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I.I RELIABILITY DEFINED

The emerging world economy is escalating the demand to improve the perfor-

mance of products and systems while at the same time reducing their cost.

The concomitant requirement to minimize the probability of failures, whether

those failures simply increase costs and irritation or gravely threaten the public

safety, is also placing increased emphasis on reliability. The formal body of

knowledge that has been developed for analyzing such failures and minimizing

their occurrence cuts across virtually all engineering disciplines, providing

the rich variety of contexts in which reliability considerations appear. Indeed,

deeper insight into failures and their prevention is to be gained by comparing

and contrasting the reliabiliqz characteristics of systems of differing characteris-

tics: computers, electromechanical machinery, energy conversion systems,

chemical and materials processing plants, and structures, to name a few.

In the broadest sense, reliability is associated with dependability, with

successful operation, and with the absence of breakdowns or failures. It is

necessary for engineering analysis, however, to define reliability quantitatively

as a probability. Thus reliability is defined as the probabiliq Ûtat a system will

perform its intended function for a specified period of time under a given
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set of conditions. System is used here in a generic sense so that the definition of
reliability is also applicable to all varieties of products, subsystems, equipment,
components and parts.

A product or system is said to fail when it ceases to perform its intended
function. When there is a total cessation offunction-an engine stops running,
a structure collapses, a piece of communication equipment goes dead-the
system has clearly failed. Often, however, it is necessary to define failure
quantitatively in order to take into account the more subtle forms of failure;
through deterioration or instability of function. Thus a motor that is no longer
capable of delivering a specified torque, a structure that exceeds a specified
deflection, or an amplifier thatfalls below a stipulated gain has failed. Intermit-
tent operation or excessive drift in electronic equipment and the machine
tool production of out-oÊtolerance parts may also be defined as failures.

The way in which time is specified in the definition of reliability may also
vary considerably, depending on the nature of the system under consideration.
For example, in an intermittently operated system one must speci$'whether
calendar time or the number of hours of operation is to be used. If the
operation is cyclic, such as that of a switch, time is likely to be cast in terms
of the number of operations. If reliability is to be specified in terms of calendar
time, it may also be necessary to speci$' the frequency of starts and stops and
the ratio of operating to total time.

In addition to reliability itself, other quantities are used to characterize
the reliability of a system. The mean time to failure and failure rate are
examples, and in the case of repairable systems, so also are the availability
and mean time to repair. The definition of these and other terms will be
introduced as needed.

I.2 PERFORMANCE, COST, AND RELIABILITY

Much of engineering endeavor is concerned with designing and building
products for improved performance. We strive for lighter and therefore faster
aircraft, for thermodynamically more efficient energ'y conversion devices, for
faster computers and for larger, longer-lasting structures. The pursuit of such
objectives, however, often requires designs incorporating features that more
often than not may tend to be less reliable than older, lower-performance
systems. The trade-offs between performance, reliability, and cost are often
subtle, involving loading, system complexity, and the employment of new
materials and concepts.

Load is most often used in the mechanical sense of the stress on a
structure. But here we interpret it more generally so that it also may be the
thermal load caused by high temperature, the electrical load on a generator,
or even the information load on a telecommunications system. Whatever the
nature of the load on a system or its components may be, performance is
frequently improved through increased loading. Thus by decreasing the
weight of an aircraft, we increase the stress levels in its structure; by going to
higher-thermodynamically more efficient-temperatures we are forced to
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operate materials under conditions in which there are heat-induced losses of

strength and more rapicl corrosion. By allowing for ever-increasing flows of

information in communications systems, we approach the frequency limits at

which switching or other digital circuits may operate.

Approaches to the physical limits of systems or their components to

improve performance increases the number of failures unless appropriate

countermeasures are taken. Thus specifications for a purer material, tighter

d.imensional tolerance, and a host of other measures are required to reduce

uncertainty in the performance limits, and thereby permit one to operate

close to those limits without incurring an ullacceptable probability of ex-

ceeding them. But in the process of doins so, the cost of the system is likely to

increase. Even then, adverse environmental conditions, product deterioration,

and manufacturins flaws all lead to higher failure probabilities in systems

operatine near their limit loads.

System performance may often be increased at the expense of increased

complexity; the complexity usually being measured by the number of required

components or parts. Once auain, reliability will be clecreased unless compen-

sating measures are taken, for it may be shown that if nothing else is changed,

reliabiliq, decreases with each added component. In these situations reliability

can only be maintained if component reliabiliry is increased or if component

red.undancy is built into the system. But each of these remedies, in turn, must

be measured against the incurred costs.

Probably the greatest irnprovements in perfbrmance have come throush

the introduction of entirely new technologies. For, in contrast to the trade-

offs faced with increased loading or complexity, more fundamental advances

may have the potential for both improved performance and greater reliability.

Certainly the history of technology is a study of such advances; the replacement

of wood by metals in machinery and structures, the replacement of piston

with jet aircraft en{ines, and the replacement of vacuum tubes with solid-

state electronics all led to fundamental advances in both performance and

reliability while costs were reduced. Any product in which these tracle-offs are

overcome with increased performance and reliability, without a commensurate

cost increase, constitutes a significant technological advance.

With any major advance, however, reliabiliq m^y be diminished, particu-

larly in the early stases of the introduction of new technology. The engineering

community must proceed through a learning experience to reduce the uncer-

tainties in the limits in loading on the new product, to understand its suscepti-

bilities to adverse environments, to predict deterioration with age, and to

perfèct the procedures for fabrication, manufacture, and construction. Thus

in the transition from wood to iron, the problem of dry rot was eliminated,

but failure modes associated with brittle fracture had to be understood. In

replacing vacuum tubes with solid-state electronics the ramifications of reliabil-

ity loss with increasing ambient temperature had to be appreciated.

\Arhether in the implementation of new concepts or in the application

of existing technologies, the wav trade-offs are made between reliability, perfor-

mance and cost, and the criteria on which they are based is deeply imbedded
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in the essence of engineering practice. For the considerations and criteria
are as varied as the uses to which technology is put. The following examples
illustrate this point.

Consider a race car. If one looks at the history of automobile racing at
the Indianapolis 500 from year to year, one finds that the performance is
continually improving, if measured as the average speed of the quali$ring
cars. At the same time, the reliability of these cars, measured as the probability
that they will finish the race, remains uniformly low at less than 50%.* This
should not be surprising, for in this situation performance is everything, and
a high probability of breakdown must be tolerated if there is to be any chance
of winning the race.

At the opposite extreme is the design of a commercial airliner, where
mechanical breakdown could well result in a catastrophic accident. In this case
reliability is the overriding design consideration; degraded speed, payload, and
fuel economy are accepted in order to maintain a very small probability of
catastrophic failure. An intermediate example might be in the design of a
military aircraft, for here the trade-off to be achieved between reliability and
performance is more equally balanced. Reducing reliability may again be
expected to increase the incidence of fatal accidents. Nevertheless, if the
performance of the aircraft is not sufficiently high, the number of losses in
combat may negate the aircraft's mission, with a concomitant loss of life.

In contrast to these life or death implications, reliability of many products
may be viewed primarily in economic terms. The design of a piece of machin-
ery, for example, may involve trade-offs benveen the increased capital costs
entailed if high reliability is to be achieved, and the increased costs of repair
and of lost production that will be incurred from lower reliability. Even here
more subtle issues come into play. For consumer products, the higher initial
price that may be required for a more reliable item must be carefully weighed
against the purchaser's annoyance with the possible failure of a less reliable
item as well as the cost of replacement or repair. For these wide classes of
products it is illuminating to place reliability within the wider contexr of
product quality.

I.3 QUALITY, RELIABILITYO AND SAFETY

In competitive markets there is little tolerance for poorly designed and/or
shoddily constructed products. Thus over the last decade increasing emphasis
has been placed on product quality improvement as manufacturers have
striven to satis$r customer demands. In very general terms quality may be
defined as the totality of features and characteristics of a product or service
that bear on its ability to satis$r given needs. Thus, while product quality and
reliability invariably are considered to be closely linked, the definition of
quality implies performance optimization and cost minimization as well.
Therefore it is important to delineate carefully the relationships between

x R. D. Haviland, Enginering Reliability and Long Life Design, Van Nostrand, New York, 1964, p. 114.
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quality, reliability, and safety. We approach this task by viewing the three

concepts within the framework of the design and manufacturing processes,

which are at the heart of the ensineering enterprise.

In the prod,uct development cycle, careful market analysis is first needed

to determine the desired performance characteristics and quantifi them as

design criteria. In some cases the criteria are upper limits, such as on fuel

consumption and emissions, and in others they are lower limits, such as on

acceleration and power. Still others must fall within a narrow range of a

specified target value, such as the brightness of a video mouitor or the release

pressure of a d.oor latch. In conceptual or system design, creativity is brought

to the fore to formulate the best system concept and configuration for achiev-

ing the desired performance characteristics at an acceptable cost. Detailed

design is then carried out to implement the concept. The result is normally

a set of working drawings and specifications from which prototypes are built.

In designing and building prototypes, many studies are carried out to optimize

the performance characteristics.

If a suitable concept has been developed and the optimization of the

cletailed desien is successful, the resulting prototype should have performance

characreristics that are highly desirable to the customer. In this procesv'tFè

costs that eventually will be incurred in production must also be minim\ized.

The design may then be said to be of high qualiqt, or more precisely of 
\h

characreristic quality. Building a prototype that functions with highly desirab\

performance characteristics, however, is not in and of itself sufficient to assure\

that rhe prod.uct is of high quality; the product must also exhibit low variability I

in the performance characteristics.

The customer who purchases an engine with highly optimized perfor-

mance characteristics, for example, will expect those characteristics to remain

close to their target values as the engine is operated under a wide variety of

environmental conditions of temperature, humidity, dust, and so on. Likewise,

satisfaction will not be long lived if the performance characteristics deteriorate

prematurely with age and/or use. Finally, the customer is not going to buy

the prototype, but a mass produced engine. Thus each engine must be very

nearly identical to the optimized prototype if a reputation of high quality is

to be maintained; variability or imperfections in the production process that

lead to significant variability in the performance characteristics should not

be tolerated. Even a few 
"lemons" will damage a product's reputation for

high quality.

To summarize, two criteria must be satisfied to achieve high quality. First,

the product design must result in a set of performance characteristics that

are highly optimized to customer desires. Second, these performance charac-

teristics must be robust. That is, the characteristics must not be susceptible

to any of the three major causes of performance variability: (1) variability or

defects in the manufacturing process, (2) variability in the operating environ-

ment, and (3) deterioration resulting from wear or aging.

In what we shall refer to as product dependability, our primary concern

is in maintaining the performance characteristics in the face of manufacturing
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variability, adverse environments, and product deterioration. In this context
we may distinguish benveen quality, reliability, and safery. Any variability of
performance characteristics concerning the target values entails a loss of
quality. Reliability engineering is primarily concerned with variability rhar is
so severe as to cause product failure, and safety engineering is focused on
those failures that create hazards.

To illustrate these relationships consider an automatic transmission for
an automobile. Among the performance characteristics that have been opti-
mized for customer satisfaction are the speeds at which gears automatically
shift. The quality goal is then to produce every transmission so that the shift
takes place at as near as possible to the optimum speed, under ail environmen-
tal conditions, regardless of the age of the transmission and independently
of where in the production run it was produced. In reality, these effects will
result in some variability in the shift speeds and other performance characteris-
tics. With increased variability, however, quality is lost. The driver will become
increasingly displeased if the variability in shift speed is large enough to cause
the engine to race before shifting, or low enough that it grinds from operating
in the higher gear at too low a speed. With even wider variability the transmis-
sion may fail altogether, by one of a number of modes, for example by sticking
in either the higher or lower gear, or by some more catastrophic mode, ,rr.h
as seizure.

Just as failures studied in reliability engineering may be viewed as extreme
cases of the performance variability closely associated with quality loss, safety
analysis deals with the subset of failure modes that may be hazardous. Consider
again our engine example. If it is a lawn mower engine, most failure modes
will simply cause the engine to stop and have no safety consequences. A safety
problem will exist only if the failure mode can cause the fuel to catch fire.
the blades to fly off or some other hazardous consequence. Conversely, if the
engine is for a single-engine aircraft, reliability and safety considerations clearly
are one and the same.

In reliability engineering the primary focus is on f,ailures and their preven-
tion. The foregoing example, however, makes clear the intimate relationship
among quality loss, performance variability, and failure. Moreover, as will
become clearer in succeeding chapters, there is a close correlation between
the three causes of performance variability and the three failure modes catego-
ries that permeate reliability and safety engineering. Variability due to manu-
facturing processes tends to lead to failures concentrated early in product
life. In the reliability community these are referred to as early oi infant
mortality failures. The variability caused by the operating environment leads
to failures designated as random, since they tend to occur at a rate which is
independent of the product's age. Finally, product deterioration leads to
failures concentrated at longer times, and is referred to in the reliability
cornmunity as aging or wear failures.

The common pocket calculator provides a simple example of the classes
of variability and of failure. Loose manufacturing tolerances and imprecise
quality control may cause faulty electrical connections, misaligned k.y, o.
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other imperfections that are most likely to cause failures early in the design

life of the calculator. Inadvertently stepping on the calculator, dropping it in

water, or leaving it next to a strong magnet may expose it to environmental

stress beyoncl which it can be expected to tolerate. The ensuing failure will

have little correlation to how long the calculator has been used, for these are

random events that might occur at any time during the design life. Finally,

with use and the passage of time, the calculator key contacts are likely to

become inoperable, the casing may become brittle and crack, or other compo-

nents may eventually cause the calculator to fail from age. To be sure, these

three failure mode classes often subtly interact. Nevertheless they provide a

useful framework within which we can view the quality, reliability, and safety

considerations taken up in succeeding chapters.
The focus of the activities of quality, reliability, and safety engineers

respectively, differ significantly as a result of the nature and amount of data

that is available. This may be understood by relating the performance charac-

teristics to the types of data that engineers working in each of these areas must

deal with fiequently. Quality engineers must relate the product performance

characteristics back to the design specifications and parameters that are di-

rectly measurable; the dimensions, material compositions, electrical properties

and so on. Their task includes both setting those parameters and tolerances

so as to produce the desired performance characteristics with a minimum of

variability, and insuring that the production processes conform to the goals.

Thus corresponding to each performance characteristic there are likely to be

many parameters that must be held to close conformance. With modern

instrumentation, data on the multitude of parameters and their variability

may be generated during the production process. The problem is to digest

the vast amounts of raw data and put it to useful purposes rather than being

overwhelmed byit. The processes of robust design and statistical quality control

deal with utilizing data to decrease performance characteristic variability.

Reliability data is more difficult to obtain, for it is acquired through

observing the failure of products or their components. Most commonly, this

requires life testing, in which a number of items are tested until a significant

number of failures occur. Unfortunately, such tests are often very expensive,

since they are destructive, and to obtain meaningful statistics substantial nunl-

bers of the test specimens must fail. They are also time consuming, since

unless unbiased acceleration methods are available to greatly compress the

time to failure, the test time may be comparable or longer to the normal

product life. Reliability data, of course, is also collected from field failures

once a product is put into use. But this is a lagging indicator and is not nearly

as useful as results obtained earlier in the development process. It is imperative

that the reliability engineer be able to relate failure data back to performance

characteristic variability and to the design parameters and tolerances. For

then quality measures can be focused on those product characteristics that

most enhance reliability.
The paucity of data is even more severe for the safety engineer, for with

most products, safety hazards are caused by only a small fraction of the failures.
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Conversely, systems whose failures by their very nature cause the threat of
injury or death are designed with safety margins and maintenance and retire-
ment policies such that failures are rare. In either case, if an acceptable
measure of safety is to be achieved, the prevention of hazardous failures must
rely heavily on more qualitative methods. Hazardous design characteristics
must be eliminated before statistically significant data bases of injuries or
death are allowed to develop. Thus the study of past accidents and of potential
unanticipated uses or environments, along with failure modes and effects
analysis and various other "what 

if" techniques find extensive use in iclenti-

Ûi.g potential hazards and eliminatine them. Careful attention must also be
paid to field reports for signs of hazards incurred through product use-or
misuse-for often it is only through careful detective work that hazarcls can
be identified and eliminated.

1.4 PREVIEW

In the following two chapters we first introduce a number of concepts related
to probability and sampling. The rudiments of the discrete ancl continuous
random variables are then covered, and the clistribution functions used in
later discussion are presented. With this mathematical apparatus in place, we
turn, in Chapter 4, to a quantitative examination of quality and its relationships
to reliabiliqr. We deal first with the Taguchi methodology for the measure
and improvement of quality, and then discuss statistical process control within
the framework of the Six Sisma criteria. Chapter 5 is concerned with elemen-
tary methods for the statistical analysis of data. Emphasis is placed on graphical
methods, particularly probability plottine methods, which are easily used in
conjunction with wiclely available personal computer spread sheets. Classical
point estimate and confidence intervals are also introducecl, as are the ele-
ments of control charting.

In Chapter 6 we investigate reliabiiity and its relationship to failure rates
and other phenomena where time is the primary variable. The bathtub curve
is introduced, and the relationships of reliability to failure modes, componenr
failures, and replacements is discussed. In contrast, Chapter 7 concerns the
relationships between reliability, the loading on a system, and its capacity to
withstand those loads. This entails, among other things, an exposition of the
probabilistic treatment of safety factors and design margins. The treatment
of repetitive loading allows the time dependence of failure rates on loading,
capacity and deterioration to be treated explicitly.

