component failures are considered. Instead
of three terms as in Eq. 12.17, there may be hundreds of terms of vastly different
magnitudes. A systematic way is needed for making reasonable approximations
without evaluating all the terms. Since the failure probabilities are rarely
known to more than two or three places of accuracy, often only a few of
the terms are of significance. For example, suppose that in Eq. 12.17 the
probabilities of A, B, and Care ~ 107%, 107, and ~ 107°, respectively. Then
the first two terms in Eq. 12.17 are each of the order 107% in comparison the
last term is of the order of 107? and may therefore be neglected.

One approach that is used in rough calculations for larger trees is to
approximate the basic equation for P{X U Y} by assuming that both events
are improbable. Then, instead of using Eq. 2.10, we may approximate

P{XU Y}~ P{X} + P{Y}, (12.18)

which leads to a conservative (i.e., pessimistic) approximation for the system
failure. For our simple example, we have, instead of Eq. 12.17, the approxi-
mation

P{T} ~ P{C} + P{A}P{B}. (12.19)

The combination of this form of the rare-event approximation and the
assumption of independence,

P{XN Y} = P{X}P{Y}, (12.20)



System Safety Analysis 395

often allows a very rough estimate of the top-event probability. We simply
perform a bottom-up evaluation, multiplying probabilities at AND gates and
adding them at OR gates. Care must be exercised in using this technique, for
it is applicable only to trees in which basic events are not repeated—since
repeated events are not independent—or to trees that have been logically
reduced to a form in that primary failures appear only once. Thus we may
not evaluate the tree as it appears in Fig. 12.20 in this way, but we may evaluate
the reduced form in Fig. 12.21. More systematic techniques for truncating
the prohibitively long probability expressions that arise from large fault trees
are an integral part of the minimum cutset formulation considered in the
next section.

Primary-Failure Data  In our discussions we have described fault trees in terms
of failure probabilities without specifying the particular types of failure repre-
sented either by the top event or by the primary-failure data. In fact, there
are three types of top events and, correspondingly, three types of basic events
frequently used in conjunction with fault trees. They are (1) the failure on
demand, (2) the unreliability for some fixed period of time ¢, and (3) the
unavailability at some time.

When failures on demand are the basic events, a value of p is needed.
For the unreliability or unavailability it is often possible to use the following
approximations to simplify the form of the data, since the probabilities of
failure are expected to be quite small. If we assume a constant failure rate,
the unreliability is

R= At (12.21)

Similarly, the most common unavailability is the asymptotic value, for a system
with constant failure and repair rates A and v. From Eq. 10.56 we have

, v
=1- . .
A() Y (12.22)
But, since in the usual case v >> A, we may approximate this by
A(®) = A/ . (12.23)

Often, demand failures, unreliabilities, and unavailabilities will be mixed
in a single fault tree. Consider, for example, a very simple fault tree for the
failure of a light to go on when the switch is flipped. We assume that the top
event, 7, is the failure on demand for the light to go on, which is due to

X = bulb burned out,
Y = switch fails to make contact,
Z = power failure to house.
Therefore 7= XU Y U Z. In this case, X might be considered an unreliability

of the bulb, with the time being that since it was originally installed; ¥ would
be a demand failure, assuming that the cause was a random failure of the



396  Introduction to Reliability Engineering

switch to make contact; and Z would be the unavailability of power to the
circuit. Of course, the tree can be drawn in more depth. Is the random
demand failure the only significant reason (a demand failure) for the switch
not to make contact, or is there a significant probability that the switch is
corroded open (an unreliability)?

12.7 FAULT-TREE EVALUATION BY CUT SETS

The direct evaluation procedures just discussed allow us to assess fault trees
with relatively few branches and basic events. When larger trees are considered,
both evaluation and interpretation of the results become more difficult and
digital computer codes are invariably employed. Such codes are usually formu-
lated in terms of the minimum cut-set methodology discussed in this section.
There are at least two reasons for this. First, the techniques lend themselves
well to the computer algorithms, and second, from them a good deal of
intermediate information can be obtained concerning the combination of
component failures that are pertinent to improvements in system design
and operations.

The discussion that follows is conveniently divided into qualitative and
quantitative analysis. In qualitative analysis information about the logical struc-
ture of the tree is used to locate weak points and evaluate and improve
system design. In quantitative analysis the same objectives are taken further
by studying the probabilities of component failures in relation to system design.

Qualitative Analysis

In these subsections we first introduce the idea of minimum cut sets and
relate it to the qualitative evaluation of fault trees. We then discuss briefly
how the minimum cut sets are determined for large fault trees. Finally, we
discuss their use in locating system weak points, particularly possibilities for
common-mode failures.

Minimum Cut-Set Formulation A minimum cut set is defined as the smallest
combination of primary failures which, if they all occur, will cause the top
event to occur. It, therefore, is a combination (i.e., intersection) of primary
failures sufficient to cause the top event. It is the smallest combination in that
all the failures must take place for the top event to occur. If even one of the
failures in the minimum cut set does not happen, the top event will not
take place.

The terms minimum cut set and failure mode are sometimes used inter-
changeably. However, there is a subtle difference that we shall observe hereaf-
ter. In reliability calculations a failure mode is a combination of component
or other failures that cause a system to fail, regardless of the consequences
of the failure. A minimum cut set is usually more restrictive, for it is the
minimum combination of failures that causes the top event as defined for a
particular fault tree. If the top event is defined broadly as system failure, the
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FIGURE 12.22 Minimum cut
sets on a reliability block di-
agram.

two are indeed interchangeable. Usually, however, the top event encompasses
only the particular subset of system failures that bring about a particular
safety hazard.

The origin for using the term cut set may be illustrated graphically using
the reduced fault tree in Fig. 12.21. The reliability block diagram correspond-
ing to the tree is shown in Fig. 12.22. The idea of a cut set comes originally
from the use of such diagrams for electric apparatus, where the signal enters
at the left and leaves at the right. Thus a minimum cut set is the minimum
number of components that must be cut to prevent the signal flow. There
are two minimum cut sets, M,, consisting of components A and B, and M,,
consisting of component C.

For a slightly more complicated example, consider the redundant system
of Fig. 9.9, for which the equivalent fault tree appears in Fig. 12.8. In this
system there are five cut sets, as indicated in the reliability block diagram of
Fig. 12.23.

For larger systems, particularly those in which the primary failures appear
more than once in the fault tree, the simple geometrical interpretation be-
comes problematical. However, the primary characteristics of the concept
remain valid. It permits the logical structure of the fault tree to be represented
in a systematic way that is amenable to interpretation in terms of the behavior
of the minimum cut sets.

My M,

FIGURE 12.23 Minimum cut sets on a re-
liability block diagram of a seven-compo-
nent system.
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Suppose that the minimum cut sets of a system can be found. The top
event, system failure, may then be expressed as the union of these sets. Thus,
if there are N minimum cut sets,

T=MUMU:--UM,. (12.24)

Each minimum cut set then consists of the intersection of the minimum
number of primary failures required to cause the top event. For example, the
minimum cut sets for the system shown in Figs. 12.8 and 12.23 are

M1=C M3=alﬂa20b2
M, = bl N b2 M,= a3 N a4 N bl (12.25)
Ms; = al N a2 N a3 N a4.

Before proceeding, it should be pointed out that there are other cut sets
that will cause the top event, but they are not minimum cut sets. These need
not be considered, however, because they do not enter the logic of the fault
tree. By the rules of Boolean algebra contained in Table 2.1, they are absorbed
into the minimum cut sets. This can be illustrated using the configuration of
Fig. 12.23 again. Suppose that we examine the cut set M, = bl N ¢, which
will certainly cause system failure, butitis not a minimum cut set. If we include
it in the expression for the top event, we have

T=]\40UM1UM2U"‘UMw. (1226)

Now suppose that we consider M, U M,. From the absorption law of Table
2.1, however, we see that

MUM=®lNUc=c (12.27)

Thus the nonminimum cut set is eliminated from the expression for the top
event. Because of this property, minimum cut sets are often referred to simply
as cut sets, with the minimum implied.

Since we are able to write the top event in terms of minimum cut sets as
in Eq. 12.24, we may express the fault tree in the standardized form shown
in Fig. 12.24. In this X,,, is the nth element of the mth minimum cut set. Note
from our example that the same primary failures may often be expected to
occur in more than one of the minimum cut sets. Thus the minimum cut
sets are not generally independent of one another.

Cut-Set Determination In order to utilize the cutset formulations, we must
express the top event as the union of minimum cut sets, as in Eq. 12.24. For
small fault trees this can be done by hand, using the rules of Table 2.1, just
as we reduced the top-event expression for T given by Eq. 12.11 to the two-
cut-set expression given by Eq. 12.15. For larger trees, containing perhaps 20
or more primary failures, this procedure becomes intractable, and we must
resort to digital computer evaluation. Even then the task may be prodigious,
for a larger tree with a great deal of redundancy may have a million or more
minimum cut sets.
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FIGURE 12.24 Generalized minimum cut-set representation of a fault tree.

The computer codes for determining the cut sets* do not typically apply
the rules of Boolean algebra to reduce the expression for the top set to the
form of Eq. 12.24. Rather, a search is performed for the minimum cut sets;
in this, a failure is represented by 1 and a success by 0. Then each expression
for the top event is evaluated using the outcome shown in Table 12.2 for the
union and intersection of the events. A number of different procedures may
be used to find the cut sets. In exhaustive searches, all single failures are first
examined, and then all combinations of two primary failures, and so on. In
general, there are 2V, where N is the number of primary failures that must
be examined. Other methods involve the use of random number generators
in Monte Carlo simulation to locate the minimum cut sets.