In Chapter 8 we return to the statistical analysis of data, but this time
with emphasis on working within the limitations frequently encountered by
the reliability engineer. After reliability growth and environmenral stress test-
ins are reviewed, the probabitity plotting methods introduced earlier are used
to treat product life testing methods. Both sinele and multiple censorins and
the various forms of accelerated testins are discussed.

Chapters 9 through 1l deal with the reliability of more complex sysrems.
In Chapter 9 redundancy in the form of active and standby parallel systerns
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is introduced, limitations-sgch as common mode failures-are examined,

and the incorporation of redundancy into more complex systems is presented.

Chapter 10 concentrates on maintained systems, examining the effects of both

preventive and corrective maintenance and then focusing on maintainability

ind availability concepts for repairable system. In Chapter I I the treatment

of complex systems and their failures is brought together through an introduc-

tion to continuous-time Markov analysis.

Chapter 12 concludes the text with an introduction to system safety

analysis. After discussions of the nature of hazards caused by equipment

failures and by human error, quantitative methods for safety analysis are

reviewed. The construction and analysis of fault tree analysis methods are

then treated in some detail.
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2.I INTRODUCTION

Fundamental to all reliability considerations is an understanding of probabil-
ity, for reliability is defined asjust the probability thata system will not fâil under
some specified set of circumstances. In this chapter we define probability and
discuss the logic by which probabilities can be combined and manipulated.
We then examine sampling techniques by which the results of tests or experi-
ments can be used to estimate probabilities. Althoueh quite elementary, the
notions presentecl will be shown to have immediate applicability to a variety
of reliability considerations ranging from the relationship of the reliability
of a system to its components to the common acceptance criteria used in
quality control.

2.2 PROBABILITYCONCEPTS

We shall denote the probabiliqz of an event, say a failure, { as P{X}. This
probability has the followins interpretation. Suppose that we perform an
experiment in which we test a large number of items, for example, light bulbs.
The probability that a light bulb fails the test is just the relative frequency
with which failure occurs when a very larse number of bulbs are tested. Thus,
if ,V is the number of bulbs tested and n is the number of failures, we may
define the probability formally as

P{X} :  l im
r\L+ æ

Equation 2.1 is an empirical definition of probability.
symmetry or other theoretical arguments also may be used

n

N
( 2 . 1 )

In some situations

to define probabil-

1 0



Probability and Sampling ll

ity. For example, one often assumes that the probability of a coin flip resulting

in "heads" is l/2. Closer to reliability considerations, if one has two pieces

of equipment, A and B, which are chosen from a lot of equipment of the

same design and manufacture, one may assume that the probabiliq that A

fails before Bis 1/2. If the hypothesis is doubted in either case, one must

veriSt that the coin is true or that the pieces of equipment are identical by

performing a large number of tests to which Eq. 2.1 may be applied.

Probability Axioms

Clearly, the probability must satis$r

o < P { x } < 1 . (2.2)

Now suppose that we denote the event not Xby X. In our light-bulb example,

where X indicates failure, X then indicates that the light bulb passes the test.

Obviously, the probability of passing the tesq P{X}, must satis$r

P{x} - I - P{x}. (2.3)

Equations 2.2 and 2.3 constitute two of the three axioms of probability theory.

Before stating the third axiom we must discuss combinations of events.

We denote by X O Ythe event that both Xand Itake place. Then, clearly

X n Y: Y O X. The probability that both X and Y take place is denoted by

P{X n Y}. The combined event X a Y may be understood by the use of a

Venn diagram shown in Fig. 2.1a. The area of the square is equal to one. The

circular areas indicated as X and ts are, respectively, the probabilities P{X}

and P{Y}. The probability of both Xand Yoccurring, P{X a Y}, is indicated

by the cross-hatched area. For this reason XO Iis referred to as the intersection

of X and Y, or simply as X and Y.
Suppose that one event, say X, is dependent on the second event, Y. We

define the conditional probability of event X given event Y as P{Xlf}. The

third axiom of probability theory is

P{xn Y}: P{xlY}P{Y). (2.4)

That is, the probability that both X and Y will occur is just the probability

that Ioccurs times the conditional probabilify that Xoccurs, given the occur-

(o) XîY M X U Y
FIGURE 2.1 Venn diagrams for the intersec-

tion and union of two events.
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rence of Y. Provided that the probability that Y occurs is greater than zero,
Eq. 2.4 may be written as a definition of the conditional probability:

P{xlY}: P{x. Y} (2.s1
P{Y}

Note that we can reverse the ordering of events X and Y, by considerine the
probabiliq P{X n y} in terms of the conditional probability of Y, given the
occurrence of X. Then, instead of Eq. 2.4, we have

P{x. Y} : P{Ylx}P{x}.

An important property that we will sometimes assume is that two or more
events, say X and Y, are mutually independent. For events to be independent,
the probability of one occurring cannot depend on the fact that the other is
either occurring or not occurring. Thus

P{xlY} : P{X}

if X and Y are independent, and F,q. 2.4 becomes

P{x . Y} : P{x} P{Y}.

This is the definition of independence, that the probability of two events both
occurring is just the product of the probabilities of each of the events oc-
curring. Situations also arise in which events are mutually exclusive. That is,
if X occurs, then Y cannot, and conversely. Thus P{XIY} : 0 and P{YIX} :

0; or more simply, for mutually exclusive events

P { X n  Y } : 0 .

(2.6)

(2 .7)

(2.8)

(2.0;

(2 .10)

( 2 . 1 1 )

(2.r2)

With the three probability axioms and the definitions of independence
in hand, we may now consider the situation where either X or Y or both may
occur. This is referred to as the union of X and Y or simply X U Z. The
probabiliq P{X U y} is most easily conceptualized from the Venn diagram
shown in Fig. 2.lb,where the union of Xand Iisjust the area of the overlapping
circles indicated by cross hatching. From the cross-hatched area it is clear that

P{xu Y}: P{x} + P{Y} - P{xn Y}.

If we may assume that the events Xand Yare independent of one another,
we may insert Eq. 2.8 to obtain

P{xu Y} : P{x} + P{Y} - P{X}P{Y}.

Conversely, for mutually exclusive events, Eqs. 2.9 and 2.10 yield

P{Xu Y}:  P{x} + P{Y}.

EXAMPLE 2.1

Two circuit breakers of the same design each have a failure-to-open-on-demand proba-
bil ity of 0.02. The breakers are placed in series so that both must fail to open in order
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for rhe circuit breaker system to fail. \4lhat is the probability of system fâilure (a) lî

the failures are independent, and (ô) if the probability of a second failure is 0.1, given

the failure of the {irst? (c) In part awhat is the probability of one or more breaker

failures on demand? (4 In part à what is the probability of one or more failures

on demand?

Solution X = failure of first circuit breaker

Y - failure of second circuit breaker

P { X } : l ' { Y } : 0 ' 0 2

(a) P{X n r} : P{X)P{Y} : 0.000+.

(b )  P{Y lx ) :  0 .1
P { X À  Y ) :  P { Y | 1 X 1 P { X } : 0 . 1  x  0 ' 0 2 : 0 . 0 0 2 .

(c) P{x u Y} : P{X} + P{Y} - P{X}P{Y}
: 0.02 + 0.02 - (0.02)'� : 0.0396.

(d) P{x u v} : P{x} + P{v} - P{Ylx)P{x)
:  0.02 + 0.02 -  0.1 x 0.02 :  0.038.

Combinations of Events

The foregoing equations sf.ate the axioms of probability and provide us with

the means of combining two events. The procedures for combining events

may be extended to three or more events, and the relationships may again

be presented graphically as Venn diagrams. For example, in Fig. 2-2a and b

are shown, respectively, the intersection of X, Y, and Z, X a Y O Z; and the

union of x, Y, and, z, x l) Y u z. Tlne probabilities P{X r] Y À Z} and

P{X U Y U Z} may again be interpreted as the cross-hatched areas.

The following observations are often useful in dealing with combinations

of two or more events. \Arhenever we have a probability of a union of events,

it may be reduced to an expression involving only the probabilities of the

individual events and their intersection. Equation 2.10 is an example of this.

Similarly, probabilities of more complicated combinations involving unions

and intersections may be reduced to expressions involving only probabilities

of intersections. The intersections of events, however , frzY be eliminated only

by expressing them in terms of conditional probabilities, as in Eq. 2.6, or if

( o )  X îYnZ (b) xv Yv z

FIGURE 2.2 Venn diagrams for the intersec-

tion and union of three events.
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TABLE 2.1 Rules of Boolean Alsebra"

Mathematical

symbolism Designation

( l a ) X f l Y : Y a X  C o m m u r a t i v e l a w
( 1 b )  X U  } ' :  Y U  X
(2a) X a (yn Z) :  (X) Y) O Z Associar ive law
(2b )  xu  (vu  z )  :  ( xu  Y)  u  z
(3a) Xn (f U 4 : 6n y) U (Xa â Distr ibutive law
( 3 b )  x u  ( r n  D :  6  u  y )  n  6 u  a
@a) X f l  X:  X Idernpotent law
( 4 b )  x u  x :  x
( 5 a )  X a  ( X U  Y ) :  X  L a w o f  a b s o r p r i o n
( 5 b )  x u  ( x n  Y )  :  x
(6a) X a N: ô' Clomplemenrarion
( 6 b )  X n  X :  I L
(6c )  (X )  :  x

<7"1ff i  :  Xr-t t  de Morsan's rheorem
tzul GÙ7r : xn y
(Ba) é a X: ô Operations with I
( 8 b )  é U X : X
( 8 c )  1 | l  X :  X
( B d )  1 u  x :  1
(9a )  XU (Xn  n :  XU Y  Thesere la t i onsh ipsa reunnamec l .
( e b )  X n  ( x u  i ) :  X o  i :  @ n
"Adapted from H. R. Roberts, W. E. \'esley, D. F. Haastand, and F. F. Goldberg, FaulL tree
Handbook, NUREG-0492, U.S. Nuclear Regulatory Commission, 1981.
"é : nul l  set i  1 :  universal set.

the independence may be assumed, they may be expressed in terms of the
probabilities of individual events as in Eq. 2.8.

The treatment of combinations of events is streamlined by using the rules
of Boolean algebra listed in Table 2.1.If two combinations of events are equal
according to these rules, their probabilities are equal. Thus since according
to Rule 7a, X À Y - Y ) X we also have P{X a Y} : P{Y À X}. The
communicative and associative rules are obvious. The remaining rules may
be verified from a Venn diagram. For example, in Fig.2.3aand b, respectively,
we show the distributive laws for X n (Y u Z) and X U (Y ) Z\. Nore t.hat

b)Xaguz,  (b )Xvynz)

FIGURE 2.3 Venn diasrams for combinadons
of three events.
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in Table 2.1, Ô is used to represent the null event for which P{Ô} : 0, and 1

is used to represent the universal event for which P{} : 1.

Probabilities of combinations involving more than two events may be

reduced sums of the probabilities of intersections of events. If the events are

also independent, the intersection probabilities may further be reduced to

products of probabilities. These properties are best illustrated with the follow-

ing two examples.

E)(AMPLE 2.2

Express P{X n V U Z)} in terms of the probabilities of intersections of X, Y, and Z.

Then assume that X, Y, and Z are independent events and express the result in terms

of P{X}, P{Y}, and P{Z).

solution Rule 3a: P{x n g u z)} : P{(x n v) u (x a z)}
This is the union of two composites Xf'l Yand Y n Z. Therefore from Eq' 2.10:
p{xn vu z)} :  P{x n r}  + P{x n z} -  P{(x n r)  n (x.  z)} .
Associative rules 2a and 2b allow us to eliminate the parenthesis from the last term

byf i rstwr i t ing (Xn y) n 6n n:  ( I /  n X) n 6a Z) andthenusinglaw4atoobtain
( r n  X )  n  ( X a  Z )  :  y n  ( X n  X )  À  Z :  Y a  X ( \  Z :  X n  Y '  Z '
Utilizing these intermediate results, we have
p{xn vu z)} :  P{x n r}  + P{xn z} -  P{xÀ Y n z).
If the events are independent, we may employ Eq. 2.8 to write
p{xn vu z)}: P{X}P{Y} + P{x}P{z) - P{x}P{Y}P{z}.

E)(AMPLE 2.3

Repeat Example 2.2 for P{X U Y U Z}.

Soh t t i on  F romtheassoc ia t i ve law ,P {XU YU Z } :  P {XU ( yU  Z ) )

Since this is the union of event X and (Y U Z), we use Eq. 2.10 to obtain

P{xu YU z} :  P{x}  +  P{YU z}  -  P{xn vu z) }
and again to expand the second term on the right as

P{Y u z} : P{Y} + P{z} - P{Y n z}.
Finally, we may apply the result from Example 2.2 to the last term, yielding

P{xu YU z}: P{x} + P{Y} + P{z} - P{x. Y)
- P{xn z} - P{Y. z} + P{xn Y. z}.

Applying the product rule for the intersections of independent events, we have
p{xu yu z}: P{x} + P{Y} + P{z} - P{X}P{Y}

- p{x}P{z) - P{Y}P{ZI + P{x}P{Y}P{z}

In the following chapters we will have occasion to deal with intersections

and unions of large numbers of n independent events: Xr, Xz, Xz . . . Xn For

intersections, the treatment is straightforward through the repeated applica-

tion of the product rule:

P { X , ) X ,  n  & n  ' ' '  n  & } : P { X ' } P { X , } P { X ' } ' ' '  P { X " } .  ( 2 . r 2 )
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To obtain the probability for the union of these events, we first note that the
union may be related to the intersection of the nonevents i:

P { x r  u  x r u  x 3 u . . . u  x , } +  p { X r n x r a  & n  . . . X , } : 1 ,  ( 2 . 1 4 )

which may be visualized by drawing a Venn diagram for three or four events.
Now if we apply Eq. 2.13 to the independent Xi, we obtain, after rearrang-
ing terms

P{X '  u  X ,  U  Xs  U  . . .U  X , } :  |  -  P {X t }P{Xr }P{Xr } . .  .P {X , } .  (2 .15 )

Finally, from Eq. 2.3 we must have for each {,

P{x, }  -  1-  P{x, } .  (2 .101

Thus we have,

P { X \ U  X r U  &  U . . . U  X , , } : 1 -  t l  -  P { X , } l l 1  -  P { & } l
t l  - P { X ' . } 1  . . . t 1  - P { x " } 1 ,  e . 7 7 )

or more compactly

n

p{x, u x, u x- u . . . u &} - 1 - ll tr - p{x,}1. (2.18)

This expression may also be shown to hold r", *. X

EXAMPLE 2.4

A critical seam in an aircraft wing must be reworked if any one of the 28 identical
rivets is found to be defective. Quality control inspections find that 18% of the seams
must be reworked. (a) Assuming that the defects are independent, what is the probabil-
ity that a rivet will be defective? (ô) To what value must this probability be reduced if
the rework rate is to be reduced below 5%?

SoLution (a) Let d represent the failure of the lth rivet. Then, since

PtX) : P{Xr} : . . . P{Xrr},

0 .18 :  p{xr  u  xru  . '  .  u  x : r }  -  I  -  [1  -  p{xr }128

P{x ' }  -  1  -  (0 .82)r /28:  f ) .0071.

(b) Since 0.05 : I  -  [1 - P{X,}]2' ,
P{x,} __ 1 - (0.95)r/2rr - 0.0018.

One other expression is very useful in the solution of certain reliability prob-
lems. It is sometimes referred to as the law of "total probability." Suppose
we divide a Venn diasram into regions of X and X as shown in Fig. 2.4 We
can always decompose the probability of I/, denoted by the circle, into two
mutually exclusive contributions:

P{Y} : P{Y n x} + P{Y . x}. (2.1e)
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tu)  (b)

FIGURB 2.4 Venn diagram for total probabil-

ity law.

Thus using Eq. 2.4, we have

P{Y) : P{Ylx}P{x} + P{Ylx}Ptx}.

E)(AMPLE 2.5

(2.20)

A motor operated relief valve opens and closes intermittently on demand to control

the coolant level in an industrial process. An auxiliary battery pack is used to provide

power for the approximately l/2 percent of the time when there are plant power

àutages. The demand failure probability of the valve is found to be 3 X 10-5 when

operated from the plant power and 9 X 10-5 when operated from the battery pack.

Calculate the demand failure probability assuming that the number of demands is

independent of the power source. Is the increase due to the battery pack operation sig-

nificant?

Solution Let X signif a power outage. Then P{X} : 0.005 and P{X} : 0.995.

L e t Y s i g n i s v a l v e f a i l u r e . T h e n P { Y | x } : 3 X 1 0 . | ' a n d P { Y | X } : 9 X 1 0 _ 5 . F r o m E q .
2.20, the valve failure per demand is,

P{Y} :  I  x 10-5 x 0.005 + 3 x 10-5 x 0.095 : 3.03 x 10-5'

The net increase in the failure probability over operation entirely with plant power is

only three percent.

2.3 DISCRETE RANDOM VARIABLES

Frequently in reliability considerations, we need to know the probability that

a specific number of events will occur, or we need to determine the average

number of events that are likely to take place. For example, suppose that we

have a computer with N memory chips and we need to know the probability

that none of them, that one of them, that two of them, and so on, will fail

during the first year of service. Or suppose that there is a probability p that

a Christmas tree light bulb will fail during the first 100 hours of service. Then,

on a string of 25 lights, what is the probability that there will be zr (0 < n <

25) failures during this 100-hr period? To answer such reliability questions,

we need to introduce the properties of discrete random variables. We do this

first in general terms, before treating two of the most important discrete

probability distributions.



18 Introduction to Reliability Engineering

Properties of Discrete Variables

A discrete random variable is a quantity that can be equal to any one of a

number  o f  d iscrete  va lues x0,  x t ,  x2,  . . . ,  xn,  .  ,  xN.  We re fer  to  such a

variable with the bold-faced character x, and denote by *, the values to which

it may be equal. In many cases these values are integers so that x, : n.By

random variables we mean that there is associated with each x, a probability

f(x,) that x : xn. We denote this probability as

f ( * " ) : P { x : x n } . (2.2r)

We shall, for example, often be concerned with counting numbers of failures
(or of successes) . Thus we may let x signi$, the number n of failures in ly'tests.
Then/(0) is the probability that there will be no failure,f(1) the probability of
one failure, and so on. The probabilities of all the possible outcomes must
add to one

I
Z-J

n.
f(x") : r, (9  99\

where the sum is taken over all possible values of xn.

The function f(x") is referred to as the probability mass function (PMF) of

the d.iscrete random variable x. A second important function of the random

variable is the cumulatiae distribution function (CDF) defined by

F ( x , ) : P { x ç r , } , (2.23)

the probability that the value of xwill be less than or equal to the value x,.
Clearly, it is just the sum of probabilities:

F(x") f (x",) . (2.24)

Closely related is the com,plementary cumulatiue distribution function (CCDF),
defined by the probabiliq that x ) x,,,;

F ( * - ) : P { x > x , } . (2.25)

(2.26)

where xw is the largest value for which f(x") > 0.
It is often convenient to display discrete random variables as bar graphs

of the PMF. Thus, if we have, for example,

,f(0) : 0, .f(1) : *!, f(2) : l, f(3) : &, ,f(4) : 1, -f(5) : #,

the PMF may be plotted as in Fig. 2.5a. Similarly, from F,q.2.24 the bar graph
for the CDF appears as in Fig.2.5b.

n- s- . L

n ' : 0

It is related to the PMF bv

N

F ( * , )  -  1 -  F ( x , ) :
n ' = n * l
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Ë
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FIGURE 2.5 Discrete

mass function (PMF),

function (CDF).
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probability distribution: (a) probability
(ô) corresponding cumulative distribution

$ o u

0.0

Several important properties of the random

terms of the probability mass function f(*"). The

x,f (x,) ,

- p)'.fl*,,),

variable x are defined in

Tnean value, g,, of x is

(2.27)

and the uariance of x is

s
I L :  L

n

q S ,

O '  :  . ,  \ X , (2.28)

which mav be reduced to

*7,f(*) - t"' (2.2e)

The mean is a measure of the expected value or central tendency of x when

a very large sampling is made of the random variable, whereas the variance

is a measure of the scatter or dispersion of the individual values of x,, about

pr,. It is also sometimes useful to talk about the most probable value of x: the

value of xn for which the largest value of f(x") occurs, assuming that there is

only one largest value. Finally, the median value is defined as that value x :

x,,,for which the probability of obtaining a smaller value is l/2:

-f(x,') : È,

f(*,,) : È.

(2.30)

and consequently,

D(AMPLE 2.6

. r S
r r ' :  L

,n

z,
( 2 . 3 1 )

A discrete probability distribution is given by

f ( x , , )  :  An  n :

(a) Deterrnine A.

(ô) Vfhat is the probability that x < 3?

0 ,  L , 2 , 3 ,  4 , 5



+  n  |  , , , , ,  ,  r  ,  ̂  ,  l l
p :  > " f r :  I b  

( 0  +  I  +  4 + 9  +  1 6  +  2 5 ) : i .

(d) Using F,q.2.29, we first calculate

5 '
j ' î / ( " " )  :  i+  n"  : I (0  +  1  +  8  +  27 + 64+ t2b)  :  15,

to obtain aî ,n. "". ,"". . t"  

rD

o 2 : 1 5 - " 2 - t ^ - / l l Y-  t -L ' :  tu  -  
\ ï /  

:  1 .555

o :  I . 247 .
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(c) What is pc?

(d) What is o?

Solution (a) From Eq.2.22

1 : É  A n : A ( O +  l + 2 + 3 +  4 + 5 ) : 1 5 A

t^ :  G '
(à) From Eq. 2.23 and 2.24,

P{ '<3}  :  r (3)  : | f r : * ,0  + I  +  z  + ï  :? .

(c )  From F,q.2 .27

The idea of the expected value is an important one. In general, if there
is a firnction g(x,) of the random variable x, the expected aalue E{g} is defined
for a discrete random variable as

Ë{g} : ) g(r,) f(x,). (2.32)
n

Thus the mean and variance given by Eqs. 2.27 and 2.28 may be written as

pc: E{x} (2.33)

o2 :  E{(x *  p)2) (2.34)

or as in Eq. 2.29,

o.2 __ E{*r} _ pz. (Z.gb)

The quan tiq o : f o' is referred to as the standard error or stand.ard, d.niation
of the distribution. The notion of expected value is also applicable to the
continuous random variables discussed in the following chapter.
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The Binomial Distribution

The binomial distribution is the most widely used discrete distribution in

reliability considerations. To derive it, suppose that p is the probability of

fâilure for some piece of equipment. in a specified test and

q : 7  -  p  ( 2 . 3 6 )

is the corresponding success (i.e., nonfailure) probability. If such tests are

truly independent of one another, they are referred to as Bernoulli trials.

We wish to derive the probability

.f(r) : P{n : nlN, lt} (2.37)

that in l/ independent tests there are n fàilures. To arrive at this probability,

we first consider the example of the test of two units of identical clesign and

construction. The tests must be inclependent in the sense that success or

failure in one test does not depend on the result. of the other. There are four

possible outcomes, each with an associated probabiliry: (lq is the probability

that neither unit fails, pq the probability that only the first unit fails, qlt the

probability that only the second unit fails, and pp t}lre probability that both

units fail. Since these are the only possible outcomes of the test, the sum of

the probabilities rxust equal one. Indeed,

p'  + 2pq-r , f  :  (p + q)2 :  I ,

and by the definition of Ec1. 2.37

.f(o) : q', fQ) : 2qF, fe) : P'.
In a similar manner the probability of n independent failures may als<t

be covered fbr situations in which a larser number of units und.ergo testing.

For example, with N: 3 the probabiliq, that all three units fail independently

is obtaine.l by multiplying the failure probabilities of the inclividual units

together. Since the units are identical, the probability that none of the three

fails is qqq. There are now three ways in which the test can result in one unit

failing: the first fàils, pqq; the second fails, ÇPrl; or the third fails, qqp.'lhere

are also three corubinations that lead to two units failing: units 1 and 2 fail,

PFq; units I and 3 fail, FqP; or units 2 and 3 fail, qpp. Finally, the probability

of all three units failing is NIPP.
In the three-unit test the probabilities for the eight possible outcomes

must again add to one. This is indeed the case, for by combining the eight

terms into four we have

q' + 3q'p + 3qP' * lt' : Q + il:t : l. (2.40)

The probabilities of the test resulting in 0, 1, 2, or 3 failures are just the
successive terms on the left:

(2.38)

(2.3e)

f(0) : q', fQ) : 3,tp, J'e) : 3qF', f(3) : p'. (2.4r)
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The foregoing process may be systematized for tests of any number of
units. For l/ units Eq. 2.41 generalizes to

C{q* + Cypqn-' + CypzqN-2 + . . . + CN-rF*-' q
a  CNp* :  (q+  F ) * :7 ,  (2 .42 )

since q : L - p. For this expression to hold, it may be shown that the Cf
must be the binomial coefficients. These are given by

c I :  ' ,  
N !  

.  (  2 . 4 2 )
( , ^ / -  n ) l n l '

A convenient way to tabulate these coefficients is in the form of Pascal's
triangle; this is shown in Table 2.2. Just as in the case of l/ : 2 or 3, the
l/ + 1 terms on the left-hand side of F,q. 2.42 are the probabilities that there
will be 0,1,2,. . . , Nfailures. Thus the PMF fbr the binomial distribution is

f ( n ) : c Y p " ( \  - p ) * - " ,  n : 0 , 1 , . . . , N .  ( 2 . 4 4 )

That the condition Eq. 2.22 is satisfied follows from Eq. 2.42. The CDF
corresponding to f(n) is

n

F(n) :àrr1i",O* (1 - p)*-"', (2.45)

and of course if we suln over all possible values of n' as indicated in 8q.2.22
we must have

N

àrYP"t, 
- P) ru'-' : l. (2.46)

The mean of the binomial distribution is

p :  Np ,  (2 .47)

and the variance is

02 : r{p(t -  p). (2.48)

TABLE 2.2 Pascal's Triangle

I
t l

r 2 l
1 3 3 1

t 4 6 4 1
1 5 1 0 1 0 5 1

1 6 1 5 2 0 1 5 6 1

N : 0
N :  I
À I -  O

N : 3
N : 4
N -  5
N : 6

1  7  2 1  3 5  3 5  2 1  7  1  N : 7
1  B  2 8  5 6  7 0  5 6  2 8  8  I  N : B
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E)(AMPLE 2.7

Ten compressors with a failure probability F : 0.1are tested. (a) What is the expected

number of failures E{n}? ( ô) \A4rat is a?? ( c) \4hat is the probability that none will fail?
(d) \Al:rat is the probability that two or more will fail?

Solution (a) E{nl : FL : Np: 10 x 0.1 : 1.

o 2 :  N P ( r  -  P ) : 1 0  x  0 . 1 ( 1  -  0 . 1 )  : 0 . 9 .

P{n :  0110, p} : , f (0)  :  c l ,up"( l  -  p)"  :  1 x I  x (1 *  0.1)10 :  0.349.

P{n> 2tto' pt:: 
i - {l'l; {,'lJ-:rtn; 8:TI',i1'u ri, !r'ï[Ln o''

The proof of Eqs. 2.47 and 2.48 requires some manipulation of the
binomial terms. Frrrm F,qs.2.27 and 2.44 we see that

p:> nCY,p'(7 -  l t ) '  " ,

where the n : 0 term vanishes and therefbre is eliminated. Making the

substitutions M - ^/ - 1 and m : n - I we mav rewrite the series as

rtr'l

p: p2 @ + t) c#ïi  I) ,e - p)u-,,
nr0

Since it is easily shown that

(m + 1) CyT] :  (M + I) Cy,,

we may write

M

p: (M + 1)p2 Cylp*(7 - tr t) i l t  
' ' �

l )

(2.4e)

(2.50)

(2 .51)

(2.52)

However, Eq. 2.46 indicates that the sllrn on the right is equal to one. There-
fore, noting that M + 7 : l/, we obtain the value of the n}ean given by Eq. 2.47.

To obtain the variance we begin by combining Eqs. 2.29, 2.44 and 2.47

N

o,:àrn,Cy,p"(t - 
lt)N-rt 

- IV,p,. (2.53)

Employing the same substitutions for l/and n, an:.d utilizing Eq. 2.51, we obtain

( r ,  u  I
o') : (M + I) p l> mcilp^(l - N,,) n' * + > CXI)-(, - p)u-'' | - I'{'N,'. (2.54)

L  r , - u  t t t  t t  )

But from Eqs. 2.46 and2.49 we see that the first of the two sums is just equal

to Mp and the second is equal to one. Hence

(r2 :  (M + l)p(Mp + 1) - N,p,. (2.55)

Final ly, since M : N - 1, this expression recluces to Eq. 2.48.
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The Poisson Distribution

Situations in which the probability of failure p becomes very small, but the

number of units tested Nis large, are frequently encountered. It then becomes

cumbersome to evaluate the large factorials appearing in the binomial distribu-
tion. For this, as well as for a variety of situations discussed in later chapters,

the Poisson distribution is employed.
The Poisson distribution may be shown to result from taking the limit

of the binomial distribution as p --> 0 and l/ -+ oo, with the product l/p

remaining constant. To obtain the distribution we first multiply the binomial

PDF given by Eq. 2.44 by N" / N" and rearrange the factors to yield

I@):{W+W} , ' -  , l r - ' " '#, '  ( r  -P)u (256)

Now assume thatp << I so thatwe maywrite ln (1 - D - -pand hence

the last factor becomes

(1  -  p ) "  -  . *p [ ,n / ln  ( l  -  p ) l :  e  N?.  (2 .57)

Likewise as p becomes vanishingly small (1 - 
F)-" -- I {br finite n, artd as

l/ -+ æ. we have

À/! : ( ' -ç)( ' -#) ( t - a r )  t - t  ( z b 8 )

nr I  r  lLP { n  :  n l p }  : f r n * ,  f r :  0 , 1 , 2 , 3 , .

(,^/ - n)!N'

Hence as p--> 0 and l/--+ oo, with I{p -- p,F,q.2.56 reduces to

f(") (2.5e)

which is the probability mass function for the Poisson distribution.
Unlike the binomial distribution, the Poisson distribution can be ex-

pressed in terms of a single parameter, g,. Thus f(n) may be written as the prob-
ability

: Ë ' - r * ,
n!

2  r < f i  
- - à ; , P :  e . e  P  -  7 .

(2.60)

The normalization condition,Eq.2.22, must, of course, be satisfied. This may

be verified by first recalling the power series expansion for the exponential
function

'r:2# (2 .61)

Thus we have

(2.62)
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In the foregoing equations we have chosen lr{p : ;r, because it may be shown
to be the mean of the Poisson distribution. From Eqs. 2.59 and 2.61 we have

2 "rrù :2,# nr : *. (2.63)
Likewise, since it may be shown that

6 æ

2 " ' f (n)  :2  n ' \  t -  :  t r (p  +  1) ,  (2 .64)

we may use Eq. 2sb:show ,h.; ;. "".r"r.. is equat to rhe mean,

c '  :  l t .  (2.65)

E)(AMPLE 2.8

Do the preceding l0-compressor example approximatins the binomial distribution
by a Poisson distribution. Compare the results.

Solution (a) pc : Np : \.

(b) u2 : l tr  :  1 (0.9 for binomial).

( c )  P { n : O l p  -  l } :  e  p : 0 . 3 6 7 8  ( 0 . 3 8 7 4  f o r b i n o m i a l ) .

(d) P{n > 2lp - 1} :  1 - 
/(0) 

- 
"f(1) :  1 - Ze-p : 0.2642 (0.2639 for binomial).

2.4 ATTRIBUTE SAMPLING

The discussions in the preceding section illustrate how the binomial and
Poisson distributions can be determined, given the param eter p, which we
often use to denote a failure probability. In reliability engineering and the
associated discipline of quality assurance, however, one rarely has the luxury
of knowing the value of p, a priori. More often, the problem is to estimate a
failure probabilit/, mean number of failures, or other related quantity from
test data. Moreover, the amount of test data is often quite restricted, for
normally one cannot test large numbers of products to failure. For the number
of such destructive tests that may be performed is severely restricted both by
cost and the completion time, which may be equal to the product design life
or longer.