When millions of minimum cut sets are possible, the search procedures
are often truncated, for cut sets requiring many primary failures to take place
are so improbable that they will not significantly affect the overall probability
of the top event. Moreover, simulation methods must be terminated after a
finite number of trials.

Cut-Set Interpretations Knowing the minimum cut sets for a particular fault
tree can provide valuable insight concerning potential weak points of complex
systems, even when it is not possible to calculate the probability that either a
particular cut set or the top event will occur. Three qualitative considerations,
in particular, may be very useful: the ranking of the minimal cut sets by the
number of primary failures required, the importance of particular component
failures to the occurrence of the minimum cut sets, and the susceptibility of
particular cut sets to common-mode failures.

* See, for example, N. ]. McCormick, Reliability and Risk Analysis, Academic Press, New York, 1981.
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Minimum cut sets are normally categorized as singlets, doublets, triplets,
and so on, according to the number of primary failures in the cut set. Emphasis
is then put on eliminating cut sets corresponding to small numbers of failures,
for ordinarily these may be expected to make the largest contributions to
system failure. In fact, the common design criterion, that no single component
failure should cause system failure is equivalent to saying that all singlets must
be removed from the fault tree for which the top event is system failure.
Indeed, if component failure probabilities are small and independent, then
provided that they are of the same order of magnitude, doublets will occur
much less frequently than singlets, triplets much less frequently than doublets,
and so on.

A second application of cutset information is in assessing qualitatively
the importance of a particular component. Suppose that we wish to evaluate
the effect on the system of improving the reliability of a particular component,
or conversely, to ask whether, if a particular component fails, the system-wide
effect will be considerable. If the component appears in one or more of the
low-order cut sets, say singlets or doublets, its reliability is likely to have a
pronounced effect. On the other hand, if it appears only in minimum cut
sets requiring several independent failures, its importance to system failure
is likely to be small.

These arguments can rank minimum cut-set and component importance,
assuming that the primary failures are independent. If they are not, that
is, if they are susceptible to common-mode failure, the ranking of cut-set
importance may be changed. If five of the failures in a minimum cut set with
six failures, for example, can occur as the result of a common cause, the
probability of the cut set’s occurring is more comparable to that of a doublet.

Extensive analysis is often carried out to determine the susceptibility of
minimum cut sets to common-cause failures. In an industrial plant one cause
might be fire. If the plant is divided into several fire-resistant compartments,
the analysis might proceed as follows. All the primary failures of equipment
located in one of the compartments that could be caused by fire are listed.
Then these components would be ecliminated from the minimum cut sets
(i.e., they would be assumed to fail). The resulting cut sets would then indicate
how many failures—if any—in addition to those caused by the fire, would be
required for the top event to happen. Such analysis is critical for determining
the layout of the plant that will best protect it from a variety of sources of
damage: fire, flooding, collision, earthquake, and so on.

Quantitative Analysis

With the minimum cut sets determined, we may use probability data for the
primary failures and proceed with quantitative analysis. This normally includes
both an estimate of the probability of the top event’s occurring and quantita-
tive measures of the importance of components and cut sets to the top event.
Finally, studies of uncertainty about the top event’s happening, because the
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probability data for the primary failures are uncertain, are often needed to
assess the precision of the results.

Top-Event Probability To determine the probability of the top event, we
must calculate

P{T} = P{M, UM U - -+ U My} (12.28)

Asindicated in Section 2.2, the union can always be eliminated from a probabil-
ity expression by writing it as a sum of terms, each one of which is the
probability of an intersection of events. Here the intersections are the mini-
mum cut sets. Probability theory provides the expansion of Eq. 12.28 in the
following form

N N -1
P{T} =3 P{M} - > > P{M,N M}
i=1 =2 j=1
N -1 ;-1
+ P{M,N MM M} — - - (12.29)

[
©o
[}
o
N

—

i

7
+ (=D¥P{M, N MN - - - N M

This is sometimes referred to as the inclusion—exclusion principle.

The first task in evaluating this expression is to evaluate the probabilities
of the individual minimum cut sets. Suppose that we let X, represent the mth
basic event in minimum cut set . Then

PIM}=P{Xa N XN X5 N - e - N X} (12.30)

If it may be proved that the primary failures in a given cut set are independent,
we may write

P{M} = P{Xa}P{ X2} - - - P{ X} (12.31)

If they are not, a Markov model or some other procedure must be used to
relate P{M} to the properties of the primary failures.

The second task is to evaluate the intersections of the cut-set probabilities.
If the cut sets are independent of one another, we have simply

P{M,N M} = P{M}P{M}, (12.32)
P{M,N M,N M} = P{M}P{M}P{M,}, (12.33)

and so on. More often than not, however, these conditions are not valid, for
in a system with redundant components, a given component is likely to appear
in more than one minimum cut set: If the same primary failure appears in
two minimum cut sets, they cannot be independent of one another. Thus an
important point is to be made. Even if the primary events are independent
of one another, the minimum cut sets are unlikely to be. For example, in the
fault trees of Figs. 12.8 and 12.23 the minimum cut sets M, = cand M, = 61 N
b2 will be independent of one another if the primary failures of components 41
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and b2 are independent of ¢ In this system, however, M, and M; will be
dependent even if all the primary failures are independent because they
contain the failure of component 42.

Although minimum cut sets may be dependent, calculation of their inter-
sections is greatly simplified if the primary failures are all independent of one
another, for then the dependencies are due only to the primary failures that
appear in more than one minimum cut set. To evaluate the intersection of
minimum cut sets, simply take the product of probabilities that appear in one
or more of the minimal cut sets:

P{M,N ]VI,} = P{Xlij}P{Xzij} e P{XNij}y (12.34)

where Xj;;, Xy, . . ., Xy;;is the list of the failures that appear in M, M;, or both.

That the foregoing procedure is correct is illustrated by a simple example.
Suppose that we have two minimal cut sets M, = AN B, M, = BN C, where
the primary failures are independent. We then have

MNM,=ANBNBNC)=ANBNBNC, (12.35)
but BN B = B. Thus
P{M, N M,} = P{AN BN C} = P{A}P{B}P{C}. (12.36)
In the general notation of Eq. 12.34 we would have
Xip = A, Xop = B, X319 = C. (12.37)

With the assumption of independent primary failures, the series in Eq.
12.29 may in principle be evaluated exactly. When there are thousands or
even millions of minimum cut sets to be considered, however, the task may
be both prohibitive and unwarranted, for many of the terms in the series are
likely to be completely negligible compared to the leading one or two terms.

The true answer may be bracketed by taking successive terms, and it is
rarely necessary to evaluate more than the first two or three terms. If P{T} is
the exact value, it may be shown that*

P{T} = i P{M;} > P{T}, (12.38)

PATY = PATE = X S PM. 0 M) < P{T), (12.39)
=2 j=1

P{T} = PAT} + }V‘, S El P{M, N M,N M,} > P{T}. (12.40)
=3 =2 k=1

and so on, with P{T} < P{T}.

* W. E. Vesely, *“Time Dependent Methodology for Fault Tree Evaluation,” Nucl. Eng. Design,
13, 337-357 (1970).
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Often the first-order approximation P{T} gives a result that is both reason-
able and pessimistic. The second-order approximation might be evaluated to
check the accuracy of the first. And rarely would more than the third-order
approximation be used.

Even taking only a few terms in Eq. 12.38 may be difficult, and wasteful,
if a million or more minimum cut sets are present. Thus, as mentioned in
the preceding subsection, we often truncate the number of minimum cut sets
to include only those that contain fewer than some specified number of
primary failures. If all the failure probabilities are small, say <0.1, the cutset
probabilities should go down by more than an order of magnitude as we go
from singlets to doublets, doublets to triplets, and so on.

Importance As in qualitative analysis, it is not only the probability of the top
event that normally concerns the analyst. The relative importance of single
components and of particular minimum cut sets must be known if designs
are to be optimized and operating procedures revised.

Two measures of importance* are particularly simple but useful in system
analysis. In order to know which cut sets are the most likely to cause the top
event, the cut-set importance is defined as

I = P{M}

=P (12.41)

for the minimum cut set i. Generally, we would also like to determine the
relative importance of different primary failures in contributing to the top
event. To accomplish this, the simplest measure is to add the probabilities of
all the minimum cut sets to which the primary failure contributes. Thus the
importance of component X; is

~_1
1= 5rpy X%%P{M,}. (12.42)

Other more sophisticated measures of importance have also found applica-
tions.

Uncertainty What we have obtained thus far are point or best estimates of
the top event’s probability. However, there are likely to be substantial uncer-
tainties in the basic parameters—the component failure rates, demand fail-
ures, and other data—that are input to the probability estimates. Given these
considerable uncertainties, it would be very questionable to accept point
estimates without an accompanying interval estimate by which to judge the
precision of the results. To this end the component failure rates and other
data may themselves be represented as random variables with a mean or best-
estimate value and a variance to represent the uncertainty. The lognormal
distribution has been very popular for representing failure data in this manner.

* See, for example, E. J. Henley and H. Kumamoto, op. cit., Chapter 10.
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For small fault trees a number of analytical techniques may be applied to
determine the sensitivity of the results to the data uncertainty. For larger trees
the Monte Carlo method has found extensive use.*
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EXERCISES

12.1 Classify each of the failures in Fig. 12.15 as (a) passive, (b) active, or
(¢) either.

12.2 Make a list of six population stereotypical responses.

12.3 Suppose that a system consists of two subsystems in parallel. Each has a
mission reliability of 0.9.

* See, for example, E. J. Henley and H. Kumamoto, op. cit., Chapter 12.
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(a) Draw a fault tree for mission failure and calculate the probability
of the top event.