Probability estimation is a fundamental task of statistical inference, which
may be stated as follows. Given a very large-perhaps infinite-population
of items of identical design and manufacture, how does one estimate the failure
probabiliV by testing a sample of size l/drawn from this large population? In
what follows we examine the most elementary case, that of attribute testing
in which the data consists simply of a pass or fail for each item tested. We
approach this by first introducing the point estimator and sampling distribu-
tion, and then discussing interval estimates and confidence levels. More exten-
sive treatments are found in standard statistics texts; we shall return to the
treatment of statistical estimates for random variables in Chapter 5.
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Sampling Distribution

Suppose we want to estimate the failure probability p of a system and also

gain some idea of the precision of the estimate. Our experiment consists of

testing N units for failure, with the assumption that the l/ units are drawn

randomly from a much larger population. If there are n failures, the failure

probability, defined by Eq. 2.L, may be estimated by

P :  n / N (2.66)

We use the caret to indicate that p is an estimate, rather than the true value

p. It is referred to as a point estimate of p, since there is no indication of how

close it may be to the true value.
The difficulty, of course, is that if the test is repeated, a different value

of n, and therefore of p, is likely to result. The number of failures is a random

variable that obeys the binomial distribution discussed in the preceding sec-

tion. Thus f is also a random variable. We may define a probability mass

function (PMF) as

P { Ê  :  p " l l l ,  F } :  f ( P " ) ,  n :  o ,  1 , 2 , . . . N , (2.67)

where i,, : n/ 1,{ is just the value taken on by p when there are n failures in

l/ trials. The PMF is just the binomial distribution given by Eq. 2.aa

f ( p " ) : C Y p " ( l - p ) ' - " (2.68)

This probabiliry mass function is called the sampling distribution. It indicates

rhat rhe probability for obtaining a particular value p^ frorn our test is just

f(p"), given that the true value is p.
For a specified value of p, we may gain some idea of the precision of the

estimate for a given sample size l/by plotting the f(p"). Such plots are shown

in Fig. 2.6 for p : 0.25 with several different values of l/. We see-not

surprisingly-that with larger sample sizes the distribution bunches increas-

ingly about F, and the probability of obtaining a value of f with a large error

becomes smaller. With P : 0.25 the probability that'fwill be in error by more

than 0.10 is about 50% when -Ày' : 10, about 20% when Ày' : 20, and only

about 107o when -À/: 40.
We may show that Eq. 2.66 is an unbiased estimator: If many samples of

size l/ are obtained, the mean value of the estimator (i.e., the mean taken

over all the samples) converges to the true value of p. Equivalently, we must

show that the expected value of p is equal to p. Thus for p to be unbiased we

must have E{p} -- F.'Io demonstrate this we first note by comparing Eqs. 2.44
and 2.68 that f(p") : f(n). Thus witlr' p : n/N we have

(2.6e)

The sum on the right, however is just Np, the mean value of n. Thus we have

pî,- E{p}: 
? 

p,^p,): *r? nf@).

p î :  p . (2.70)
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d)N=40
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for binomial

The increased precision of the estimator with increased À/ is demonstrated

by observing that the variance of the sampling distribution decreases with

increased N. From F,q. 2.29 we have

(2.71)

(2.72)

of the binomial

o'à:4 P|T(P') - Ê'i '

Insert ing î r :  I '4r ,P:  , /N, and/(  p,)  :  f (n) ,  we have

- z - 1 (  Ioi,: r,{rl4 *trn) - t" ),
but since the bracketed term is just IVp(t - p), the variance

distribution, we hal'e

or equivalently

"i: Lxptt - p),

o i : * r t i t -  p)

(2.73)

(2.74)

Unfortunately, we do not know the value of p befctrehand. If we did, we

would not be interested in using the estimator to obtain an approximate

value. Therefore, we wclulcl like to estimate the precision of f without knowing



and

where these

estimator f.
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the exact value of p.For this we must introduce the somewhat more subtle

notion of the confidence interval.

Confidence Intervals

The confidence interval is the primary means by which the precision of a

point estimator can be determined. It provides lower and upper confidence

limits to indicate how tightly the sampling distribution is compressed around

the true value of the estimated quantity. We shall treat confidence interval

more extensively in Chapter 5. Here we confine our attention to determining

the values of

p : p - A  ( 2 . 7 5 )

P * :  p +  B ,  ( 2 . 7 6 )

lower and upper confidence limits are associated with the point

To determine A and B, and therefore the limits, we first choose a risk

level designated by a: a : 0.05, which, for example, would be a 57o risk.

Suppose we are willing to accept a risk of a/2 in which the estimated lower

confidence limit p- will turn out to be larger than p, t}:.e true value of the

failure probability. This may be stated as the probability

P { p - r p } : o t / z , (2.77)

which means we are 1 - a/2 confident that the calculated lower confidence

limit will be less or equal to the true value:

P { p - = p } - 1 - d / 2 . (2.78)

To determine the lower confidence limit we first insert F,q.2.75 and rearrange

the inequality to obtain

P { p < p + A } - 1 - a / 2 . (2.7e)

But this is just the CDF for the sampling distribution evaluated at p + A.Thus

from the definition of the Cumulative Distribution Function given inEq.2.24

we may write

(2.80)

Recalling that p,: n/ N and copying the Probability Mass Function explicitly
from Eq. 2.68, we have

C I p " ( r - p ) N - r z - l - o / 2 . (2 .81)

Thus to find the lower confidence lirnit we must determine the value of A

for which this condition is most closely satisfied for specified a, I'./ and p.

N(lr+A)

s
z-,1
n=0
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Similarly, to obtain the upper limit at the same confidence we require

P { p < q t * } : 7 - a / 2 ,  ( 2 . 8 2 )

wirich upon inser-tion of Eq. 2.76 yields

P { p > l t - B } : | - a / 2  ( 2 . 8 3 )

and leads to the analog<-rus condition on B,

r -N(1-B)

To express the confidence interval more succinctly, the combined results

of the foregoing equations are frequently expressed as the probability

P { P - < P < P * } : l - o - . (2.8r;

Solutions for Eqs. 2.Bl arrd 2.B4have been presented in convenient graphical

form for obtaining p+ and p- fron the point estimator P : ,/N. These are

shown for a 95Vo confidence interval, corresponding to a/2:0.025, in Fig.

2.7 for vaiues of l/ ranging from 10 to 1000. The corresponding graphs for

other confidence intelals are given in Appendix B.
The results in Fig.2.7 indicate the limitations of classical sampling meth-

ods if highly accurate estimates are required, particularly when small failure

probabilities are under considerations. Suppose, for example, that 10 items

are tested with only one failure; our 95Vo confidence interval is then 0.001 <

p < 0.47 . Much larger samples are needed to obtain reasonable error bounds

on the parameter p. For sufficiently large values of l/, fpically IVp > 5 and

l(1 - p) > 5, the confidence interval may be expressed as

(2.84)

(2.86)

wi th  ze .1  :  1 .28 ,  20 .0b :  L54,20 .02s :  1 .96  and z ,0 .00b:2 .58 .  The or ig in  o f  th is

expression is discussed in Chapter 5. Note that in all binomial sampling the

true value of p is unknown. Thus p, tlne unbiased point estimator, must be

utilizecl to evaluate this expression.

E)(AMPLE 2.9

Fourteen of a batch of 500 computer chips fail the final screening test. Estimate the

failure probability and the 80% confidence interval.

I
p- :  pt zorr-t^f l^ l  -  l t)

Solution P: 14/500 : 0.028. Since PN: 14 (>5), Eq. 2.86 can be used.
I -

With 26,1 : 1.28, P' :  0.028 -f 1.28 ,- V0.028(1 - 0.028)
v500

F : 0.028 -t- 0.009 or p- : 0.019, F* : 0.037

We must take care in interpreting the probability statements related to

confidence limits and intervals. Equation 2.Bb is best understood as follows.
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0-  
0 0.r  o.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Observed proportion n/N

FIGURE 2.7 The 95Vo confrdence intervals fbr the binomial distribution. [From E. S. Pearson

and C. J. Clopper, "The Use of Confidence or Fiducial Limits Illustrated in the Case of the

Binomial," Biometrica, 26, 204 (1934). With permission of Biometrica.l

Suppose that a large number of samples each of size ly' are taken and that
the value s of p* and p* are tabulated. Note that p- and p* , along witlrr f , are
random variables and thus are expected to take on different values for each
sample. T}ae 90% confidence interval simply signifies that for 90% of the
samples, the true value of p will lie between the calculated confidence limits.

2.5 ACCEPTANCE TESTING

Binomial sampling of the type we have discussed has long been associated
with acceptance testing. Such sampling is carried out to provide an adequate
degree of assurance to the buyer that no more than some specified fraction
of a batch of products is defective. Central to the idea of acceptance sampling
is that there be a unique pass-fail criterion.

The question naturally arises why all the units are not inspected if it is
important that p be small. The most obvious answer is expense. In many cases
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it mav simply be too expensive to inspect every item of large-size batches

of mass-produced items. Moreover, for a given budget, much better quality

assurance is often achieved if the funds are expended on carrying out thorough

inspections, tests, or both on a randomly selected sample instead of carrying

out more cursory tests on the entire batch.
When the tests involve reliability-related characteristics, the necessity for

performing them on a sample becomes more apparent, for the tests may be

destructive or at least damaging to the sample units. Consider two examples.

If safety margins on strength or capacity are to be verified, the tests may

involve stress levels far above those anticipated in normal use: large torques

may be applied to sample bolts to ensure that failure is by excessive deforma-

tion and not fracture; electric insulation may be subjected to a specified but

abnormally high voltage to verify the safety factor on the breakdown voltage.
If reliability is to be tested directly, each unit of the sample must be operated

for a specified tirne to determine the fraction of failures. This time may be

shortened by operating the sample units at higher stress levels, but in either

case some sample units will be destroyed, and those that survive the test may

exhibit sufficient damage or wear to make them unsuitable for further use.

Binomial Sampling

Typically, an acceptance testing procedure is set up to provide protection for

both the producer and the buyer in the fbllowing way. Suppose that the

buyer's acceptance criteria requires that no more than a fraction pr of the

total batch fail the test. That is, for the large (theoretically infinite) batch the
failure probability must be less than pr. Since only a finite sample size À/is to
be tested, there will be some risk that the population will be accepted even
though P > Pr.Let this risk be denoted by B, the probability of accepting a
batch even though F > Pt. This is referred to as the buyer's risk; typically, we
might take B - 10%.

The producers of the product may be convinced that their product ex-
ceeds the buyer's criteria with a failure fraction of only Pu(Po < F). In taking
only a finite sample, however, they run the risk that a poor sample will result
in the batch being rejected. This is referred to as the producer's risk and it
is denoted by a, the probability that a sample will be rejected even though

P < Pr. Typically, an acceptable risk might be a - 57o.
Our object is to construct a binomial sampling scheme in which po and

pr result in predetennined values of a and Ê. To do this, we assume that the
sample size is much less than the batch size. Let n be the random variable
denoting the number of defective items, and nl be the maximum number of
defective items allowable in the sample. The buyer's riskB is then the probabil-
ity that there will be no more than nadefective items, given a failure probability
of pi

,B : P{n < nalI,{, pr}. (2.87)
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Using the binomial distribution, we obtain

p:> c IpT( \  -p)* - "

Sirnilarly, the producer's
n,l defective items in the

or

o t :  j  cY ,p t | _ � pù ' - '
tt- tt r.rI I

From Eqs. 2.88 and 2.90 the values of na and l/for the sampling scheme
can be determined. With 71,1àrrd À/thus determined, the characteristics of the
resulting sampling scheme can be presented graphically in the form of an
operating curve. The operating curve is just the probability of acceptance
versus the value p, the true value of the failure probability:

P{tt < nol|V, p} cyp"(r - F)*-"

(2.88)

risk a is the probability that there will be more than
batch, even though P : Fo:

a : P{n } n,tll'{, pr} (2.89)

(2.e0)

(2 .e1)

In Fig. 2.8 is shown a typical operating curve, with B being the probability of
acceptance when F: Ft and a the probabil ity of rejection when P: Po.

The Poisson Limit

As in the preceding section, the binomial distribution may be replaced by the
Poisson limit when the sample size is very large ,A/ >> 1, and the failure
probabilities are small Po,F, << 1. This leads to considerable simplifications
in carrying out numerical computations. Defining 7k0 : Ir,lpo and my : I{pt,
we may replace Eqs. 2.BB and 2.90 by the corresponding Poisson distributions:

(2.e2)

Tl rl

- \- L

p : i#  n* ,

t 1.0

à o.e
\!s

vl 0.6
s
I

{ o.+

0.2

0 0.01 Po 0.03 0.04
FIGURE 2.8 Operating curve for

Ft 0.06 0.07

a binomial sampling scheme.
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TABLE 2.3" Binomial Sampling Chart for a : 0.05; É : 0.10

tt\ Fr/ Po 7L,1. llll h/ Po

0
1
g

3
+

c

6
I

B
9

1 0
1 1
L2

0.0513
0.3531
0.8167
1.365
1.969
2.673
3.285
3.980
4.695
5.425
6.168
6.924
7.689

2.303
3.890
5.323
6.681
7.994
9.275

10.53
77.77
12.99
14.27
75.45
16.64
17.81

44.9
I 1 . 0
6.52
4.89
4.06
3.55
3.21
2.96
2.77
2.62
2.50
2.40
2.32

8.463
9.246

10.04
10.83
I1 .63
t2.44
13.25
r4.07
14.89
15.68
16.50
17.34
18 .19

18.96

20.r5
2r.32
22.49
23.64
24.78
25.9r
27.05
28.20
29.35
30.48
31 .61
32.73

2.24
2 .18
2 . r2
2.08
2.03
1.99
1.96
r .92
1.89
1.87
1.85
1.82
1.80

1 3
t4
l 5
1 6
T 7
18
1 9
90

27
22
23
24
25

'Adapred from E. Schindowski and O. Schùrz, ,sto.tistische Qualitcitskontrolle,YEB Verlag Technik, Berlin, 1972.

and

!! mt
a : l - à n y e * o (2.e3)

Given a and É, we may solve these equations numerically for m1, and m1

wi t in  no :  0 ,  1 ,2 , . . . .  The resu l ts  o f  such a  ca lcu la t ion  fo r  a :  \Vo  and B :

\\Vo are tabulated in Table 2.3. One uses the table by first calculating h/ Fo;
n,1 is then read from the first column, and -À/ is determined from N : (mo/

Po) or.n/ : ( ry/ P). This is best illustrated by an example.

E)(AMPLE 2.10

Construct a sampling scheme for n,1and N, given

a :  \Vo,  B :  107o,  Fo :  0 .02,  and pr :  0 .05.

Solut ion We have h/Fo: 0.05/0.02 : 2.5. Thus from Table 2.3 n1: 10. Now

1tJ : mo/ Po : 6.168/0.02 = 308.

Multiple Sampling Methods

We have discussed in detail only situations in which a single sarnple of size l/

is used. Acceptance of the items is made, provided that the number of defective
items does not exceed na, which is referred to as the acceptance number.

Often more varied and sophisticated sampling schemes may be used to glean
additional information without an inordinate increase in sampling effort.*
Two such schemes are double sampling and sequential sampling.

* See, for example, A. V. Feigenbaum, Total Quality Control, 3rd ed., McGraw-Ifill, New York,

1983, Chapter 15.
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Total number inspected

FIGURE 2.9 A sequential sampling chart.

In double sampling a sample size N1 is drawn. The batch, however, need

not be rejected or accepted as a result of the first sample if too much uncer-

tainty remains about the quality of the batch. Instead, a second sample l/z is

d.rawn ancl a decision made on the cclmbined sample size ,À{ + ^/r. Such

schemes often allow costs to be reduced, for a very good batch will be accepted

or a very bad batch rejected with the small sample size l/r. The larger sample

size N1 + N2 is reserved for borderline cases.
In sequential sampling the principle of double sampling is f-urther ex-

tended. The sample is built up item by item, and a decision is made after

each observation to accept, reject, or take a larger sample. Such schemes can

be expressed as sequential sampling charts, such as the one shown in Fig. 2.9.

Sequential sampling has the advantage that very good (or bad) batches can

be accepted (or rejected) based on very small sample sizes, with the larger

samples being reseryed for those situations in which there is more doubt

about whether the number of defects will fall wit-hin the prescribed limits.

Sequential sampling does have a disadvantage. If the test of each item takes

a significant length of time, as usually happens in reliability testing, the total

test time is likely to take too long. The limited time available then dictates

that a single sample be taken and the items tested simultaneously.

Bibliography

Feigenbaum, A. Y., Total Quality Control,3rd ed., McGraw-Hill, NY, 1983.

Ireson W. G., (ed.) Rzliability Handbook, McGraw-Hill, NY, 1966.

Lapin, L. L., Probabikty and Statistics for Modern Engineering, Brooks/Cole, Belmont,
cA, 1983.

Montgomery, D. C., and G. C. Runger, Applied Stati.stics and Probability for Engineers,
Wiley, NY 1994.

Pieruschkà,8., Principles of Rzliabilifry, Prentice-Hall, Englewood Cliffs, NJ, 1963.



Probability and, Sampling 3b

Exercises

2.1 Suppose that P{X} : 0.32, P{Y} : 0.44, and, p{XW} : 0.58.

(a) Are the events mutually exclusive?
(b) Are they independent?
(c) Calculate P{X|;Y}.
(d) Calculate P{YirX}.

2.2 suppose that X and Y are independenr events with p{x} : 0.zB and
P{Y} : 0.41 Find (a) ,r,{X}, (b) p{X . y}, (c) p{y}, (d) {X n y,},
(e) P{x u r}, (f) p{X . f}.

2.3 Suppose rhar P{A} : 7/2, P{B} : l/4, and p{A n B} : l/8. Determine
@) p{alB}, (b) p{Bla}, (.) p{A u B}, (d) p{Âll}.

2.4 Given: P{A} : 0.4, P{A U B} : 0.8, p{A n B} : 0.2.
Determine (a) P{B}, (b) P{A|B}, (c) p{BlA}.

2.5 Two relays with demand failures of F : O.lb are tesred.

(a) What is the probabiliry rhar neither will fail?
(b) What is the probabiliry rhar both will fail?

2.6 For each of the following, draw a Venn diagram similar to Fig. 2.3
and shade rhe indicared areas: (a) (X U y) n Z, (b) X n f n Z,
(c)  (xu y) .  z ,  (d)  (xn t )  u  z .

2.7 An aircraft landing gear has a probability of 10-5 per landing of being
damaged from excessive impact. What is the probabiliry rhar the landin[
gear will survive a 10,000 landing design life without damage?

2.8 Consider events A, ,B and C. If P{A} : 0.8, p{B} : 0.3, p{C} : 0.4,
P{AIB n Ci : 0.5, P{BIC} : 0.6.
(a) Determine whether events B and c are independent.
(b) Determine whether events B and c are mutually exclusive.
(c)  Evaluate P{An Ba C}
(d) Evaluate p{B a CIA}

2.9. A particulate monitor has a power supply consisting of two batteries in
parallel. Either battery is adequate to operate the monitor. However,
since the failure of one battery places an added strain on the other, the
conditional probability that the second battery will fail, given the failure
of the first, is greater than the probability that the first will fail. On the
basis of testing it is known that 7Vo of the monitors in question will have
at least one battery failed by the end of their design life, wher eas in lVo
of the monirors both batteries will fail during rhe design life.