(b) Assume that there are common-mode failures described by the
B-factor method (Chapter 9) with 8 = 0.1. Redraw the fault tree to
take this into account and recalculate the top event.

12.4 Find the fault tree for system failure for the following configurations.

12.5 Find the minimum cut sets of the following fault tree.

T
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12.6

12.7

12.8

12.9

Introduction to Reliability Engineering

Draw a fault tree corresponding to the reliability block diagram in Exer-
cise 9.37.

The following system is designed to deliver emergency cooling to a
nuclear reactor.

In the event of an accident the protection system delivers an actuation
signal to the two identical pumps and the four identical valves. The
pumps then start up, the valves open, and liquid coolant is delivered to
the reactor. The following failure probabilities are found to be sig-
nificant:

Py = 107 the probability that the protection system will not deliver
a signal to the pump and valve actuators.

2 X 107 the probability that a pump will fail to start when
the actuation signal is received.

b

p» = 107" the probability that a valve will fail to open when the
actuation signal is received.

p» = 0.5 X 107 the probability that the reservoir will be empty at
the time of the accident.

(a) Draw a fault tree for the failure of the system to deliver any coolant
to the primary system in the event of an accident.

(b) Evaluate the probability that such a failure will take place in the
event of an accident.

Construct a fault tree for which the top event is your failure to arrive
on time for the final exam of a reliability engineering course. Include
only the primary failures that you think have probabilities large enough
to significantly affect the result.

Suppose that a fault tree has three minimum cut sets. The basic failures
are independent and do not appear in more than one cut set. Assume
that P{Mi} = 0.03, P{M,} = 0.12 and P{Ms} = 0.005. Estimate P{7} by
the three successive estimates given in Eqs. 12.38, 12.39, and 12.40.

12.10 Develop a logical expression for the fault trees in Fig. 12.13 in terms

of the nine root causes. Find the minimum cut sets.



12.11

12.12

12.13

12.14
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Suppose that for the fault tree given in Fig. 12.21 P{A} = 0.15,
P{B} = 0.20, and P{C} = 0.05.
(a) Calculate the cut-set importances.

(b) Calculate the component importances.
(Assume independent failures.)

The logical expression for a fault tree is given by
T=AN(BUC)N[DU(ENFN G)].

(a) Construct the corresponding fault tree.
(b) Find the minimum cut sets.
(c) Construct an equivalent reliability block diagram.

From the reliability block diagram shown in Figure 12.23, draw a fault
tree for system failure in minimum cut-set form. Assume that the failure
probabilities for component types a, b, and c are, respectively, 0.1, 0.02,
and 0.005. Assuming independent failures, calculate

(a) P{T}, the probability of the top event;
(b) the importance of components al, b1 and c;
(c) the importance of each of the five minimum cut sets.

Construct the fault trees for system failure for the low- and high-level
redundant systems shown in Fig. 9.7. Then find the minimum cut sets.
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Useful Mathematical
Relationships

A.1 INTEGRALS
Definite Integrals

fme”“"dx=1, a> 0.
0 a

o |
fo x"e” ™ dx = %, n = integer = 0, a > 0.
f:e‘“‘dx——, a>0.
fw xe~ =1
0
Vi
267 dx=—.
j x’e X 1
o \ 1- —1 o
f x2te " dx = T, (Qn ) Vi n = integer > 0, a > 0.
0 2"

Integration by Parts
fzf(x) Ed;g(x) dx= f(b)g(b) — f(a)g(a) — j: g(x) dixf(x) dx.
Derivative of an Integral
d (4 a d d
Ezfpf(x, ¢) dx= IZ&f(x, ¢) dx+ f(q, c)d—Z-f(p, ¢) -ﬁ.

A.2 EXPANSIONS

Integer Series

1+2+3+--~+n=g(n+1).

424804k nt= o (2t Bt 1),
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2
13+23+33+--'+n3=%(n+1)2.

1+3+5+ -+ 2n-1)=nt

Binomial Expansion

N
0+ "= 3 i

N!

N IV
Ca (N—n)!ln!’

Geometric Progression

1_P"=1+p+p2+p3+,‘,+pn—l'

1-p
Infinite Series
L x  x2 x5 0
€—1+ﬁ+—2‘!‘+'§!'+ , x" < ®
x? % Xt
l l+ = -————-+———+"‘, 2<]..
og(1+x) 273 4 ¥
11 =1+t ittt K0 <1
- x .
—1—=1+2x+3x2+4x3+--- x?<1
(1« ’
+
1+« =1+2%x+ 322+ 4%+ -, 27 <1

A.3 SOLUTION OF A FIRST-ORDER
LINEAR DIFFERENTIAL EQUATION

:Z—Cy(x) + a(x) y(x) = S(x).

Note that

;id;y(x) exp [J’;a(x') dx'] = [d—iy(x) + a(x)y(x)] exp [f:oa(x’) dx’].

Thus, multiplying by the integrating factor exp| 1) :( a(x') dx'], we have

d—‘iy(x) exp[j;)a(x') dx’] = S(x) exp [f;a(x') dx'].
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Integrating between x, and x, we have
y(x) = y(x) exp[~fx a(x') dx’] + Jx dx' S(x') exp [—ﬁ a(x") dx”].
%o *o x

If « is a constant, then

9(%) = y(x) exp[—a(x— x)] + ji dx'S(x') exp[—a(x— x")].
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Binomial Sampling Charts
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FIGURE B.1 An 80% confidence interval for binomial sampling. (From W. J. Dixon and
F. J. Massey, Jr., Introduction to Statistical Analysis, 2nd ed., © 1957, with permission from
McGraw-Hill Book Company, New York.)
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FIGURE B.2 A 90% confidence interval for binomial sampling. (From W. J. Dixon and
F. J. Massey, Jr., Introduction to Statistical Analysis, 2nd ed., © 1957, with permission from

McGraw-Hill Book Company, New York.)
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®(z): Standard Normal CDF

z .00 01 02 03 04 05 .06 07 08 .09
— 0| .5000  .4960  .4920  .4880  .4840  .4801 4761 4721 4681  .4641
1| .4602 4562 4522 4483 4443 4404 4364 4325 4286 4247
-~ 9| .4207 4168  .4129 4090  .4052  .4013 3974 3936 3897  .3859
- 3 |.3821 3783  .3745 3707  .3669.  .3632  .3594 3557  .3520  .3483
~ 4| .3446 3409  .3372  .3336  .3300  .3264  .3228 3192 3156  .3121
— 5| .3085 3050 3015 2081 2946  .2912  .2877 2343 2810  .2776
_ 6| 2743 2700 2676 2643 2611 2578 2546 2514 2483 2451
— 7| 2420 2389 2358  .2827 2297 2266  .2236  .2206 2177 2148
— 8] 2119 2090 2061  .2033 2005  .1977  .1949 1922 1894  .1867
— 9 |.1841 1814 1788 1762 1736 1711  .1685  .1660  .1635 1611
~1.0 {1587 1562 .1539 1515 .1492  .1469  .1446 1423 1401  .1379
11| 1357 1385 1314 1202 1271 1251 1230 1210 .1190  .1170
—12 | 1181 1131 1118 .1098 1075 .1056  .1038 1020  .1003  .09853
~1.3 | 09680 09510 .09342  .09176 .09012 08851  .08691 08534  .08379  .08226
—1.4 | 08076 07927 .07780 07636 07493 07353  .07215 07078 06944 06811
—15 | 06681 06552 .06426 06301 .06178  .06057 05938 05821  .05705  .05592
—1.6 | 05480 05370 .05262 05155 05050  .04947 04846 04746 04648 04551
17 | 04457 04363 04272 04182 04093 .04006 .03920 03836  .03754 03673
18 | 03593 03515 .03438 03362 .03288 .03216 .03144 03074 .03005  .02938
~1.9 | 09872 02807 .02743 02680 .02619 02559  .02500 02442 02385 02330
90 | .02275 02222 02169 .02118 02068 .02018 .01970 01923 01876  .01831
—91 | 01786 01743 .01700 01659 .01618 01578 01539  .01500  .01463  .01426
—99 | 01300 01355 .01321 .01287 01255 01222 .01191 .01160 .01130  .01101
—93 | 01072 01044 01017 .0°0908 .0°0642 .0°9387 .0°0137 .0%8804  .0%8656 .0°8424
94 | 0°8198 007976 007760 .0°7549 .0%7344 027143  .0%947 .0%756 .0%6569 .0°6387
—95 | 0%6210 .0%037 .0°5868 .0°5703 .0°5543 .0%5386 .0%5234 .0%5085 .0°4940  .0%4799
96 | 0%4661 094527 04306 .0%4269 .0%4145 .0%4025 .0°3907 .0*3793 .0°3681 .0°3573
_97 | 023467 023364 .0°8264 03167 .0%8072 .0°2980 .0%2800 .0%2803 .0°2718  .0°2635
98 | .0%555 002477 .0°2401 .0%2327 .0°2256 .0%2186 .0%2118  .0%2052 .0°1988  .0°1926
~99 | 0°1866 01807 .0%1750 .0%1695 .0°1641 .0%1589 .0°1538 071489 .0°1441 .0°1395
3.0 | 071350 .0%1306 .0°1264 .0°1223 .0%1183 .0%1144 0?1107 .0°1070 .0°1035  .0*1001
—31 | 0°0676 09354 .0'9043 .0°8740 .0°8447 .0%8164 .0%7888 .0%7622 .0'7364 .0'7114
39 | 0%871 .0%637 .0°%6410 .0%6190 .0%976 .0°5770 .0%5571 .0%377 .0%5190  .05009
—33 | 04834 0%4663 .0°4501 04342 .0%4189 .0°4041 .0°3897 03758 073624 073495
34 | 03369 .0°3248 .0°3131 .0°3018 .0%2909 .0°2803 .0%2701 .0%2602 .0%2507 .0°2415
35 | .0°2326 .0%2241 .0°2158 .0%2078 .0°2001 .0*1926 .0%1854 .0°1785 .0°1718 .0°1653
36 | 0°1591 .0*1531 .0°1473 .0°1417 .0°1363 .0°1311 .0°1261 .0*1213 .0°1166 .0*1121
37 | 01078 .0°1036 .0'9961 .0'9574 .0'9201 .0'8842 .0'8496 .0'8162 .0'7841  .0*7532
_38 | 079235 .0%6948 06678 .0'6407 .0%6152 .0'5906 .0'5669 .0'5442 .0'5223 .0'5012
39 | 04810 .0'615 .0'4427 .0'4247 .0'4074 .0'3908 .0'3747 .0'3504  .0'3446 .0'3304
40 | 0'3167 .0'3036 .0'2910 .0'2789 .0'2673 .0'2561 .0'2454 02351 02242 .02157
41 | .0'2066 .0'1978 .0'1894 .0'1814 .0Y1737 .0'1662 .0'1591 .0'1523 0’1458 .0'1395
—49 | 01335 01277 .0'1222 .0'1168 .0Y1118 .0'1069 .0'1022 .0°9774 .0°9345 08934
~43 | 08540 .0°8163 .0°7801 .0°7455 .0°7124 .0°6807 .0°6503 .0°6212 .0°5934 .0°5668
44 | 05413  .0°5160 .0°4935 .0°4712 .0°4498 .0°4204 .0°4098 .0°8911 .0°3732 .0°3561
—45 | .0°3398  .0°3241 .0°3002 .0°2949 .0°2813 .0°2682 .0°2558 .0°2439 02325 .0°2216
46 | 0°2112  .0°2013  .0°1919 .0P1828 .0°1742 .0°1660 .0°1581 .0°1506 .0°1434 .0°1366
—47 | 0°1301 .0°1239 .0°1179 .0°1123 .0°1069 .0°1017 .0°9680 .0°9211 .0°8765  .0°8339
—48 | 07933 07547 .0°7178 .0°6827 .0°6492 .0°6173 05869 .0°5580 .0°5304 .0°5042
—49 | 054792 .0F4554 .0%4327 .0%I111 .0°3906 .0°3711 .0°3525 .093348 .0°3179  .0°3019

415
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z .00 01 02 03 04 .05 06 07 .08 .09
0 [.5000 5040 5080 5120 5160 5199 5930 5279 5319 5359
1 |.5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
2 |.5798 5832 5871 5910 5948 5987 6026  .6064 6103 6141
3| .6179 6217 62556 .6203 6331 6368 6406  .6443  .6480  .6517
4| .6554 6591 6628  .6664  .6700  .6736  .6772  .6808  .6844  .6879
51 .6915 6950  .6985  .7019 7054 7088 7123 7157 7190 7224
6 |.7257 7201 7324 7359 7380 7422 7454 7486 7517 7549
7| 7380 7611 7642 7673 7703 7734 7764 7794 7823 7852
8 |.7881 7910 7939 7967 7995 8023  .8051  .8078  .8106  .8133
9| .8159 8186  .8212  .8238  .8264  .8289  .8315  .8340  .8365  .8389

1.0 | 8413 8438 8461  .8485  .8508  .8531  .8554  .8577 8599 8621

1.1 |.8648  .8665  .8686  .8708  .8720  .8749 8770 8790  .8810  .8830

1.2 | 8849 8869  .8888  .8907 8925  .8944 8962 8980  .8997  .90147

1.3 |.90320  .90490 90658  .90824  .90988 91149 91309 91466 91621 91774

1.4 |.91924 92073 92220 92364  .92507  .92647 92785 92022 93056  .93189

1.5 ].93319 93448 93574 93699  .93822 93043 94062 .94179 94295 04408

1.6 | 94520 94630 94738 94845 94950 05053 05154 95254 95352 95449

1.7 | 95548 95637 95728  .95818  .95907  .95994 96080 96164  .96246  .96327

1.8 | 96407 96485 96562  .96638 96712 96784 96856 96926  .96995  .97062

19 | 97128 97193 97257 97320 97381 97441 97500 97558 97615 97670

20 | 97725 97778 97831 97882 97932 97982 98030 98077 98124  .98169

2.1 | 98214 98257 98300 98341 98382 98422 98461 98500 98537  .98574

2.2 | 98610 98645 98679 98713  .98745 98778 98809 98840  .98870  .98899

2.3 | .98928 98956  .98983  .9%0097 .9%0358 .9%0613 .9%0863 921106 91344 91576

24 | 971802 .9%2024 .9%2240 .9%2451 922656 .9%2857 93053  .9%3244 .9'3431 93613

25 | 978790 978963 94132 924297 0457 9614 94766 94915 035060 .0%5201

2.6 | .9%5339 .9°5473 95604 .9%5731 .9%855 .9%5975 926093  .9%6207 .0%319 .0%6427

2.7 | 9%6533 .9%6636 .9°6736 .9%6833 .9%6928 987020 927110 .9%7197 .0*7282 .0%7365

2.8 | 97445 927523 927599 .9¥7673 .9%7744 .9*7814 .9%7882 927948 .0%8012  .0%8074

29 | 9%8134 .9%8193 .9%250 .9%8305 .9%8359 08411 9’8462 .0°8511 .G%8559  .0%8605

3.0 | 98650 .9°8694 .9%8736 .9%777 .9%8817 98856 9’8893 98930 98965  .9°8999

3.1 | 90324 90646 .9%0957 .9°1260 .9°1553 .9°1836 92112 .9%2378 .9%2636 .9°2886

32 |.9'3129 973363 9’3590 .9°3810 .9%4024 .9%4230 .9'4420 94693 .9%810 .9%4991

3.3 | .9%5166 .9%5335 .9%5499 .9%5658 .9%5811 .9%5959 9%103 .9%242 .9%6376 .9%6505

3.4 | 9%6631 .9%6752 .9%6869 .9%6982 .9%7091 .9%7197 .9%7299 .9*7398 .9%7493 .9*7585

3.5 | 97674 9%7759 .9V7842 977922 957999 .9%8074 .9%8146 .9%8215 .9°8282  .9°8347

3.6 | 998409 .9%8469 .9%8527 .9°8583 .9%8637 .9%8689 .9%8739  9%8787 .9%8834  .9%8879

37 | 9%8922 .9%8964 .9'0039 .9'0426 .9'0799 .9*1158 9'1504 .9'1838 .9'2159 .9'2468

3.8 | .0'2765 .9'8052 .9'3327 .9'3593  .0'3848 .9'4004 .9'4331 .9'4558 .94777 .9'4988

3.9 | .9'5190 .9'3385 .9'5573 .9'5753 .9'5926 .9'6092 .9'6253 .9'6406 .9%6554 .9'6696

40 | 96833  .9'6964 .9'7090 .9'7211 .9*7327 .9*7430 .9'I546 .9'7649 9'7748 .9'7843

41 | 9'7934  .9'8022 .9'8106 .9'8186 .9'8263 .9'8338  .9'8409 .9'8477 .9'8542 .9'8605

4.2 | 9'8665 .9'8723 .9'8778 .9'8832 .9'8882 .9'8031 .9'8978 .9°0226 .9°0655 .9°1066

43 | 91460 9’1837 .9°2199 .9°2545 .9°9876 .9°3193 993497 .9°3788 .9°4066 .9°4332

44 | 94587 94831 95065 95288 .9%5502 .9°5706 .9°5002 .9%6089 .9%6268 .9°6439

4.5 | 9%6602 .9%6759 96908 .9°7051 957187 .9%7318 997442 997561 .9%7675 977784

46 | 97888 .9°7987 .9°8081 .9°8172 .9°8258 .9°8340 .9°8419 .9°8494 .9°8566 .9°8634

47 | 98699 9’8761 .9°8821 .9%8877 .9%8931 .9°8983  .9%0320 .9°0789 .9°1235 .9°1661

48 | 992067 .9°2453 .9°2822  .9°3173  .9%3508 .9%3827 .9%4131 .9%420 .9%4696 .9°4958

4.9 | 95208 .9°5446 95673 95889 .9%6004 .0%6280  9%475 .9%652 .9%6821  .9%981

From A. Hald, Statistical Tables and Formulas, Wiley, New York, 1952. Table II. Reproduced by permission. See
also W. Nelson, Applied Life Data Analysis, Wiley, New York, 1982,



APPENDIX D

Probability Graph Papers

The general procedures used with all probability graph papers may be illus-
trated using the Weibull paper shown in Fig. D.1. The times to failure or
other random variable are ranked (i.e., placed in ascending order): & =
b= t; = ...= ty. The CDF is then estimated at each time using Eq. 5.12,

i

F(t) = NI

i=1,2,3,-" "N, (D.1)
and the appropriate probability paper is used to plot F(¢) versus . The points
should fall roughly along a straight line if the random variable is described by
the distribution. A straight line is drawn through the data, and the distribution
parameters are estimated from the line.