(a) Calculate the battery failure probability under normal operating
conditions.
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(b) Calculate the conditional probability that the battery will fail, given
that the other has failed.

2.10 Two pumps operating in parallel supply secondary cooline water to a
condenser. The cooling demand fluctuates, and it is known that each
pump is capable of supplying the cooling requirements B0% of the time
in case the other fails. The failure probability for each pump is 0.12;
the probability of both failing is 0.02. If there is a pump malfunction,
what is the probability that the coolins demand can still be met?

2.ll For the discrete PMF,

f ( * , )  :  C x ? , i  x , ,  :  1 , 2 , 3 .

(a) Find C.

(b) Find F(x") .

(c) Calculate p. and n.

2.12 Repeat Exercise 2.11 for

f ( * " )  :  C x n ( 6  -  r " ) ,  x n :  0 ,  1 ,  2 ,  .  .  . ,  6 .

2.13 Consider the discrete random variable defined by

x n 0 7 2 3 4 5

-f(x,,)
1 1  9  7  5  3  1
36 36 36 36 36 36

Compute the mean and the variance.

2.14 A discrete random variable x takes on the values 0, 1, 2, and 3 with
probabil it ies 0.4, 0.3, 0.2, and 0.1, respectively. Compute the expected
values of x,, x2,2x -f l, and e *.

2.I5 Evaluate the following:
(a )  C l ,  (b )  C3,  k )  C l ' ,  (d )  Cî8 .

2.16 A discrete probability mass function is given by /(0) : 7/6, f(7) :

7/3, f (2) :  7/2.

(a) Calculate the mean value p.

(b) Calculate the standard deviation o.

2.17 Ten engines undergo testing. If the failure probability for an individual
engine is 0.10, what is the probabiliq/ tlnat more than two engines will
fail the test?

2.18 A boiler has four identical relief valves. The probability that an individual
relief valve will fail to open on demand is 0.06. If the failures are inde-
pendent:

(a) What is the probability that at least one valve will fail to open?
(b) What is the probability that at least one valve will open?
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2.19 If the four relief valves were to be replaced by two valves in the precedine
problem, to whatvalue must the probability of an individual valve's failing
be reduced if the probability that no valve will open is not to increase?

2.20 The discrete uniform distribution is

f ( n )  :  L /  I r { ,  t r :  1 , 2 , 3 ,  4 , .  .  .  . ^ / .

(a) Show that the mean is (l/ + l) /2.
(b) Show that the variance is (M - 1) /12.

2.21 The probability of an engine's failing during a 30-day acceptance test is
0.3 under adverse environmental conditions. Eight engines are included
in such a rest. \Arhat is the probabilig of the following? (a) None will
fail. (b) All will fail. (c) More than half will fail.

2.22 The probability that a clutch assembly will fail an accelerated reliability
test is known to be 0.15. lf five such clutches are tested, what is the
probability that the error in the resulting estimate will be more than 0.1?

2.23 Amanufacturer produces 1000 ball bearings. The failure probability for
each ball bearing is 0.002.

(a)

(b )

\Arhat is the probability that more than 0.I%
will fail?

\{rhat is the probability that more than 0.5%
will fail?

of the ball bearings

of the ball bearings

2.24 Yeri$ Eqt. 2.63 and 2.64.

2.25 Suppose that the probability of a diode's failing an inspection is 0.006.

(a) \Ârhat is the probability that in a batch of 500, more than 3 will fail?

(b) What is the mean number of failures per batch?

(l{ote: Use the Poisson distribution.)

2.26 The geometric distribution is given by

, f ( n )  :  p ( l  -  p ) ' - t ,  n :  7 , 2 , 3 , 4 ,  . . . *

(a) Show that Eq. 2.22 is satisfied.

(b) Find that the expected value of n is L / p.

(c) Show that the variance of f(n) is 7/p2.

(It./ote: The summation formulas in Appendix A may be useful.)

2.27 One thousand capacitors undergo testing. If the failure probability for
each capacitor is 0.0010, what is the probability that more than two
capacitors will fail the test?

2.28 Letpequal the probability of failure and zbe the trial upon which the first
failure occurs. Then n is a random variable governed by the geometric
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distribution given in exercise 2.26. An engineer wanting to study the
failure mode proof tests on a new chip. Since there is only one test setup
she must run them one chip at a time. If the failure probabiliry is F: 0.2.

(a) What is the probabiliq that the first chip will not fail?
(b) \Arhat is the probability that the first three trials will produce no

failures?

(c) How many trials will she need to run before the probability of
obtaining a failure reaches 1/Zl

2.29 A manufacturer of 16K byte memory boards finds that the reliability of
the manufactured. boards is 0.98. Assume that the defects are inde-
pendent.

(a) \Àrhat is the probabilil of a single byte of memory being defective?
(b) If no changes are made in design or manufacture, what reliability

may be expected from 12BK byte boards?

(l{ote: l6K bytes : fla bytes, 12BK bytes - 217 bytes.)

2.30 The PMF for a discrete distribution is

f ( n )  : i # " " 0 ( - ^ )  . ; # e x p (  - r t ) ,  h : 0 , 1 , 2 , 3 , 4 , .  .  . *

(a) Determine,u,,,

(b)  Determine cr l

2.31 Diesel engines used for senerating emergency power are required to
have a high reliability of starting during an emergency. If the failure to
start on demand probability of I Vo or less is required, how many consecu-
tive successful starts would be necessary to ensure this level of reliability
with a 907o confidence?

2.32 An engineer feels confident that the failure probability on a new electro-
magnetic relay is less than 0.01. The specifications require, however,
only that p < 0.04. How many units must be te6ted without failure to
prove wîth g5% confidence that l? < 0.04?

2.33 A quality control inspector examines a sample of 30 microcircuits from
each purchased batch. The shipment is rejected if 4 or more fail. Find
the probability of rejecting the batch where the fraction of defective
circuits in the entire (large) batch is

( a )  0 . 0 1 ,

(b )  0 .05 ,
( c )  0 . 1 5 .

2.34 Suppose that a sample of 20 units passes an acceptance test if no more
than 2 units fail. Suppose that the producer suarantees the units for a
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failure probability of 0.05. The buyer considers 0.15 to be the maximum
acceptable failure probability.

(a) \Alhat is the producers risk?

(b) What is the buyer's risk?

2.35 Suppose that 100 pressure sensors are tested and 14 of them fail the
calibration criteria. Make a point estimate of the failure probability, then
use Eq. 2.86 to estimate the g0% and the 95Vo confidence interval.

2.36 Draw the operating curve for the 2 out of 20 sampling scheme of exer-
c ise 2.34.

(a) 
fi;."iili.r\i,ire 

probability be to obtain a producer's risk of

(b) \Arhat must the failure probability be for the buyer to have a risk of
no more than 10Vo?

2.37 Construct a binomial sampling scheme where the producer's risk is \Vo,
the buyer's risk l}Vo, Po: 0.03, and h 

-- 0.06. (Use Table 2.3)

2.38 A standard acceptance test is carried out on 20 battery packs. Two fail.

(a) What is the 957o confidence interval for the failure probability?

(b) Make a rough estimate of how many tests would be required if the
95Vo confidence interval were to be within -'-0.1 of the true failure
probability. Assume the true value is p : 0.2.

2.39 A buyer specifies that no more than l0% of large batches of items should
be defective. She tests 10 items from each batch and accepts the batch
if none of the 10 is defective. What is the probability that she will accept
a batch in which more than l}Vo are defective?
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3.I INTRODUCTION

In Chapter 2 probabilities of discrete events, most fiequently failures, were

discussed. The discrete random variables associated with such events are used

to estimate the number of events that are likely to take place. In order to

proceed further with reliability analysis, however, it is necessary to consider

how the probability of failure depends on a variety of other variables that are

continuous: the duration of operation time, the strength of the system, the

magnitudes of stresses, and so on. If the repeated measurement of such

variables is carried out, however, the same value will not be obtained with

each test. These values are referred to as continuous random variables for

they cannot be described with certainty, but only with the probability that

they will take on values within some range. In Section 3.2 we first introduce

the mathematical apparatus required to describe random variables. In Section

3.3 the normal and related distributions are presented. In section 3.4 the

Weibull and extreme-valve distributions are described.

3.2 PROPERTIES OF RANDOM VARIABLES

In this section we examine some of the important properties of continuous

random variables. We first define the quantities that determine the behavior

of a single random variable. We then examine how these properties are

transformed when the variable is changed.

40



Continuous Rnndom Variables 4l

Probability Distribution Functions

We denote a continuous random variable with bold-faced type as x and the

values that x may take on are specified by *, that is, in normal type. The

properties of a random variable are specified in terms of probabilities. For

example, P{x < x} is used to designate the probability that x has a value less

than x. Similarly, P{o < x < ô} is the probability that x has a value between

aand, ô. Two particular probabilities are most often used to describe a random

variable. The first one,

F ( x ) : P { x < x } ,

the probability that x has a value less than or equal to x, is referred to as the

cumulatiue d,i.strihution function, ot CDF for short. Second, the probability that

x lies between x and x * L,x as Ax becomes infinitesimally small is denoted by

f(x) A,x : P{x { x { x -l A,x), (3.2)

where /(x) is the probabitity density functi,on, referred to hereafter as the PDF.

Since both f(x) and,F(x) are probabilities, they must be greater than or equal

to zero for all values of x.
These two functions of x are related. Suppose that we allow x to take on

anyvalues -oo { x { *oo. Then the CDF isjust the integral of the PDF over

2 l l ; { x :

F(x) : [-_*ft* ') o*'.

We also may invert this relationship by differentiating to obtain

f(*) : -a-*nto-

The probability distributions /(x) and F(x) are normalized as follows: We

first note that the probability that x lies between a and b may be obtained

by integration

rb ", \
l " , " f tÙ  dx :  P {a<x<  Ô} .

Now. x must have some value between -oo and f oo. Thus

P { - * s x { * } : 1 .

The combination of this relationship with Eq. 3.5 with a : - oo and b : f oo

then yields the normalization condition

[--r<a d'x: r '

( 3 . 1 )

(3.3)

(3.7)

(3.4)

(3.5)

(3.6)

Then, setting x : oo in Eq. 3.3, we find the corresponding condition on the

CDF to be

F(oo )  :  1 . (3.8)
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One more function that is often used is the complementary cumulatiue

distribution function or CCDF, which is defined as

F ç * )  : P { x > x } ,

where we use the tilde to designate the complementary distribution, since
x ) x is the same as x not < x. The definitiorr of fix) and Eq. 3.7 allows us
ro wrire F(ù as

F(*) : f* f(*,) o*,
J X

or combining this expression with E,q.

,F(x) : I

r ": t - l
J  - æ

3.3 yields

-  F ( x ) .

f(x ')  dx',

(3.e)

( 3 . 1 0 )

( 3 . 1 1 )

x  {  * o o .

a smaller
. In such
example,

(3.r2)

(3 .13)

(3.r4)

Thus far we have assumed that x can take on any value - oo <

In many situations we must deal with variables that are restricted to

domain. For example, time is most often restricted to 0 s t { oo

cases the foregoing relationships may be modified quite simply. For

in considering only positive values of time we have

F ( t ) : 0 ,  t < 0 ,

and therefore for time, Eq. 3.3 becomes

h'(r1 : f' f1'�) ,lt'.
J  t ) "

Similarly, the condition of Eq. 3.7 becomes

f æ
I  f ( t )  d t :  1 .

J r t '

In Fig. 3.1 the relation between/( x) andF(x) is illustrated for a typical random

variable with the restriction that 0 { x < oo. In what follows we retain the
-r oo limits on the random variables, with the understanding that these are to
be appropriately reduced in situations in which the domain of the variable
is restricted.

H  ^ -
l\

0 1 2 3 4 A 1 2 3 4
X f

(a) (b)

FIGURE 3.1 Continuous probability distribution: (a) probabiliq,densiry function (PDF),
(à) corresponding cumulative distribution function (CDF).
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E)(AMPLE 3.I

The PDF of the lifetime of an appliance is given by

- f ( t )  :  o '25tu-05 ' ,  t>  o ,

where I is in years. (a) \Arhat is the probability of failure during the first year? (Ô)

\Àhat is theprobabi l i tyo f  theappl iance 's las t ingat least5years? (c)  I f  nomorethan

5Vo of the appliances are to require warranty services, what is the maximum number

of months for which the appliance can be warranted?

Solution First calcr-rlate the CDF and CCDF:

L

! ' ( t ) :  J ' � u a t o . z r t n - 0 5 ' -  
1 -  ( 1  + 0 . 5 t ) e - \ i " ,

F 1 r ; :  ( I * 0 . b t ) e - 0 5 t .

( a )  , F ( 1 )  -  1 -  ( 1  +  0 . 5  X  l ) s - o r x t : 0 . 0 9 0 2 .

(ô)  f I ' (5)  :  (1  +  0 .5  X 5)4- t t " " i '  :0 .2873.

(r) We must have F(t,) > 0.95, where le is the warranry period in years. From

(a) it is clear thdt the warranty must be less than one year, since f'(1) :

F ( 1 )  :  0 . 9 1 .

Try 6 month.s, to: &; F(&) :  0.973.
T.y 9 months, to: &; F(rrt) :  0.945.
Try 8 months, to : &; FGLù : 0.955.

The maximum warranty is 8 months.

Characteristics of a Probability Distribution

Often it is not necessary, or possible, to know the details of the probability
density function of a random variable. In many instances it suffices to know

certain integral properties. The two most important of these are the mean
and the variance.

The mean or expectation value of x is defined by

* : 
[ -- 

xf(x) d'x'

o' :  I l *(x-  r . t )2f(x) d,x.

The variance is a measure of the dispersion of values about the mean. Note that
since the integrand on the right-hand side of E,q. 3.16 is always nonnegative, the
variance is always nonnegative. In Fig. 3.2 examples are shown of probability
densiw functions with different mean values and with different values of the
variance, respectively.

More general functions of a random variable can be defined. Aty func-
tion, say g(x), that is to be averaged over the values of a random variable we

part
1 -

The variance is given by

(3 .15)

(3 .16)
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(o)  n1p2,01=o2

FIGURE 3.2 Probability density functions.

write as

(b) n= F2, o11o2

The quantity E{g(x)} is referred to as the expected value of g(x).It may be
interpreted more precisely as follows. If we sampled an infinitely large number
of values of x from f(x) and calculated g(r) for each one of them, the average
of these values would be E{g'}. In particular, the nth moment of /(x) is defined
to be

E{*"}: f:_x"f(x) d,x. (3.18)

With these definitions we note that Ë{x0} : 1, and the mean is just the
first moment:

pc : E{x} (3.19)

Similarly, the variance may be expressed in terms of the first and second
moments. To do this we write

c2 : E{(* - tL)'} : E{# - 2xtt + p'}. (3.20)

But since p is independent of x, it can be brought outside of the integral to yield

f æ
EtS(x)) = 

l_* g(x)f(x) dx.

,u : * I _- ,. - p.)s f(x) d,x.

(3.r7)

(3.2r)

(3.22)

(3.23)

c 2 : E { * ' } * 2 8 { x } p * t '

Finally, using Eq. 3.19, we have

c 2 : E { * ' } - E { * } ' .

In addition to the mean and variance, two additional properties are
sometimes used to characterize the PDF of a random variable; these are the
skewness and the kurtosis. The skewness is defined bv

It is a measure of the asymmetry of a PDF about the mean. In Fig. 3.3 are
shown two PDFs with identical values of g, and c2, but with values of the



skewness that are
like the variance

given by
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l t l :  l t2 ,  o l :  o2 X

FIGURE 3.3 Probability density
functions with skewness of opposite signs.

opposite in sign but of the same magnitude. The kurtosis,
is a measure of the spread of f(x) about the mean. It is

u u :  
* / _ -  , ,  -  p ) a f ( x )  d x . (3.24)

EXAMPLE 3.2

h@)l À l fz(")

A lifetime distribution has the form

rvhere / is in years. Find B, p,, and

Solution We shall use the fact

From Eq. 3.14,

Therefore, p" : 2/a.
The variance is found from Eq.

f(t) : Bte-"',

o in terms of a.

that (see Appendix A)

[ " d ë Ë ' n € - 2 t .
J u

d t B t e  " t : 1 .

With ( : et, we therefore have

g f d 4 o ( : { " r : r .
o(.' J o a-

Thus p : a2 and we have -f(t) : a2te, "'.

The mean is determined from Eq. 3.15:

r

*= I: dnf(t) : ' '  I : rttt2e-o': *l; dçe-t : '4

3.22, which reduces to

- f æ
o '=  

Jo  
d t t r f ( t )  -  p2 ,
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but

[* au'1çr1 : " ' I: dft3e-qt: #Ï: otf ,_ , 3 ! 6
a 2  d 2

and therefore,

Thus o:  \ /2 /o .

u  6  / z \ '  z
c - : - - - l - f  - --  

d2  \o /  oÊ '

D(AMPLE 3.3

Calculate p,and ain Example 3.1.

Solution Note that the distriburion
a : 0.5. Therefore p : 4 years, and o:

in Examples 3.1 and 3.2 are identical if
2Y2 years.

Transformations of Variables

Frequently, in reliability considerations, the random variable for which data
are available is not the one that can be used directly in the reliability estimates.
Suppose, for example, that the distribution of speeds of impact /(u) is known
for a tnechanical snubber. If the wear on the snubber, however, is proportional
to the kinetic energ'y, e: +, muz, the energy is also a random variable and it
is the distribution of energies f,(e) that is needed. Such problems are ubiqui-
tous, for much of engineering analysis is concerned with functional relation-
ships that allow us to predict the value of one variable (the dependentvariable)
in terms of another (the independent variable).

To deal with situations such as the change from speed to energy in the
foregoing example, we need a means for transforming one random variable
to another. The problem may be stated more generally as follows. Given a
distribution ,Â(x) or F,.(x) of the random variable x, find the distribution
fr(y) of the random variable y that is defined by

)  :  ! ( x ) . (3.25)

We then refer to fr(l) as the derived distribution. Hereafter, we use subscripts
x and y to distinguish between the distributions whenever there is a possibility
of confusion. First, consider the case where the relation between y and x has
the characteristics shown in Fig. 3.4; that is, if x1 1 x2, then )(xr) < y(xù.
Then y(x) is a monotonically increasing function of x; that is, dy/d,x ) 0. To
carry out the transformation, we first observe that

P{* < x} :  P{y < )(x)} ,

f " (x )  :  F r (y )

(3.26)

(3.27)

or simply
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FIGURE 3.4 Function of a random
variable x.

To obtain the PDF fr(y) in terms of fi(x), we first wrire the preceding equa-
tion as

I -- l(x') d'x' : 
/' ': ' -f,(v') b'

Differentiating with respect to x, we obtain

f-(*) : fr(ù #

(3.28)

f,(y) : f*(x) I#rl

(3.2e)

(3.30)

Here we have placed an absolute value about the derivative. With the absolute
value, the result can be shown to be valid for either rnonotonically increasing
or monotonically decreasing functions.

The most common transforms are of the linear form

Y :  a x *  b ,

and the foregoing equation becomes simply

r , o :à t ( * )  ( zz2 )

Note that once a transformation has been made, new values of the nlean
and variance must be calculated, since in general

f r

J s@f"(x) dx+ J s{ùf,(y) dy. (s.33)

(3 .31)

I)(AMPLE 3.4

Consider the distriburion -f*(*) : ddo,,
(a) Transform ro the distriburion fr(y),
(ô) Calculate px and 1u,o.

0 < x < c o
where y :

, a

e*,

> 1 .
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Solution (a) dy/dx: e'; therefbre, Eq. 3.30 becomes J(l) : e r.f,(x). We also
have x : ln ). Therefbre,

fr(Y) 
: 6tn'tou-atn't: 

,:r,

(b) t , . . :  I î  *,u" 'o*:*,

*r:  I :*r-(a+t) ay:h.

1 < ) <  *

3.3 NORMAL AND REIATED DISTRIBUTIONS

Continuous random variables find extensive use in reliability analysis for the
description of survival times, system loads and capacities, repair rates, and a
variety of other phenomena. Moreover, a substantial number of standardized
probability distributions are employed to model the behavior of these vari-
ables. For the most part we shall introduce these distributions as they are
needed for model reliability phenomena in the following chapters. We intro-
duce here the normal distribution and the related lognormal and Dirac delta
distributions, for they appear in avariety of different contexts throughout the
book. Moreover, they provide convenient vehicles for applying the concepts
of the foregoing discussion.

The Normal Distribution

Unquestionably, the normal distribution is the mostwidely applied in statistics.
It is frequently referred to as the Gaussian distribution. To introduce the
normal distribution, we first consider the following function of the random
variable x,

where a and b are parameters that we have yet to speci$r. It may be shown
that f(x) meets the conditions for a probability density function. First, it is
clear that f(x) > 0 for all x. Second, by performing the integral

.  I  I  t / * - o \ ' 1
I \ x )  :  / -  e x p l  - ;  L  I  l ,  - o o  <  x {  æ ,-  Y 2 n b  P L - t \  ô  / l

f-;,..0[ -+e)'] ,':'

(3.34)

(3.35)

it may be shown that the condition on the PDF given by Eq. 3.7 is met. The
evaluation of Eq. 3.35 cannot be carried out by rudimentary means. Rather,
the methc.J of residues from the theory of complex variables must be em-
ployed. For convenience, some of the more common integrals involving the
normal distribution are included in Appendix A.

A unique feature of the normal distribution is that the mean and variance
appear explicitly as the two parameters aand b.To demonstrate this, we insert
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Eq. 3.34 into the definit ions of the mean and variance, Eqs. 3.15 and 3.16-

Using the evaluated integrals in Appendix A, we find

(r2 = I _-0. (x- t- t) ,#u".p[ -te) ' ]  :  t  G.z7)

Consequently, we may write the normal PDF directly in terms of the mean

and variance as

r (*)  :#" ."e[- ; ( ry) ' ] '  -oo <x{ oo (338)

Similarly, the CDF corresponding to Eq. 3.34 rs

F(x) : ï' -#..p[ - ;(+)'l ^r

* = [--* o*#o u.*o[ - iW)'] :,,

f,(r) : #exp( 
-1"').

@(,) : 
h/-- 

"*o e+f) d,(-

When we use the normal distribution, it is often beneficial to make a

change of variables first in order to express F(x) in a standardized form. To

this end, we define the random variable z in terms of x by

z =  ( x -  p ) / o .

Recalling that PDFs transform according to Eq. 3.30, we have

r.(,) :n,, | #l : #- "..p[ - i?:)'],',,
which lor x: p" I crz

(3.40)

(3.36)

(3.3e)

(3.41)

(3.42)

(3.43)

(3.44)

This implies that for the reduced variate z, lL, : 0 and ol : L.

The PDF is plotted in Fig. 3.5. trts appearance causes it to be referred to

frequently as the bell-shaped curve. The standarclized form of the CDF may

also be found by applying Eq. 3.40 to F(x),

F ( x ) :  O [ ( x  -  p ) / o ] ,

where the standardized error function on the right is defined as

The integrand. of this expression is just the standardizecl normal PDF. A

graph of O(z) is given in Fig. 3.6; note that each unit on the horizontal axis

corresponds to one standard deviation o, and that the mean value is now at

the origin. A tabulation of @(z) is included in Appendix C. Although values
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- 1 - 0 . 6 7  0  0 . 6 7  I

50% of  area
l<_____>t
68.3% of area

95.6% of  area

99.7% of  area

FIGURE 3.5 Probability density function for a srandardized nor-
mal distribution.
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normal distribution.
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for z 10 are included in Appendix C, this is only for convenience, since for

the normal distribution we may use the property f(- z) : 
_f(r) to obtain

ô ( - r )  f r om

O ( - z ) : 1 - t D ( r ) .  ( 3 . 4 5 )

EXAMPLE 3.5

The time to wear out of a cuttins tool edse is distributed normally with p" : 2.8lv
and  a :  0 .6  h r .
(a) \A/trat is the probability that the tool will wear out in less than 1.5 hr?
(ô) How often should the cutting edpçes be replaced to keep the failure rate less than
l0% of the tools?

Solut ion (a) P{t < 1.5} :  I ' , (1.5) :  Q(r),  where

z :  ( t  -  p ) / c r ,  z :  ( 1 .5  -  2 .8 )  / 0 .6  :  - 2 .1667

From Appendix C: O( -2.1667) :  0.0151.

(b) P{t ( r} :  0.10; O(z) :  0.10. Then from Appendix C, z^'  -1.28. Therefore, we
have

- t  T  t - t  :  I . 28o ,  t :  l - t  -  1 .28o :  2 .8  -  1 .28  X  0 .6  :  2 .03  h r .

The normal distribution arises in many contexts. It may be expected to

occur whenever the random variable x arises from the sum of a number of

random effects, no one of which dominates the total. It is widely used to

represent measurement errors, dimensional variability in manufactured

goods, material properties, and a host of other phenomena.

A specific illustration might be as follows. Suppose that an elevator cable

consists of strands of wire. The strength of the cable is then

x : x r - r x 2  I  x ; l '  * * ,  
' ( 3 . 4 6 )

where x; is the strength of the ith strand. Even though the PDF of the individual

strands x; is not a normal distribution, the strength of the cable will be given

by a normal distribution, provided that { the number of strands, is suffi-

ciently large.

The normal distribution also has the following property. If x and y are

random variables that are normallv distributed. then

LL : a,x + by, (3.47)

where a and b are constants, is also distributed normally. Moreover, it may
' 

be shown that the mean and variance of u are related to those of x and 1 by

llu : ap,* * bp,, (3.48)

and

rr"2': azol + b'oi' Q'49)
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The same relationships may be extended to linear combinations of three or
more random variables.

Often the normal distribution is adopted as a convenient approximation,
even though there may be no sound physical basis for assuming that the
previously stated conditions are met. In some situations this may be justifiecl
on the basis that it is the limiting form of several other distributions, the
binomial and the Poisson, to name two. More important, if one is concerned
only with very general characteristics and not the details of the shape, the
normal distribution may sometimes serve as a widely tabulated, if rough,
approximation to empirical data. One must take care, however, not to pursue
too far the idea that the normal distribution is generally a reasonable represen-
tation for empirical data. If the data exhibit a significant skewness, the normal
distribution is not likely to be a good choice. Moreover, if one is interested
in the "tails" of the distribution, wher. l(n 

- p)/o1 >> 1, improper use of
the normal distribution is likely to lead to large errors. Extreme values of
distribution must often be considered when determining safety factors and
related phenomena. Distributions appropriate to such extreme-value prob-
lems are taken up in section 3.4.

The Dirac Delta Distribution

If the normal distribution is used to describe a random variable x. the mean
pr, is the measure of the average value of x and the standard deviation o is a
measure of the dispersion of x about 1r"c. Suppose that we consider a series of
measurements of a quantity 1u, with increasing precision. The PDF for the
measurements might look similar to Fig. 3.7. As the precision is increased.-
decreasing the uncertainty-the value of o decreases. In the limit where there
is no uncertainV o - 0, x is no longer a random variable, for we know that
x : l.L.

The Dirac delta function is used to treat this situation. It may be defined as

ô(x- tr . ) : r : \#.-o [-#r.-  *r , ] . (3.50)

(a) ot (b) oz 
t

o1) o2>. og

(c) og

of the variance.FIGURE 3.7 Normal distributions with different values
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â ( r -  p ) :

and
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from this definition:

(3.53)

immediately follow

I * '  x :  P
Lo, x * F,,

(3 .51)

l:l"" rt. 
- p) d,x: 1. e ) o. (3.52)

Specifically, even though â(0) is irrfinite, the area under the curve is equal

to one.

The primary use of the Dirac delta function in this book is to simplify

integrals in which one of the variables has a fixed value. This appears, for

example, in the treaf-ment of expected values.

Suppose that we want to calculate the expected value of g(x), as given

by Eq.  3 .17 when f ( * )  
:  ô(x  -  xù;  then

E{S(")} :  
l*  *g(x)â(x 

- x,1) d,x

may be written as

r . f  /  \ t  I  
x o ï t '

Ér{g(x ) } :  j * ,_ "  g (x )6(x -  x0)  dx ,  e  }  0 ,  (3 .54)

since â(, - xo) : 0 away from x : x0. If g(x) is continuous, we may pull it
outside the integral for very small e to yield

E{g(*)} - g(x,,) /l]" u,' - xç,) d,x. (3.55)

Therefore, for arbitrarily small r, we obtain

n r  ,  \  r  f  * , , * "
EtS("))  = 

J * '_"  
g(x)  â(* -  xç) dx:  g(x6).  (3.56)

A more rigorous proof may be provided by using Eq. 3.50 in Eq. 3.53 and
expanding S(x) in a power series about x6.

The Lognormal Distribution

As indicated earlier, if a random variable x can be expressed as a sum of the
random va r i ab les ,  x i ,  i :  1 ,2 ,  . . . ,  Nwhere  no  one  o f  t hem i s  dom inan t ,
then x can be described as a normal distribution, even though the x; are
described by nonnormal distributions that may not even be the same for
different values of l. A second frequently arising situation consists of a random
variable y that is a product of the random variables /;:

j : ) r ) 2 " ' ) r s . (3.57)
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For example, the wear on a system may be proportional to the product of
the magnitudes of the demands that have been macle on it. Suppose that we
take the natural logarithm of Eq. 3.57:

h )  :  l n y l  *  l n y 2  f  .  .  .  +  I n y , , r .

The analogy to the normal distribution is clear. If no one of the terms on
the right-hand side has a dominant effect, then ln y should be distributed
normally. Thus, if we define

x = ln y, (3.b9)

then x is distributed normally and y is said to be distributed lognormally.
To obtain the lognormal distribution for y, we first write the normal

distribution for x,

(3.58)

(3 .61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.60)

where &* is the mean value of x, and af, is the variance of the distribution in
x. Now suppose that we let x be the natural logarithm of the variable ). In
order to find the PDF in y, we must transform the distribution according to
Eq. 3.30:

r-(*) : 
à;.-o [ 

- #r (, - r.),],

.f,(y) : I*@)l#l
Noting that

d x  d ,  I

4 :  O ) ' )  
:  

t '
ancl using x : ln y to eliminate x from Eqs. 3.60 and 3.61, we obtain

r / ,  I  [ _ t  [ , . / r \ l , JJy\t) : 
\Æ ,).*p t 

- 
%, Lt" \r,/ l J,

where we have made the replacements

The corresponding CDF is obtained by integrating over l with a lower
limit of ) : 0. The results can be expressed in terms of the standardized
normal integral as

Itr* = ln yoi c* : @.

10): * [*'" (i)]
The PDF and the CDF for the lognormal distribution are plotted as a

function of 1 in Fig. 3.8. Note that for small values of a, the lognormal and
normal distributions have very similar appearances.
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(a) @)

FIGURE 3.8 The lognormal distribution (a) probability density funcrion (pDF), (b) cu-
mulative distribution function (CDF).

The mean of the lognormal distribution may be obtained by applying
Eq. 3.15 to Eq. 3.63:

l ra :  )o exp(@2 /2). (3.66)

Note that it is not equal to the parameter ys for which the distribution is a
maximum. on the contrary, y0 may be shown to be the median value of y.
similarly, the variance in y is not equal to ol but rather is

ol :  f iexp(toz)[exp(ar2) -  l ] .

Lognormal distributions are widely applied in reliability engineering ro
describe failure caused by fatigue, uncertainties in failure .ui.r, and a uu.i.ty
of other phenomena. It has the property that ifvariables xand,lr have logno.mal
distributions, the product random variable z : xy is also iogro.*âlly dis-
tributed.

The lognormal distribution also finds use in the following manner. Sup-
pose that the best estimate of a variable is )o and there is agT% certainty thàt
1o is known within a factor of n. That is, there is a probability of 0.9 that it
lies between jo/ n and )on, where n ) l. We then have

o.ob : SN" -J-, ^-^ [- I - f ,- /r\-l'J ,^,r o t2" ô'"0 I 
- 

2,, L'" \;/ I I 
', (3.68)

with the change of variables ( : (l / a) rn(y/ yù Eq. 3.68 may be writren as

o.o5 : Ï-_':'""'#.*p( -+(,) d.t. (3.6e)
This integral is the CDF for the standardized normal distriburion, given by
Eq. 3.44. Thus we have

(3.67)

2 x I O P 2 x I O P
v

o  o 5 : .  ( -  * r " , ) , (3.70)
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where @ is the standardized normal CDF. Similarly, it may be shown that

o . e b : o ( * 1 t ' r ) .  ( 2 . 7 r )
\ r o  /

From the table in Appendix C it is seen that the argument for which O :
0.05 or 0.95 is +1.645. Thus we have

l t n  , :  7 . 6 4 b .  ( 2 . 7 2 )

Therefore, the parameter a.r is given by

1 ,:  
*notn 

n.  (3.73)

With )o and rrr determined, the pr," can be determined from Eq. 3.66.

EXAMPLE 3.6

Fatigue life data for an industrial rocker arm is fit to a lognormal distribution. The
following parameters are obtained: )o : 2 x 107 cycles, a : 2.3. (a) To what value
should the desisn life be set if the probability of failure is not to exceed 1.0%? (b) If
the desisn life is set to 1.0 X 106 cycles, whatwill the failure probabilitybe?

Solution (a) Let;y be the number of cycles for which the failure probability is
77o. Then, from Eq. 3.65, we have

) )  :o [ * ' " ( * ] , / - ) ]

From Appendix C we find

D( -2 .32 \  :  0 .01 .

Thus

-222:* '"(#'o)

and

y : 2 x 107 exp(-2.32 x 2.3)

: 9.63 X 104 cycles.

(ô) In Eq. 3.65 we have

'=!''(fr) :*''(-i;)
:  -  1 .302.

From Appendix C, O(-1.302) : 0.096 so that

1(3) : 0.096 probability of failure.
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3.4 WEIBULL AND EXTREME VALUE DISTRIBUTIONS

The Weibull and extreme value distributions are widely employed for reliability
related problems. Their relationship to one another is analogous to that
between the lognormal and the normal distribution. The Weibull distribution,
like the log normal, ranges 0 < x ( oo, while extreme value like normal
distributions have the range - oo ( x I æ. Moreover, the distributions are
related through a logarithmic transformation.