Graph papers for the exponential, normal, lognormal, maximum extreme
value, Weibull, and minimum extreme value distributions are given in ¥ igs.
D.2 through D.7. For plotting convenience the vertical and horizontal axes
such papers are labeled with values of F and & Observe, however, that the
ordinate scales are nonlinear while the abscissa is either linear or logarithmic.
These scales result from the rectification of the equation describing each
distribution to the form

»(F) %I[x(t) —x(p)]. (D.2)

The function y(F) and x(¢) are derived for each distribution in Chapter 5
and summarized in Table D.1. The distribution parameters are expressed in
terms of p and ¢ also as indicated in the table.

The values of p and ¢, and hence the parameters, may be determined
from the straight line drawn on the probability paper. Equation D.2 indicates
that the condition ¢, = p satisfies

yIF ()] =0. (D.3)

The value of Ffor which this holds is given in Table D.1 for each distribution.
Thus for the Weibull plot in Fig. D.1, we note that at ¢,, F = 0.632, and thus
from the horizontal and vertical dashed lines drawn on Fig. Dlt=p=
9 = 46 hr. To determine ¢, we find the values of F(t;) and F(tl,) such that

yIF()] = =1. (D.4)

The corresponding values of F(1.) are tabulated for each distribution in Table
D.1. Combining Eqs. D.2 and D.4, we obtain

x(t.) — x(p) = £¢ (D.5)
417
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FIGURE D.1 Example Weibull probability plot.

TABLE D.1 Probability Graphing Information

distribution F(3) y(F) x(1) P q F(t) F() F(t)

exponential 1 — ¢t In[1/(1 — F)] ¢ 0 @ 0.632 — —

normal q><£;&) &(F) t w o 0500 0841 0.159
o

lognormal @[lln(t/t,,)] D1(F) In() ¢ o 0500 0841 0.159
w

u 0.368 0.692 0.066
1/m 0.632 0.934 0.308
u 0.632 0.934 0.308

max. extreme val. exp[—e ("9/9] —In[In(1/F)] t

Weibull 1 — wor’ In[In[1/(1 — F)]] In(s)

@ = Q@

min. extreme val. 1 — exp[—¢“"°] In[In[1/(1 — F)]] ¢
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FIGURE D.2 Exponential distribution probability paper.
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FIGURE D.3 Normal distribution probability paper.
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FIGURE D.4 Lognormal distribution probability paper.




422 Introduction to Reliability Engineering

0.9999

0.9998
0.9997

0.9995

0.999

0.998
0.997

0.996

0.995

0.99

0.98

Fry)

0.97
0.96

0.95
0.90

0.80
0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.05
0.01

0.001

0.0001

FIGURE D.5 Maximum extreme-value probability paper.
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FIGURE D.7 Minimum extreme-value probability paper.

or with p eliminated between equations,
q=3[x(t) — x(.)]. (D.6)

Finally, for the exponential normal and extreme value distributions, where
x(f) = t, we have ¢ = (£. — t)/2, while for the lognormal and Weibull
distributions where x(f) = In(#) we obtain g = In(t./t.)/2. In our Weibull
example, Table D.1 yields F(#,) = 0.984 and F(¢.) = 0.308. Therefore from
the horizontal and vertical dashed lines drawn on Fig. D.1 we obtain
t, = 800 hrs and ¢- = 90 hrs. Hence m = 1/q = 2/In(8000/9000) = 0.92.



Answers to Odd-Numbered

Exercises
CHAPTER 2 CHAPTER 3
2.1 (a) 0.72, (b) 0.115, (c) 0.59, 31 b=6u=05 0= 0.22.

2.3

2.5
2.7
2.9

2.11

2.13
2.15
2.17
2.19
2.21
2.23
2.25
2.27
2.29
2.31
2.33

2.35
2.37

2.39

(d) 0.165, (e) 0.115, (f) 0.425
(independent).

(a) 0.5, (b) 0.25,
(c) 0.625, (d) 0.5.

(a) 0.7225, (b) 0.0225.
R[)L = 0.9048.

(a) P{X} = 0.04,
(b) P{X|X,} = 0.25.

(a) C=1/14,

(b) F(1) = 1/14, F(2) = 5/14,
F(3) =1,

(c) u = 257 0 = 2.10.

n =~ 1.53, ot =~ 1.97.

(a) 10, (b) 36, (c) 792, (d) 20.
0.0734.

Pyw = 0.0036.

(a) 0.058, (b), 6.6 X 1075,

(a) 0.594, (b) 0.0166.

(a) 0.353, (b) 3.0.

0.0803.

(a) 1 — 1.2 X 1075, (b) 0.851.
230 consecutive starts.

(a) 2 X 107, (b) 0.061,
(c) 0.678.

0.140 = 0.053, 0.140 = 0.068.

415 units to test; no more than
18 failures to pass.

B8 =12%.

3.3 (a) a = 18 X 10° hr?,
(b) 3000 hr.

3.5 (a) f(x) = 0.04xe "%,
(b) = 10, 0*> =~ 50, (c) 0.0278

3.7 (a) 1 wm, (b) 80.8%,

(c) 0.720 pum.

3.9 (a) (¢ = 1)/(e7" = 1),
(b) 0.168.

3.11 (a) —, (b) 8.32 cm, (c) 9.76 cm,
(d) —.

313 sk = X0 = 3N + A

({x%) = (0>
3.15 (a) f,(y) =

l —l_(y_av—l l—y_al—rl
b—aB\b—a b—a

(b) wy = (b—a)§+ a.

3.17 (a) 0.1056, (b) 1043 lbs,
(c) 21.6 lbs.

3.19 7.44 hrs.

3.21 u =~ 19.8 kips, o = 1.676 kips.
3.23 (a) n = 5.58, (b) n = 1.57.
3.25 (a) 0.026, (b) 0.308 yrs.

3.27 (a) 1.24 X 1075, (b) 0.037,
(c) 0.311.

CHAPTER 4
4.1 (a) $125 «% (b) $25, (c) 0.056.
43 L,/3.

425
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4.5 (a) 0.463, (b) $10, (c) 3.01.
4.7 0.0508
4.9 (a) 26.6 ppm, (b) 778 ppm.

4.11 (a) 0.86638, (b) 0.86638A,
(c) 0.788, (d) 0.5515¢%

4.13 780 ppm.

4.15 0.0174.

4.17 (a) 2.00, (b) 0.0049 cm,
(¢) 0.680.

CHAPTER 5

5.1 (a) u = 15061, 0® =~ 0.016935,
(b) graph.

5.3 (a) oo = 20.3, 2 = 142.8,
sk = 0.794, ku = 0.716
(b) w = 20.3, o® = 412,
sk =2, ku=7

5.5 1w = 1.96, 6 = 37, ¥ = 0.972
5.7 o = 10.78, & = 6.28.

5.9 1: u =498, o = 0.80,
2: uw = 50.5, 0 = 1.53.

5.11 § = 17.0, & = 0.824, »* = 0.957.

5.13 (a) graph, (b) 103,419,
(c) 2,507, (d) 0.987.

5.15 (a) graph, (b) 514 hr.
5.17 90%: 547, 95%: 651
5.19 103,421 * 3150.

CHAPTER 6

6.1 (a) 16/(¢ + 4)% (b) 2/(t + 4),
(c) 4.

6.3 (a) 130 hr, (b) 256 hr,
(c) 155 hr, (d) 513 hr.

6.5 (a) 0.966, (b) 0.980, (c) 0.975,
(d) 0.990.

6.7 (a) 0.905, (b) 0.9275.
6.9 (a) 1.63, (b) 0.224.

6.11 47 days.

6.13 A = 0.105/hr.
6.15 MTTF = V7 6/2.
6.17 0.04921.

6.19 28%.

6.21 (a) 1.667 hr, (b) 0.127 hr,
(c) increases.

6.23 (a) 3.98 yr, (b) 3.14 yr.

6.25 2 X 10° cycles.

6.27 (a) 123 hr, (b) 6.3%, (c) 86%.
6.29 MTTF = V7 §/V4N.

6.31 2.5%.

6.33 (a) 70.2 failures/yr,
(b) nine flashlights.

6.35 (a) 0.939, (b) 1.87 X 1077,
(c) 3.88 X 107",

6.37 (a) 0.2856, (b) 0.1315, (c) 1.25.
6.39 (a) 1/15, (b) 0.00213.

CHAPTER 7

7.1 (a) 1.39 X 1073, (b) 721V,
(c) 2161 V.

73 r=1+ i(e’z““/ — e v,
ay

7.5 R = 0.2090.
7.7 >10 strands.
7.9 15.7 Nm.
7.11 ¢/l = 4.64.
7.13 9%.
7.15 (a) 0.269, (b) 0.00669.
7.17 (a) 9 cables, (b) 9 cables.
7.19 85.6 lbs.
7.21 0.0436.
7.23 1075,



7.25 0.670.
7.27 (a) 0.18, (b) 0.06, (c) 2.40 yr.
7.29 (a) 87 cycles,

(b) 1.25 X 10° cycles.
CHAPTER 8
8.1 (a) 0.647, (b) 0.999.
8.3 130 min.
8.5 (a) 74.4 min, (b) 129 min.
8.7 (a) graph, (b) a = 0.5011.

8.9 #{, = 96.4 hr, & = 0.712,
MTTF = 124 hr.

8.11 #, = 92.4 hr, @ = 0.657,
MTTF = 115 hr.

8.13 m = 2.16, & = 110 hr,
MTTF = 97.5 hr.

8.15 1.95 months.
8.17 u = 481, o* = 351.2.
8.19 m = 2.5, 6§ =~ 130.

8.21 (a) graph, (b) u =~ 7000 hr,
o =~ 3000 hr, (c) 48%.

8.23 increasing with time.
8.25 m=~ 2.4, 6 =~ 12.

N+0.7—1i

8.27 R(t) =~ o7
8.29 143%.

8.31 MTTF = 9.76 months, 90% con-
fidence limits: 6.54 & 16.61
months.

8.33 (a) 177 hr,
(b) 104 < p < 324 hr.

8.35 33.8 days.

CHAPTER 9
9.1 R = 0.9289.
9.3 6 units.
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9.5 (a) 0.827, (b) 0.683, (c) 0.696.

9.7 (a) 1/4A% (b) 5/4X%,
(c) parallel larger..

9.9 (a) 260" — 20",
(b) 1 — (t/6)™

9.11 (a) 0.990, (b) 0.973.
9.13 0.629.

9.15 (a) R= ¢,
bYR=1—-(1-¢€"?
(C) R = 9¢HM— e—BAt’
(d) graph.

9.17 (a) 30 days, (b) 27.3 days,
(c) 27.3 days.

9.19 0.647 VT 6.
9.21 (a) 2.242 X 1072, (b) 0.1376.

9.23 (a) 0.9938, (b) 0.9960,
(c) 0.9798, b is best.

9.25 (a) 2R? — RY, (b) (2R — R»*
9.27 3.2 X 1078

9.29 (a) 2/3 MTTF,
(b) 11/6 MTTF.

9.31 (a) 5 detectors, 7 amplifiers, 5
annunciators, (b) $30,800.

9.33 (a) 0.9867, (b) 0.9952.
9.35 (a) 0.9769, (b) 0.99978.

CHAPTER 10

10.1 (a) 0.885, (b) every 6300 hr,
(c) every 4275 hr.

10.3 No, maximum value is 0.934.

10.5 (a) 0.7225, (b) 0.8825,
(c) 0.7188.

10.7 (a) 4.040, (b) 455%.
10.9 1.0446.

10.11 (a) 18.4 hr,
(b) 12.9 hr, 29.5 hr.



428

10.13
10.15
10.17
10.19
10.21

10.23

10.25
10.27

Introduction to Reliability Engineering

(a) 0.9315, (b) 20.4 hr.
0.980.

65.5 days.

2.2 X 107*/day.

(a) 0.897, (b) A = 0.013/hr,
m = 0.111/hr,
(c) 2% difference.

(a) 0.968, (b) 0.946,
(c) every 18.6 days.

(a) 0.9594, (b) every 87.5 days.

every 1980 hr.

CHAPTER 11

11.1

11.3
11.5
11.7

11.9

11.11

(a) 0.058 MTTF, (b) 0.129
MTTF, (c) 0.182 MTTF.

(a) 1 — A(21* — A3, (b) 1.56.

(@) 2/A, (b) A%/ (1 + Ag).

standby: 2/)%,
active parallel: 5/4A%

(a) shared-load system,
(b) 1.063.
(a) proof, (b) =~ 1 — 3(An)",

(c) active: 0.99990,
standby: 0.99996.

11.13 (@) 2(1 + AD)e™ — (1 + A2 2N,

11.15
11.17
11.19
11.21

11.23

(b) 1 — VaAts,

active parallel: 1 — A%t
1.2 X 1073,

(a) 0.9998, (b) 0.9996.
0.09902.

with ¢ = A/v, (a)
1+e+e2+ &8
1+e+2+e8+ &%
(b) =1 — &,
(c) identical, =~ 1 — 1.6 X 1077,

(a) 0.9961, (b) yes.

CHAPTER 12

12.1

12.3
12.5
12.7
12.9
12.11

12.13

passive-inlet line rupture,
either-valve closed when stop
fails, active-all other failures.

(a) 0.01, (b) 0.0185.
ANB ANC BN C.

(a) graph, (b) 9.15 X 107
0.12800, 0.12385, 0.12387.

(a) M;: 0.382, M,: 0.637,
(b) A: 0.382, B: 0.382, C: 0.637.

(a) 5.9 X 107, (b) 0.0508,
0.1016, 0.847 (c) 0.847, 0.0678,
0.0339, 0.0339, 0.0169.
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absorbing state, 351
absorption law, 14, 393
accelerated testing, 171,
208, 227-236, 247, 250
acceleration factor, 232—-236
acceptance:
criteria, 31
testing, 30-33, 38, 39,
210, 214
accident, 8, 143, 221, 361,
366, 374, 375, 376
activation energy, 235, 236
adjustment parameter, 78
advanced stress test, 227,
230-236
aging, 5, 6, 69, 79, 138-154,
175, 177, 191-202, 217,
230, 237, 290-298,
362-365, 382
aircraft, 4, 16, 35, 177, 209,
365, 367
alarms, 274
alarms, spurious 133, 134,
274, 371
analysis of mean, 85, 88
analysis of variance, 87, 88
AND gate, 376-380, 392,
395
ANOM, see analysis of mean
ANOVA, see analysis of
variance
Arrhenius equation, 235,
236, 251
as-good-as-new, 164, 292,
309, 321
assembly line, 356
associate law, 14, 393
asymptotic extreme value dis-
tribution, 59-62
attribute data, 25-30, 134
automated protection, 371
availability, 9, 290, 291,
300-332, 346, 349-356
asymptotic, 300, 309-319,
322-324, 351, 359, 360
interval, 300, 305-310,
313, 323, 324
point, 300, 312-319, 351
steady state, 301, 351-355
average range, 134
axioms, probability, 12

backup systems and units,
262, 308, 334, 339-353

bar graph, 17, 18

batch size, 31

bathtub curve, 8, 139, 142-
145, 160, 177, 191-202,
214, 298, 362

battery, 35, 100, 260, 385

bell-shaped curve, see nor-
mal distribution

Bernoulli trials, 21

beta distribution, 64, 65

beta factor model, see com-
mon mode failure

Bhopal, 361

bias, 76, 79, 92, 368

binomial distribution, 21—
27, 32, 124, 269

coefficients, 22, 266
expansion, 265

sampling, 30, 39, 244, 245
sampling charts, 411-414
test, 209

trials, 102

biomedical community, 221

Boeing 767, 371

Boolean Algebra, 14, 389,
393, 398, 399

bugs, computer software,
145, 245

burnin, 143, 214

buyer’s risk, 31, 39

cable, 51, 183, 204
calculator, pocket, 6 7
calendar time, 150, 209
calibration, 367, 368
capability index, 89-96
capacity, 8, 31, 143, 175—
207, 268
factor, 150, 151
variability and deteriora-
tion, 177, 191-196
carelessness, 368
case histories, 365
CCDF, see complementary
cumulative distribution
function
CDF, see cumulative distribu-
tion function
censored data, 8, 103, 208,
219-226
singly and multiple, 220
on the right, 220, 225,
226, 237, 238
central limit theorem, 124,
125, 131, 237
central tendency, 19
chain, 58, 206
change of variables, 49
chemical reactions, 235

429

Chernobyl, 361
Chi-squared distribution and
test, 120, 123, 133
circuits, 12, 78, 82, 93, 144,
240
classical sampling, 29
clock time, 229
coefficient:
matrix, 346
of determination, 112,
231, 233, 235, 245
of variation, 186, 197, 205
combinations of events, 11,
13, 14, 21
combined distributions, 189
common mode failure, 9,
28, 258-261, 266, 273~
276, 283, 284, 287, 299,
300, 316, 321, 382, 394,
399, 400, 405
communicative law, 393
competing flaws, 59
complementary cumulative
distribution function,
17, 42, 140
complexity, system, 2, 3, 8,
92-95, 138, 144, 163,
175, 252, 366
component:
active and passive, 382,
383
count method, 161-163
importance, 407
interactions, 382
replacement, 286
composite model, 146
compressed-time test, 209,
227-229, 235
computers, 23, 29, 37, 69,
82, 93, 96, 144, 145,
276, 283
concurrent engineering, 97
conditional gate, 380
confidence intervals and lim-
its, 28, 30, 103, 107,
108, 121130, 137, 154,
205, 208, 220, 233, 237,
241-245, 250
confidence level, 25, 29,
120, 188, 244
congenital defects, 142
consumer products and psy-
chology, 362-365
continuous operation, 145,
146, 230, 263
continuous random vari-
ables, 40-48
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contour plots, 82
control:
chart, 137
factors, 87
limits, 131-134, 137
mechanism, 262
corrosion, 143, 144
costs, 1-5, 69, 73, 85, 88, 96,
131, 164, 209, 214, 238,
270, 276, 287, 290, 299,

303, 363-365
.89 -
Cpks 90

cracks, 143, 205
cross-linked redundant sys-
tems, 289
cumulative distribution func-
tion, 17, 22, 28, 41, 42,
107, 216
cumulative effects, 143
cumulative hazard function,
216-219, 246-249
curve fitting, 111
customer desires & needs, 5,
68, 69, 77
cut set, 396-404
determination, 398, 399
importance, 399, 403,
404, 407
interpretation, 399, 400
minimum, 391, 395-407
qualitative analysis,
396-400
quantitative analysis,
400-404
ranking, 399
uncertainty, 403
cyclic operation, 235
cyclical failure, 228, 229
cycling, thermal, 214, 215

data, 7, 8, 23, 102, 181
censored, 219-226, 237,
247-249
complete, 103, 130, 215,
231
field, 216, 238
grouped, 215-220, 223—
227, 247
ungrouped, 120, 135,
215-218, 221-223
DC-10, 370
debugging, 145, 213
decision tree, 375
demand failures, 145-151,
263, 376, 383, 394, 395
deMorgan’s theorem, 14
dependencies, component
and operational, 313,
326
derating, 143

derived distribution, 46
design, 2, 5, 68-81, 96, 97,
102, 143, 168, 176,

208-214, 361, 365, 396
alterations, 274
characteristics, 8
conceptual, 77, 209
criteria, 5, 400
defects, 213, 363
detailed, 69, 77, 209
life, 7, 144, 158, 171, 173,