Weibull Distribution

The Weibull distribution is widely used in reliability analysis for describing
the distribution of times to failure and of strengths of brittle materials, such
as ceramics. It is quite flexible in matching a wide range of phenomena. It is

particularlyjustified for situations where a "worst link" or the largest of many

competing flaws is responsible for failure. The Weibull CDF is given by

F ( * ) : 1 -  e x p l - ( x / e ) * 1 ,  o  <  x <  o o (3.74)

where 0 is the scale and m is the shape parameter. The derivative may be

performed as indicated in F..q. 3.4 to obtain the PDF

f(*) : exp[  -  (x /  0)*1, 0 S x < o o (3.75)

The PDF for the Weibull distribution is shown in Fig. 3.9 for several different
values of m.

The mean and the variance of the distribution are obtained from Eqs.
3.15 and 3.16, respectively. They are rather complicated functions of the scale
and shape parameters:

î ( 0 , ) - '

and

P : 0 1 ( l + 7 / m )

c2 :  g t [ f  (1  + 2/  m) -  f  ( l  +  1/  m)r l .

T ime to  fa i l u re  PDF

FIGURE 3.9 The Weibull distribu-
tion.

(3.76)

(3.77)
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FIGURE 3.10 The samnla function.

In these expressions the complete gamma function f (z) is defined by the in-
tegral

f (z) : f* 7'-tu t 41-
J t )  

-

Figure 3.10 shows the dependence of 1 /f (v) for the values 0 ( z (
u ) I, can be obtained from the identity:

l ( u )  :  ( v  -  7 ) l ( v  -  1 ) .

A wide spread use of the Weibull distribution is in describing weakest
link phenomena. This may be illustrated by consiCering a proverbial chain,
where the strengths of the N link are described by the random variables x1,
X2, X:. . .  X5. The strength of  the chain is then also arandomvariable,  sayy,
which takes on the value of the weakest link. Thus

p { y >  ) } :  P { * ,  } ) 1 1  x 2  } )  I  x s  > y ( ^ l  . . . n  x r , , > ) } .  ( 3 . 8 0 )

If the link strengths are independent,

p { y >  
) } :  P { x r  > ) } P { x ,  > ) } P { x ,  > ) } . . . p { * r > ) } .  ( 3 . 8 1 )

If all of the links are governed by identical strength distributions we can
express the probabilities on the right in terms of a sinsle CDF, F*(x):

1 ' { x , } ) } : 1 -  P { * , = y }  -  1 - } , . ( : y ) .  ( g . 8 2 )

Likewise, since the cDF for y may be wriuen ur 4(l) : I - p{y > }}, Eq.
3.81 becomes

4 ( l )  
-  1 -  t l  - 4 ( ) ) l ^ (3.83)

Now, slrppose the link strengths are soverned by a Weibull distriburion,

f , ( x )  : 1  -  e x p [ - ( x / 0 ) , ] ;  ( 3 . 8 4 )

then combining these two equations, we have

e t ( ù : 1 - L e , \ t / t t l - r N : 1 - o , N ( 1 / 0 ) ' ' .  ( 3 . 8 5 )

Thus the chain strength may also be expressed as a Weibull distribution

r r ( l )  -  t  -  e x p [ - ( y / o ' ) * l  ( 3 . 8 6 )

r.2

o 
0'8

L
- 0.4

0.0

(3.78)

1, since

(3.7e)
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with the same shape parameter, and a scale parameter of

0' - I{-tr^o. (3.87)

Even in situations where the underlying distribution is not explicitly known,

but the failure mechanism arises from many competing flaws, the Weibull
distribution often provides a good empirical fit to the data.

E)(AMPLE 3.7

A chain is made of links whose strengths are Weibull distributed with m : 5 and 0 :

1,000 lbs. (a) What is the mean strength of one link.? (à) What is the mean strength

of a chain of 100 links? (c) At what load is there a \Vo probability that the 100 link

chain will fail?

Solut ion (a) From Eq. 3.76: ; . .c* :  1,000 f (1.20) :  1,000 '  0.918 : 918 lbs.

From Eq. 3.87: 0'  :  100-t/5 '  1000 : 398 lbs.
Thus p' :  398 f (1.20) :  398 '  0.918 : 365 lbs.

0 .05  :  1  -  exp l - ( y /0 ' ) - l  o r  y :  0 '  i l n (1 /0 .95 ) l t l u  :  398 '0 .552  :  220  l bs .

A special case of the Weibull distribution is probably the most widely
used in reliability engineering. Taking m : I results in the single-parameter
exponential distribution. The CDF is

( b )

( c )

and the PDF is

The mean and the variance are both given in terms of the single parameter
as p : g and c2 : 02 respectively.

Extreme Value Distributions

Extreme value distributions, or more precisely asymptotic extreme value distri-
butions, frequently arise in situations where the number of variables-flaws,
acceleration, etc.-from which the data is gathered is very large. Both maxi-
mum and minimum extreme value distributions are applied in reliability
engineering. There are a number of different types of extreme value distribu-
tions. We will confine our attention here to the type I or Gumbel distributions.
The PDF for the maximum and minimum Gumbel distributions are plotted
in Fig. 3.11. Note that they have long tails on the right and left respectively.

The CDF for the maximum extreme value distribution is given by

F ( x ) : 1 - e * / s ,

I
f(x\ : -- 

t-"t.J \ 0

0 s x < o o

0 < x < o o .

(3.88)

(3.8e)

(3.e0)

(3 .e1)

F(x )  :  exp l  - t  ( x -u ) /@1 ,  -oo  (  x  I  æ .

Differentiating according to Eq. 3.4 then produces the PDF:

1
@ t-f(*) :

- ( x - u ) / @  
e x p [ _ r ( x - u ) / @ 1 ,  _ o o <  x l - æ
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O  u - 4 0  u - 2 0  u  u +  2 0

/a/ Maximum extreme

FIGURE 3.ll Extreme-value probability density

0  u - 2 0  u  u +  2 0  u +  4 0

/ô/ Minimum extreme

functions. E..|. Gumbel op. cit.

rt
.rl

8
P

The PDF is plotted in

where y :  0.5772157

Fig. 3.11a. The mean and the variance are given by

p : u * y @ ,

, and

(3.e2)

(3.e3)

(3.e7)

value

(3.e8)

o ' :T" '
Like the normal and lognormal distribution, a reduced variant can be defined
which simplifies the CDF. If we take zr : (x - u) /@, then the CDF becomes

F" ' (w)  :  ? ' - " ' '  (3 '94)

which explains why type I extreme value distributions are frequently referred
to as double exponential distributions.

The maximum extreme value distribution often works well in combining
loads on a system when it is the maximum load that determines whether the
system will fail. Suppose that x1 , Xz, X3 . . . Xry are the magnitudes of the
individual loads, and let y denote the maximum of these loads. To deterrnine
the probability that y will not exceed some specified value ), we may write

p { y <  
) } :  P { x r  s ) l ' l  x z = ) l ' l  x ,  < 1 f l  . . . n  x r , - < ) } .  ( 3 . 9 5 )

If the magnitudes of the successive loads are independent of one another,
this expression simplifies to

p{y < )} 
: P{x, = y}P{x, = 

)}P{*u < )} 
. . . P{*, = -y}. (3.96)

We also note, from Eq. 3.1, that each of these probabilities is just a CDF. Thus
if the loads are identically distributed we may rewrite this equation as

r r ( l )  :  É l ( ) ) ' .

Now, assume that the CDF for each loading is the maximum extreme
distribution, given by Eq. 3.90. We then have

f r ] )  :  {exp  L-e  1-aro l } t  :  exp [  -Ns  0- " t t0 t1 ,
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and the CDF fbr y can be written as a single extreme-value distribution

Fr(Y)  :  exP l -  e  0 - " ' t ro1 ,

where the displacement parameter has been increased to a value of

r.t' : Lt + @ ln (N),

and @ remains unchanged.

E)(AMPLE 3.8

The stress on a landing gear fastener is governed during landing by a maximum
extreme-value distribution with a displacement parameter of u: 8.0 kips (kilopounds)
and @ : 1.5 kips. (a) What is the mean value for individual loading. (à) What is the
mean value of the maximum load over the 10,000 landing design life of the fastener?
(c) What strength should the fastener be designed to if there is to be no more than
a lVo chance of overloading during the 10,000 landing design life?

Solut ion (a) From Eq. 3.92, p :  8.0 + 0.5772. 1.5 : 8.87 kips.

(ô) From Eq. 3.100 we have u' :  8.0 + 1.5 ln(10,000) :  21.8 kips.
Again from Eq. 3.92 we have pc : 21.8 + 0.5772. 1.5 : 22.7 kips.

( c )  So l ve  Eq .3 .99  f o r y :  ) :  I t '  -  @ l n  [ n  ( l  / F )1 .
Wi th  F:  0 .99,  we have y  :  21.8  -  1 .5  ln  [n  (1 /099) ]  :  21.8  -  1 .5( -4 .60)
o r ) : 2 8 . 7 k i p s .

The minimum extreme-value distribution is frequently used as an alterna-
tive to the Weibull in describing strength distributions and related phenom-
ena. The CDF for the corresponding minimum extreme-value distribution is

F(x) :  I  -  expl-e?-" t to1,  -oo < )c I  æ,

and the corresponding PDF is

1

fG)  
:  J -  t t x -ù /@ exp [ -nk -u ) /@1,  æ (  x (  oo

The PDF is ploted in Fig. 3.llb. The mean and variance are given by

l L :  u  -  
7 @

gæ -
o, : 

' l 
@r.

t)

(3.ee)

(3.r00)

and

(3 .101)

(3 .102)

(3.103)

(3.104)

I f  we def ine areducedvar iate by r :  (u-  x) /@, we again obtain Eq.3.94
as the CDF of the reduced variate w.

It is noteworthy that the minimum extreme value distribution is closely
related to the Weibull distribution and as a result is often used for similar
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purposes, such as representing distributions of times to failure. If we let

x  :  l n ( y ) , (3 .105)

then the foregoing equations in xfor the minimum extreme-value clistribution
reduce to a Weibull distribution in 1; the Weibull parameters are given in
terms of those for the extreme-value distribution by

and

Thus the Weibull distribution has the same relationship to the minimum
extreme-value distribution as the lognormal has to the normal: In both cases
they are related by Eq. 3.105, and in the first, the domain of the random
variable is -æ I x /-oo, while in the second i t  is 0 ( I  {  oo.
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Exercises

3.1 For the PDF

0 :  e , ,

m :  7 / @ .

(3.106)

(3 .107)

I  t * t t  -  x ) ,
f Q ) : 1 -

10.
determine b, F, and a.

3.2 Consider the following PDF:

"f(x) :_7 / 2

Determine the nlean and variance.

Applied Statistics and Probability for Engineers,

Probability Modek and Applications, Macmillan

Prentice-Hall, Englewood Cliffs, NJ, 1903.

0  {  x {  1 ,

otherwise

0 1 x { - 2 ,

otherwise
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3.3 A motor is known to have an operating life (in hours) that fits the
distribution

3.4

f(t) : Grw, 
t> 0.

The mean life of the motor has been estimated to be 3000 hr.

(a) Find a and b.

(b) \Arhat is the probability that the motor will fail in less than 2000 hr?

(c) If the manufacturer wants no more than \Vo of the motors returned
for warranty service, how long should the warranty be?

For a random variable for which the PDF is

( 0 ,  x < - l  I
t l
t l

f ( x ) : l A ,  
- l < ' < 1 f

t l
1 0 ,  x ) l  )

Determine (a) A, (b) p, (c) o', (d) sk, (e) ku.

Suppose that

F(x) : | - t o'zx - 0.2xe o'2*, 0 < x < oo.

(a) Find f(x).
(b) Determine p. and o2.

(c) Find the expected value of e *.

Repeat Exercise 3.4for _f(*)  :  A exp(- | .* l ) ,  -@ ( x {  oo.

Suppose that the maximum flaw size in steel bars is given by

- f ( x ) : 4 x e 2 * ,  0 < x { æ ,

where x is in microns.

(a) \A/hat is the mean value of the maximum flaw size?

(b) If flaws of lengths greater than 1.5 microns are detected and the
bars rejected, what fraction of the bars will be accepted?

(c) \Arhat is the mean value of the maximum flaw size for the bars that
are accepted?

3.5

3.8 The following PDF has been proposed for the distribution of pit depths
in a tailpipe of thickness xs:

,f(*) : A sinhlcr(xo - x)1, 0 ( x { xo.

(a) Determine A in terms of a.
(b) Determine ,F(x): the CDF.

3.6

3.7
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(c) Determine the mean pit  depth.

will be a pit of more than twice

3.9 The PDF for the maximum depths

ing is

\Arhat is the probability that there
the mean depth?

of undetected cracks in steel pip-

J'@) :!  "- 
n' ' '  

- '" " /  
Y ( l - ( ' " ) '

where r is the pipe thickness and 7 : 6.25 mm.

(a) !\rhat is the CDF?

(b) For a 2O-mm-thick pipe, what is the probabiliq tli.at a crack will
penetrate more than half of the pipe thickness?

3.10 For a random variable for which the PDF is f(x), -@ { x { oo find the
following in terms of the moments 7" - I:: x' f(x) d'x:
(o) t t ,  (b)  , r ' ,  (c)  sk,  (d)  hu.

3.ll Under design pressure the minimum unflawed thickness of a pipe re-

quired to prevent failure is re.

(a) Using the maximum crack depth PDF from Exercise 3.9, show that
if the probability of failure is to be less than e, the total pipe thickness
must be at least

r : y r "  [ r  + ! @ " ' -  l ) l' L € l

(b) For 7 : 6.25 mm and a minimum unflawed thickness of r11 : 4 cm.,
what must the total thickness be if the probabiliry of failure is 0.77o?

(c) Repeat part b for a probability of failure of 0.07%.

(d) Show thatfor re )) y ande (( l, r is approximately ro I Tln(L / e).

3.12 Suppose

-f"(*) :

x 1 0

0  {  x {

x ) l{l,
( a )  I f  ) :  x ' ,  f i n d  J ( ) ) .  ( ô )  I f  z :  3 x ,  f r n d . f , ( z ) .

3.13 Express the skewness in terms of the moments E{*'}.

3.14 The beta distribution is defined by

1
f ( x )  : . 8 * -  ' ( 1  -  x ) '  '  ' ,  0  <  x <  1 .
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Show

(a) that if / and r a;re integers,

u -  
( r -  l ) ! ( r -  r -  1 ) !

( , *  1 ) !  '

(b) that p. : r/ t,
(c) that

az : k--.1ù-: TU- r)

t + L  f ( t + I ) '

(d) that if / and r are integers, f(x) rnay be written in terms of the
binomial distribution:

f@) :  ( r -  1)  C,;1x- ' ( t  -  . lc ; , - - t .

3.15 Transform the beta distribution given in the Exercise 3.14by

y :  a +  ( b -  a ) x , a < ) < b .

(a) Find fr(y) .  (à)  Find p.r .

3.16 A PDF of impact velocities is given by ae "o. Find the PDF for impact
kinetic energies -@, where B: I muz.

3.17 The tensile strength of a group of shock absorbers is normally distributed
with a mean value of 1,000 lb. and a standarcl deviation of 40 lb. The
shock absorbers are proof tested at 950 lb.
(a) \tVhat fraction will survive the proof test?
(b) If it is decided to increase the strength of the shock absorbers
(i.e., to increase the mean strength while leaving the standard deviation
unchanged) so that ggTo pass the test, what must the new value of the
mean strength be?
(c) If it is decided to improve quality control (i.e., to decrease the
variance while leaving the mean strength unchanged) so that 99% pass
the test, what must the new value of the stand.ard deviation be?

3.18 An elastic bar is subjected to a force /. The resulting strain energy is
given by

e -- clz,

where c is d/2A8, with d the length of the bar, A the atea, and E the
modulus of elasticity. Suppose that the PDF of the force can be repre-
sented by standardized normal form rtQ). Find the PDF -f"(e) for the
strain energy.

3.19 The life of a tool bit is normally distributed with

m e a n : / : l 0 h r variance: c2 : 4hr2.
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\Arhat is the L16 of the tool?

(Lro : t ime at which 10%

3.20 Suppose

of the tools have failed.)

f"(*) :
x ( 7

1 (  x (

x ) 2

(a) i f  ) :  ln(x)  f ind the PDFfory.  (b)  i f  z:  exp(x) f ind the PDF for z.

3.21 The total load on a building may often be represented as the sum of
three contributions: the dead load d, from the weight of the structure;
the live load I, from human beings, furniture, and other movable weights;
and the wind load w. Suppose that the loads from each of the sources
on a support column are represented as normal distributions with the
following properties:

l la : 6.0 kips cd: 0.4 kips,

p1 :  9.2 k ips ûr:  1.2 k ips,

Itr* : 4.6 kips c* : 1.1 kips.

Determine the mean and standard deviation of the total load.

3.22 Yerify that p, and o2 appearing in Eq. 3.38 are indeed the mean and
variance of f(x); that is, verify Eqs. 3.36 and 3.37.