195, 227, 287, 261, 295,

365
robust, 68-81, 88, 96, 143
specifications & parame-

ters, 7, 72, 77, 78,

82-88
trade-offs, 270
verification, 228

design of experiments,
81-88
deterioration, 2, 3, 6, 69, 70,

76, 144, 177, 193, 194,

196, 230, 260, 308, 344,

365, 369

differential equation, solu-
tion, 409

Dirac delta distribution, 48,
52-54, 194, 195, 199,
307

disasters, 364

discrete random variables,
17, 20, 36-40, 165, 167

disease, infectious, 143

dispersion, 44, 368

distribution parameters, 103,

108, 110, 115, 120, 121,

220, 235

distribution-free properties

distributive law, 14, 393

diversity, 369

double exponential distribu-
tion, 60

double sampling, 33, 34

doublet, 400, 403

downtime, 291, 304

drift, 90, 91, 97

Duane plots, 211, 213

early failure, see infant mor-
tality

earthquake, 143, 173, 176-
178, 206, 400

economic loss, 374, 376

electronics, 38, 94, 116, 162,
230

embrittlement, 143, 230

emergency power, 270

engine, 5, 6, 36, 38, 76, 80,
93, 144, 147, 160, 173,
209, 238, 259

environment:
operating, 6, 138, 270
work, 368
environmental conditions, 3,
6, 76, 84, 87, 96, 163,
210, 213, 227, 258, 362,
366
equipment:
failures, 363
hazards, 362
imported, 371
redundant, 370
error bounds, 29
error function, 284
error, 84, 368-371, 376. See
also human error
estimate, 25, 26, 103
estimator, 27
ethics, 364
Euler’s constant, 190
event, 10, 12
event tree, 372, 374, 375
Excel spread sheet, 107, 116
expansions, 268, 320, 408,
409
expected value, 20, 26, 43,
44
experiments:
full and partial-factorial,
84-87
two and three level, 82,
84, 86
explosion, 379
exponential distribution, 59,
103, 109-111, 136,
146-152, 157, 170, 181,
192, 193, 203, 205, 233,
237, 238, 249, 251, 287,
304, 305, 308, 418
graph paper, 248, 417,
419

power series expansion,

probability plot, 109-111,

120, 249, 250

extrapolation, 220

extreme value distribution,
57, 59-62, 103, 114,
116, 123, 127, 128, 177,
183, 188, 189, 190, 206,
235, 418

extreme value probability
plot, 137

factor, adjustment, 88
fail-safe and fail to danger,
268, 271, 274-276, 287
failure, 1, 10, 31, 69, 70, 138
classification, 374
interactions, 326
mechanisms, 144, 228,
232, 236, 374



mode, single, 197, 200
mode interactions, 197,
200, 202
modes, 6, 138, 159, 178,
179, 196, 210, 213, 221,
232, 237, 262, 294, 298,
299, 372, 389, 393, 396,
372
failure modes and effects
analysis, 208, 372-374
failure probability 25, 140,
147, 180, 186-189, 203,
244, 245, 258, 259, 277,
300, 362, 366, 376
failure rate, 138-168, 175,
177, 191-202, 209, 212,
216-220, 227, 228, 249,
260, 261, 286, 287, 295,
296, 304, 305, 313-317,
321, 383
composite, 142, 145, 150,
151, 171, 195, 206, 207
constant, 145-167, 192—
196, 199, 217, 237-245,
250-259, 266, 267, 283,
291, 294, 310, 312, 323,
382, 395
defined, 140, 141
estimates, 161, 236-245
in Markov models,
328-360
mode, 159, 160
redundant systems,
255-258
time-dependent, 142-145,
177, 159, 167, 195, 217,
347
failures, See also infant mor-
tality, random and
aging failures
active and passive, 404
benign, 364
catastrophic, 361, 374
command, 383
common mode, see com-
mon mode failure
critical, 374
defined, 381
demand, 339, 376, 383,
394, 395
equipment, 362, 371, 383
hard, 278
independent, 259
maintenance, 299, 321,
322
marginal, 374
power, 286, 375, 395
primary, 377, 382, 389-
396, 398-403, 406
revealed, 323, 291, 303-
308, 314-317, 322, 350

secondary, 382
sources, 376
standby, 350, 357
switching, 258, 262, 263,
278, 284, 323, 335, 341,
342, 353, 357-359
times, 118, 136, 163, 216,
248
unrevealed, 291, 308-313,
317-320, 323, 324
false alarms, 133, 134, 371
fatigue, 118, 137, 143, 144,
155, 178
fault:
classification, 382-383
command, 382
defined, 381
primary and secondary,
382
transient, 278
fault handling, 278
fault tolerant system, 338
fault tree, 362, 372, 374,
376-389, 406
construction, 377-389
cut sets, 396-404
direct evaluation, 389-396
event classification,
374-382
examples, 384-388
logical reduction, 393
nomenclature, 379
qualitative analysis, 379,
389, 391-393
quantitative analysis, 376,
389, 391, 393-396
top event, 376, 380, 382,
389, 392-398, 401-406
field:
data, 210
failures, 210
life, 228
studies, 216
financial loss, 143
finite element analysis, 82
fire, 364, 400
flash light bulb data, 108,
113, 231
flaw size, 63
flood, 176, 178, 206, 273,
385, 400
FMEA, see failure modes and
effect analysis
fractional factorial experi-
ment, 83, 84
frequency diagram, 104, 105
functional characteristic, 76
functional principles, 69
fuses, 365

gamma function, 57, 58, 157
geometric distribution, 37
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goal-post loss function, 71,
72

goodness-of-fit, 118, 120,
237

graph papers, probability,
111, 417-424

Gumbel distributions, 59

half factorial experiment, 84
hardware, 213
hazard:
function, 216
plot, 216
rate, see failure rate
hazards analysis, 363
heating elements, 365
Herd-Johnson method, 223
histogram, 102-106, 121,
131, 135, 219, 248
house symbol, 380
human:
adaptability, 367
behavior, 291, 362,
366-372
error, 366-372, 374, 392
reliability, 296, 367, 368,
372
hypothesis-testing, 133

idempotent law, 14

impact, mechanical, 143,
206

importance:

component, 400, 403
cut set, 403

inclusion-exclusion princi-
ple, 401

incredulity response, 371

independent events, 14, 15,
35, 159, 254

Indianapolis 500, 4

infant mortality, 6, 31, 69,
70, 138-145, 151, 152,
160, 175, 177, 191-202,
210, 220, 214, 229, 230,
237, 298, 362-365, 382

INHIBIT gate, 380

inspection, 144, 310, 365

installation, faulty, 362, 363

instrument panels, 368

integrals, definite, 408

interactions, statistical, 84

intersection of events, 11,
13, 15, 16, 394, 398,
401, 402

interval estimate, 120-124,
403

inverse operators, 116, 119

Kansas City Hyatt Regency,
363
Kaplan-Meire method, 223
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Kolmogorov-Smirnov test,
120

kurtosis, 44, 45, 64, 106,
107, 136, 122, 218

Ly, 66, 246, 247
lamps, 86
Laplace transform, 343, 347,
351
learning experience, 3, 211
least squares fit, 111113,
118, 136, 228, 229, 233,
235
life data and tests, 7, 123,
130, 209, 210, 213-231,
246
limits, operational, 364
linear equation, 116
linear graph, 98
linear transformation, 47
load sharing, 258, 260, 261,
266, 285, 331-334, 345
load-capacity interference
theory, 177-191
loading, 2, 8, 67, 138, 143,
144, 175-207, 227, 366,
383
cyclic 163, 178
location index, 90
location parameter, 114, 127
logarithmic transformation,
57
logic:
deductive, 376
errors, 144
expression, 389, 394, 406
log mean, 125, 128, 129
lognormal distribution, 48,
53-56, 62, 103, 116,
123, 125, 152-156, 183,
188, 189, 205, 207, 232,
233, 236, 246-249, 403,
418
graph paper, 417, 421
parameters, 118, 124, 125,
247
probability plot, 136, 137
log variance, 128, 129
long-term multiplier, 94
long-term variation, 134
loss function, 73-75, 98, 99
Taguchi, 70, 89

maintainability, 9, 300,
301-303

Maintainability engineering,
303

maintained system, 290, 324,
382

maintenance, 210, 285,
364-370

corrective, 290, 291,
300-308
idealized, 291-296
imperfect, 291, 296-300,
362
interval, 294
personnel, 291
preventive, 144, 145, 168,
169, 290-300, 309, 321,
322
redundant system, 299,
300
man-machine interface, 368,
370
manufacture, 68, 102, 208,
230, 361, 366
manufacturing processes, 5,
6, 69, 70, 76, 81, 89,
90-97, 103, 177, 209,
210, 214, 363
Markov:
analysis, 326, 327, 349
equations, 332, 335, 337,
346, 351, 358, 359, 360
methods, 260, 313, 331,
342345, 348, 350, 394,
401
processes, 326
states, 327, 328
transition matrix, 347,
351~354, 359
maximum extreme value dis-
tribution, 59, 115, 128,
189, 190
graph paper, 417, 422
maximum likelihood meth-
ods, 120, 233
mean, 53, 92, 106, 107, 116,
121, 122, 123, 135-137,
186, 219, 248, 368, 403
continuous random vari-
able, 43-60
discrete random variable,
19-25, 37
drift, 91
estimate, 124
process, 90
rank, 108
shift, 91, 95
shift, equivalent, 92
mean time between failures,
164, 167, 174, 244, 246,
313
mean time to failure, 86, 87,
141, 146, 155, 156, 161,
164, 193
defined, 141
in maintained systems,
292, 293, 301-306, 322,
323

in Markov models, 333,
336, 238--241, 355-357,
360
in redundant systems,
256-259, 265, 277,
283285
in reliability testing, 217,
230, 231, 236, 237, 250,
251
mean time to repair, 302—
308, 313, 322, 323
median rank, 103, 108
median value, 19
memorylessness, 146, 172
military procurement, 162,
163
minimum extreme value dis-
tribution, 59, 114, 115,
128, 189
graph paper 417, 424
mistake, repetition, 371
moment, bending, 181
Monte Carlo method, 347,
399, 404
mortality, human, 142
mortality rate, 140. See also
failure rate
most probable value, 19
Motorola Corporation, 94
motors, 223
moving averages, 134
MTBF, see mean time be-
tween failures
MTTF, see mean time to
failure
MTTR, see mean time to
repair
Multiple sampling, 33
mutually exclusive events,
12, 35, 255
mutually independent
events, 12, 148

noise:
array, 87, 88
background, 96
factors, 85, 87
inner, outer and product,
76, 87, 143, 144, 191
nonlinear plot, 109
nonparametric methods,
103, 106, 215, 219, 227,
230, 231, 246-250
nonredundant system, see se-
ries system
nonreplacement method,
237-245
normal distribution, 18, 12,
48-56, 62, 71, 72, 152—
154, 157



in data analysis, 103, 105,
120, 124, 125, 131, 135,
235, 247, 248

in load-capacity theory,
171, 183-189, 197,
204-206

plotting and paper, 116-
119, 137, 248, 417, 418,
420

in quality, 89-92, 99, 100

normalization condition,
105

null event, 15

number of components, 252

number of failures, 139,
163, 165, 166, 212, 213,
218, 220, 239, 300, 303

number of repairs, 307

on-off cycle, 209, 227
operating:
environment, 5, 69, 70,
79, 80, 143
life, 63, 150, 209, 229
state, 346, 351
operation, 138, 208, 235,
361
continuous, 227, 308, 383
emergency, 370-372
fully loaded, 263
routine, 230, 362,
368-370
spurious, 275, 276
operators, 277, 383
optimization, 5, 82
OR gate, 376-380, 392, 395
orthogonal array, 84-88, 98,
99
out-of-tolerance, 2, 89, 131,
142, 213
outliers, 112, 120, 229
overheating, 273

parallel, m/N, 275
parallel system, 8, 33, 254~
289, 313-321, 324,
330-333, 404. See also re-
dundancy
active, 263-257, 261, 263,
271, 278, 284-287,
335-342, 354-359
standby or passive, 253
257, 263, 278, 280, 283,
334, 336, 339, 341, 355
parameters, design, 87
parameters part, 69
parametric methods, 215,
220, 232
parent distribution, 123, 131
part-to-part variation, 131,
133

parts:
commercial, 163
replacement, 144, 145,
210
spare, 173
stress, 162
parts count method, 161-
163, 209
parts per million, 94
Pascal’s triangle, 22
pass/fail test, 25, 30
PDF, see probability density
function
percentage survival, 238,
239, 241, 244
performance, 2, 3, 176, 297
performance characteristics,
5,7, 68, 69, 71, 77, 80—
88, 93, 96
larger-is-better, 76, 82, 88
smaller-is-better, 76, 82,
88
target, 76, 82
variability, 6
periodic testing, 133,
300-313
physical isolation, 273
pilot error, 277
plant layout and automa-
tion, 367, 400
PMF, see probability mass
function
point estimates, 25, 28, 29,
107, 120-125, 130, 403
Poisson distribution, 24, 25,
32, 37, 165, 166, 173,
191, 304, 308, 357
Poisson process, 149, 326
population, 25, 102, 221
distribution, 120
human, 143
stereotype, 371
power series, exponential,
257
power supply, 35, 274
surges, 143
emergency, 375
pressure monitor, 241
pressure vessel, 205, 230,
365
primary system or unit, 254,
255, 262, 334, 337, 339,
342, 249, 350
probability, 10-12, 102
axioms, 11
conditional, 11-13
density function, 41-45,
71
distribution, 102, 106
mass function, 17, 24, 26,
28
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plotting, 8, 103, 107-120,
125, 133, 136, 220, 237
product rule, 12, 15, 252,
314, 349
problem-solving ability, 370,
371
procedures:
emergency, 372
faulty, 383
maintenance, 389
operating, 371, 389
process:
capability, 89, 91, 96,
116-118
control, 96
design, 69, 70, 81
mean, 89, 133
mean shift, 131
parameter, 89, 96
target, 89
process variability, 89, 134
product:
consumer, 4, 362, 365
development cycle, 5, 69,
96, 208, 209, 212, 362
industrial, 362
life, 7, 69, 364
life cycle, 210
modifications, 364
product limit method, 223,
248, 249
product rule, 12, 15, 252,
314, 349
producter’s risk, 31, 32
production line, 213, 306
production process, 7,71,
363. See also manufactur-
ing process
proof test, 143, 205, 214
protective actions, 367
prototype, 5, 77, 82, 102,
209, 211-213, 250
psychological factors, 368,
370

quality, 4, 5, 7, 68-102, 142,

210

assurance, 25, 143, 366

control, 70, 145, 163, 270

control, offine, 70, 72,
89

loss, 6, 71, 72, 76, 88, 143

loss function, see loss
function

multiplier, 163

random failures, 6, 138, 139,
143-147, 152, 160,
173-177, 191, 197-202,
230, 237, 240, 293-297,
362-365, 395, 396
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random variable, 18, 19, 46,
102, 106, 107, 121, 122,
131, 139, 176, 238, 254,
301

rank, 102, 116, 216, 233

rare event approximation,
257, 259, 265, 268, 270,
277-288, 320, 323, 324,
353, 357-359, 394

rational subgroup, 131-134,
137

Rayleigh distribution, 170-
172, 285, 287, 322, 324

rectified equation, 115, 417

reduced system, 281

reduced variate, 49, 61, 90,
124

redundancy, 252-289, 366,
397

allocation, 270-278

cross-linked, 281-283

high and low level, 271-
274, 286, 287, 407

limitations, 258-264

multiple, 254, 264-270,
278-283

standby, 262, 267, 268,
350, 354

reliability:

block diagram, 252-254,
258, 268, 279-282, 328,
349, 376-379, 397, 406,
407

component, 209, 270,
273, 281

defined, 1

design life, 266, 274, 283,
297, 321

enhancement and growth,
8, 145, 210-215, 245

human, 291

index, 185, 187

mission, 339, 341, 404

system, 160, 252, 255, 269,
280, 295, 327, 341

testing, 208-251, 362

repair, 4, 23, 170, 260, 290,
291, 298, 300, 301, 309,
310, 326, 342, 365, 367,
369

crew, 303, 350-355, 359,
360

crew, shared and single,
354-356

parts, 303, 308

PDF, 301

policy, 320

rate, 302-305, 312--315,
322-324, 326, 328, 350,
354, 359

time, 173, 291, 302-308,
312, 319
unrevealed failures,
308-313
repairable systems, 300-321
replacement, 143, 164-167,
237-245, 295-298, 350
resistors, 100, 116, 125, 134
return period, 206
risk, 28, 122, 124, 364
robust design, 5, 70, 76, 77,
88, 96, 143
root cause, 376, 378
rotation of coordinates, 184
rule-based actions, 370
runin, 143

safe operation, 276
safety, 4-7, 220, 298, 299
analysis, 361-366, 371,
372, 374, 378, 379
factors, 52, 175-177, 183~
189, 197, 204, 206
guards, 361-364, 376,
379, 397
index, see reliability index
margin, 31, 175, 176, 363
systems, 274, 275, 304,
375
sample statistics, 106, 107,
121
kurtosis, 136
mean, 102, 124, 127, 131,
136, 187, 220, 232
size, 26, 31, 34, 103, 108,
123, 128, 208, 210
skewness, 136
variance, 102, 124, 127,
131, 136, 187, 220
sampling distribution, 25—
28, 121, 122-124
scale parameter, 57, 58, 113,
114, 129, 229, 232-236
second-moment methods,
187
semilog paper, 110, 111
sequential sampling, 33, 34
series-parallel system,
279-281
series system, 253, 271, 278,
281, 284, 313-320, 323,
330
service records, 216, 225
shape parameter, 57, 58,
113, 114, 129, 229, 233,
235, 237
shared load, 260, 326, 349,
357
Shewhart x chart, 134
shock, electrical, 364

shocks, 66, 148, 149, 147,
177
short-term variation, 131
shutdown, unscheduled, 213
signal-to-noise ratio, 88, 98
single-parameter at a time
design, 82, 84
singlet, 400, 403
Six sigma criteria and meth-
odology, 8, 70, 88-97
skewness, 44, 45, 64, 106,
107, 121, 122, 124, 136,
137, 218
soft failures, see transient
faults
software, computer, 112,
120, 123, 213
spare parts, 174, 238, 277,
303
spares, exhaustion, 278
SPC, see statistical process
control
specifications, 70-72, 88-96,
98, 116, 163, 363
spread sheet, 107, 111-116,
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