3.23 If the strength of a structural member is known with 90Vo confidence
to a factor of 3, to what factor is it known with (a) 99Vo confidence, (b)
with 50% confidence? Assume a lognormal distribution.

3.24 Yeri$' Eqs. 3.66 through 3.67.

3.25 The L16 of a bearing is the life of the bearing at which 70% falfures may
be expected. A new bearing design follows a Weibull distribution with
ffi : 2, and a L1e of one year. (a) \t\hat fraction of the bearings would
you expect to fail in six months? ( b) If you had to guarantee no more
than 17o failures, to what length of time would you limit the design life?

3.26 One-inch long ceramic fibers are known to have a strength given by a
Weibull distribution with a scale parameter of B lb and a shape parameter
of 7.0. Assume weakest link theory.

(a) What will the scale and shape parameters be for fibers that are two
inches long?

(c) If 7.07o of the one inch fiber breaks under the stress of a particular
application, what fraction of the two-inch fibers would you expect
to break under the same stress?

I,T{l'
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(d) If two, two-inch fibers are used in parallel to increase the strength,
what fraction would you expect to break?

(e) How many lb of force were the fibers under?

3.27 The distribution of detectable flaw sizes in tubing is given by Eq. 3.BB
with I : l '/77 clrr. There are an average of three detectable flaws per
centirneter of tubing.

(a) \Arhat fiaction of the flaws will have a size larger than 0.8 cm?

(b) \Atrat is the probabiliry of finding a flaw larger rhan 0.8 cm in a
100-m length of tubing?

(c) In 1000 meters of tubins?

3.28 Suppose a system contains L2 of the bearings from exercise 3.25 and
the system fails with the failure of the first bearing failure. Estimate the
system Llo.
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4.I QUALITY AND RELTABILITY

Quality and reliability are intertwined in the design and manufacture of prod-
ucts and in their usage. With the mathematical apparatus set forth in the
two preceding chapters we can become more quantitative in examining the

relationships that were introduced in Chapter l. Our objective is to provide
an outline to those quality considerations that provides the broad framework
useful for the more focused treatment of reliability contained in the chapters
to come.

Recall from the discussion in Chapter 1 that the definition of quality
leads to two related considerations. First, quality is associated with the ability
to design products that incorporate characteristics and features that are highly
optimized to meet the customer's needs and desires. Whereas some of these

characteristics may be esthetic, and therefore inherently qualitative in nature,

the majority can be specified as quantitative performance characteristics. Sec-
ond, quality is associated with the reduction of variability in these performance
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characteristics. It is the control and reduction of performance variability with
which we shal l  be most concerned.

Quality is diminished as the result of three broad causes of perfor-
mance variability:

1. variability in the manufacturing processes

2. variability in the operating environmenI

3. product deterioration.

Quality improvement measures that reduce or counteract these three causes
of performance variability result in large positive impacts on product reliability,
for failures usually may be traced to these causes and their interactions.
Generally, the product variabilities arising from lack of precision or deficien-
cies in manufacturing processes lead to failures concentrated early in the
product life. These are referred to as early failures or infant mortality. Variabil-
ity caused by extremes in the operating environment is associated with failures
that are equally likely to occur randomly throughout product life; their occur-
rence probabiliqz is independent of the product age. Finally, deterioration
most frequently leads to wear or agine failures concentratecl toward the end
of product life.

To further pursue the improvenlent of quality-and therefore of reliabil-
ity-it is instructive to relate the sources of variability and failure to the stages
of the product development cycle. Product development falls rouuhly into
three categories:

1. product design

2. process design

3. manufacturins.

Product design encompasses both conceptual and detailed stages. In concep-
tual design the customer's wants are translated into performance specifications
and both the functional principles and physical configuration of the product
are synthesized. In detailed design the detailed confisuration of the compo-
nents and parts is set forth and part parameters and tolerances are specified.
Process design also includes conceptual and detailecl phases in which the
manufacturing processes to be employed are first chosen and then the detailed
tooling specifications are made. Finally, after the processes are desigrrated
and the factory is organized, manufàcturing begins and is monitored. Tcl
obtain high quality products it is necessary to effectively connect the customer's
wants to the design process, and to consider concurrently the manufacturing
processes that are to be employed as the product is designed. Only with strong
effbrts to integrate the product design with the selection of the manufacturing
processes can the desirable performance characteristics be produced with a
minimum of variability and cost.

In Table 4.1 the three product developrnent activities are related to the
three sources of variability and fàilure. On reflection, it becomes clear that
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TABLE 4.1 Stages at which Product Performance Variability can be

Reduced

Source of Variability

Development

Stage

Manufacturing
Processes

Operating
Environment

Product
Deterioration

Product Design
Process Design

Manufacture

O - variability reduction possible

X - variability reductiotr irnpossible

much quality and reliability must be designed into a product. Once the design

is completely specified, nothing more can be accomplished in process design

or manufacturing to reduce the product's susceptibility to failures that are

brought about primarily by environmental stresses or product deterioration.

Only the product variability leading to infant mortality failures can be substan-

tially reduced through process design and manufacturing quality control.

While the highest irnportance may be placed on product design, process

design is arguably a close second. The conceptual process design-the choice

of what processes are to be used and the possible development of new pro-

cesses-and the detailed determination of process parameters and variability

largely determine the conformance to the targetvalues that can be maintained

in the manufacturing process. Process design has a large impact on manufac-

turing variabil iry.
The reduction of variability through the design of product and process

is termed ofÊline quality control, to contrast it with the onJine control that

is exercised while production is in progress. The name of Dr. Genichi Taguchi

is strongly associated with off-line quality control, for he has lead in developing

quantitative methodologies for quality improvement. In the following section,

we examine the rationale behind ofÊline quality control and discuss the tech-

niques through which it is implemented. In Section 4.3 we examine the

minimization of variability in the manufacturing process, employing the Six

Sigma methodology for relating process quality control to design specifica-

tions.

4.2 THE TAGUCHI METHODOLOGY

To gain an understanding of off:line qualiry control we first formulate quality

in terms of the Taguchi loss function. We then examine his approach to

robust design: design that decreases performance sensitivity to the variabilities

introduced by manufacturing, operating environment, or deterioration. Fi-

nally, we briefly outline the experimental design formalism through which

the designs of both products and manufacturing processes may be optimized.

o
X
X

o
X
X

o
o
o
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Quality Loss Measures

To access the quality of a product the optimized target values of the perfor-
mance characteristics are compared with the distribution of values that has
actually been achieved in the production process. The characteristic variability
is represented by a probability density function, say f(x), wtrere 4 the charac-
teristic, is a continuous random variable. Since the variability most often results
from many small causes in the manufacturing processes, no one of which is
dominant, f(x) is frequently represented by a normal distribution,

h)

FIGURE 4.1 Normal probabilitv distribution
tional quality loss.

;(?)'l

(b)

(a) with tolerance limits (b) with tradi-

f(*) : çfi;,"ot (4 .1 )

with a mean pc and a standard deviation o.
This probability distribution must be compared to a target value and to

the specification limits to assess the quality achieved. Suppose that r is the
characteristic target value, and the specification is that x has a value within
the interval r + A. The upper and lower specification limits are then defined by

L S L : r - L ,  a n d  U S L :  r * 4 .

Often the distribution mean is assumed to be on target (i.e.,,., : r), and the
tolerance limits are taken to be roughly three standard deviations above and
below the target. This situation is shown in Fig. 4.Ia. Using the CDF for the
standard normal distribution, we can see that the fraction of product for
which the characterist ic is out of specif icat ion is 2 Ô(-L/o). According to
the classical interpretation of the specification limits, any product with a
characteristic falling between the ZSI and USZ is equally acceptable. This
implies that no quality loss is incurred so long as x lies between these limits.
Conversely if the characteristic falls outside the limits, it is unacceptable. If

LSL r  U S L LSL ' t U S L



l,6 is the loss in dollars associated
product, then we may define a qual

I L",
I

z(x )  :  10 ,
I

LZ,,
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with failure to meet the tolerance per

ity loss function according to

x< LSL I
LSL< x= USLI,

I
x> USL )

which is shown graphically in Fig.4.1à. Note that the expected quality loss
per product is defined by

L: I L@) f(x) ctx.

Thus using Eq. 4.2 and the centered normal distribution, we obtain

1 : 2 L " O ( - L / o \ .

The loss function pictured in Fig. 4.lbis sometimes characterized as the goal-
post philosophy: If you kick the ball anywhere between the goal posts the
quality reward is the same, i.e., zero quality loss. Taguchi argues that this is
not realistic. Any deviation from the design target is undesirable, and the loss
in quality grows continuously with the deviation from the target value.

Some illustrations demonstrate the weakness of the goal-post loss func-
tion. Consider the three distributions shown in Fig. 4.2, all of which have
roughly the same expected value of the goal-post loss function (i.e., Lo
multiplied by the area under the curve outside of the specification limits).
They have, however, very different quality implications. Case a is what one
would normally expect: a normal distribution with p : r.In case b the mean
is on target, but the variance has increased significantly as a result of the
change in the distribution's shape. The distribution for case c is normal, and
the variance has decreased significantly from case a. Now, however, the mean
is shifted downward substantially from the target value. Taguchi illustrates
the quality losses incurred in cases b and c through nvo frequently-quoted
case studies.*

Color TV tubes were produced at two locations under a single set of
specifications. It was determined, however, that at the second location many

L o r  r l o

l l
L S L  z  U S L  L S L  Z  U S L  L S L  T  U S L

(a) @ k)

FIGURE 4.2 Traditional quality loss for (a) unbiased normal distribution, (b) unbiased non-

normal distribution (c) biased normal distribution.

* G. Taguchi and Y. Wu, Introduction to Off-Line Quality Control, Central Japan Quality Control

Association, Nagaya, 1979.

(4.2)

(4.3)

(4.4)
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more customer complaints were recorded about the picture being dim or

about premature tube burnout caused by too bright a picture. A detailed

study of the tube brightness revealed the problem. The first plant's brightness

distribution was normally distributed about the target values as shown in Fig.

4.2a. The second plant's distribution was nearly uniform as shown in Fig.

4.2b. Tl;'us, even though the tubes from the second plant were within the

goal-post specifications, large numbers of sets were prod.uced near the upper

or the lower specification limits, and it was these sets that were causing com-

plaints. The consumer did notview the sets in terms of go / no-go specifications.

For even within the specified limits, increased deviations from the optimum

brightness caused increased numbers of dissatisfied customers.

Fieure 4.2cillustrates a quality problem associated with Polyethylene film

produced in Japan fbr use as sreenhouse coverings. The film needed to be

thick enoush to resist wind damage but not so thick as to prevent the passage

of light. To satis$' these competing needs, the specification stated that the

thickness should be 1.0 mm + 0.2 mm. The producer made the f i lm thinner
in order to manufacture additional square meters of the film at the same

materials cost. Since the film thickness could be controlled. to +.02 mm

consistently, the nominal thickness was reduced from 1.0 mm to 0.82 mm.

The ability to produce the film within 0.02 mm of the nominal assured that

the product would still meet specifications while at the same time yielding a
significant savings in the required amount of polyethylene feed stock.

Strong typhoon winds, however, destroyed a large number of greenhouses
in lvhich the film was used. The replacement cost of the film had to be paid
by the customer, and these costs were much higher than expected. The film

producer had failed to consider that the customer's cost would rise while the

producer's fell. The film was of poor quality and reliability. For even though

there was a small variability in the production process, the decrease in the
nominal thickness caused the film to be more susceptible to failure under
the extreme environmental stress caused by the typhoon.

Experiences such as these prompted Taguchi to formulate a continuous
loss function that more closely represents the quality degradation associated

with increased deviation from the performance characteristic target value:

L ( x ) :  k ( x -  r ) 2 , (4.5)

where the coefficient is determined by setting the loss equal to Lo at both
lower and upper specification limits as indicated in Fig.4.3a. Lo: ÀA2 so that

k :  L " / L 2 (4.6)

With this loss function the expected loss accounts for both deviations of the
mean from the target value and variability about the mean. Moreover, the
expected loss evaluation does not require f(x) to be normally distributed. To
demonstrate, we substitute the Taguchi loss Z(x) into Eq. 4.3:

r - l
L -  | k(x- r)2f(x)  dx. (4.7)
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Target  value Smal ler- ls  Bet ter

(a) (b)

FIGURE 4.3 Taguchi loss functions.

LSL

Larger- ls  Bet ter

(c)

I f w e w r i t e  x *  r :  ( x -  p )  +  @ -  r ) ,  t h e e x p e c t e d l o s s m a y b e r e c a s t a s

ù I @- p')f(x) d'xz :  I@-  p ) ' f ( x )  d , x+2 ( r r -
(4.8)

+ 0.,,- r)2 [ ff*> o*.

With the definitions of p and o and the normalization of the probability
density function defined in Chapter 3, the first term becomes the variance,
the second vanishes, and the third is referred to as the bias. We obtain

L :  k l a z  +  ( p  -  r ) z l . (4.e)

Flence, only the mean and variance of the characteristic distribution /(x) are
required to evaluate the expected value of the loss function.

D(AMPLE 4.I

The specification for a shaft diameter is 10 + 0.01 cm. The diameter distribution of
manufactured shafts is known to be normal, but it is found that 1.5% of the shaft
diameters are greater than the upper specification limit and 0.04% are smaller than
the lower specification limit. If the cost of producing an out-oÊtolerance shaft is $3.50,
what is the expected value of the Taguchi loss function?

Solut ion <D[(10.01 -  F) /o l :  1 .0  -  0 .015 :  0 .985,  1p[ (9 .99 -  p t ) /o ] :  0 .0004
Thus  f r om Append i x  C :  ( 10 .01  -  p ) / o :2 .L7 ,  ( 9 .99  -  p ) / o :  - 3 .35 ,  Hence ,

tL + 2.17o : 10.01 and p. - 3.35o: 9.99. Solve for p. :  10.002, and o : 0.0036.
Since the specification halfwidth is Â : 0.01we maycombine Eqs. 4.6 and 4.9 to obtain:

z: 11# [(0.0086), + (10.00 - 10.002)21 : g0.60

For the many situations where the performance characteristic should be
minimized, such as in fuel consumption, emissions, or engine noise, only an
upper specification limit, USI is set. For these situations, Taguchi defines the
smaller-is-better loss function as

L(x)  :  2*2, (4 .10)



where A is determined by equating the loss function
USL, as indicated in Fig. 4.3b. Thus

k :  ( u s L ) _ r L u .
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to the qualiry loss at the

( 4 . 1 1 )

and 4.10The expected loss is obtained by
- L :

EXAMPLE 4.2

com

f æ
k l

J t )

bining Eqs. 4.3

x'f(x) dx. (4.12)

The distribution of a contaminant in an industrial solvent is known to be approximated

by an exponential clistribution. If 0.5% of- the solvent containers are found to exceed

the upper specification limit and must be discarded at a cost of $12.00 per container,

what is the expectecl value of the Taguchi loss function?

Solution From Eq. 3.88 we have 1'( t/^$l) - I
Thus USL/0 : ln(7/0.005) : 5.298. Then from

;  $12.00  f  -  x ' �  $12 .000,  f -  _ . ,t :  
L lsL ' t  I  , ,7  o  "  dx :  

ug :  J  , ,  Ë-o

Thus Z :  $12.00(5.298) 
-2 .  2 :  $0.95.

-  e  ( ts t /o :  0 .995 ot  e  l rs /o :  0 .005.
Eqs. 4.1I and 4.12:

- t  
d t :  $12.00(  usL/  0)  2  .  2

For performance characteristics where larser-is-better, such as strength,
impact resistance, computing speed, or carrying capacity, only the lower speci-
fication limit, ZSt is desisnated. The Taguchi loss function is rhen

L(x) :  7r*-2,

with A determined by setting the loss function equal to Lu at
indicated in Fig. 4.3c. Hence,

and the expected loss is

p :  (LSL)rLn,

f æ

L:  k  J ,  *  2 fçx)  dx.

E)(AMPLE 4.3

(4.13)

the ZSI, as

(4.14)

(4.15)

The strength of components made of a new ceramic are found to be Weibull distributed
with a shape factor of m: 4 and a scale parameter of 0 : 5001b. The lower specification
limit on strength is 100 lb. What is the expected Taguchi loss if each failed specimen
costs $30.00?

Solution Inserting the Weibull distribution from Eq. 3.75 intoJq. 4.15, we have,
for m: 4,7: L;LSL20*4 Ii ,æ-a/o,r d,x. Chyging variables, z : x5,6/ fl2 and. multi-
plying numerator and denominator by \/2n, we can express the integral in term of
the CDF of the standard normal distribution. Hence:

7: LoI-uL20-22{,21T t:  +r- i ,"  or: Lol2n LSL2|-ze(*) :  Luf2n LSL,I-2.J 0  Y 2 n



Therefore:

Z: $3o.oo - \ ,8 .  1oo2 .  5oo-2:  $3.01.

In the quest for high conformance, reducing quality loss for smaller-is-
better and larger-is-better performance characteristics is equivalent to charac-

teristic minimization and maximization, respectively. Many performance char-

acteristics fall int-o one of these two classes. The situation is more complex
for target characteristics, for as indicated in Eq. 4.9, one must reduce the

quality loss which arises both from the variance and bias terms, o2 and (p -

r)2, respectively. Target characteristics appear frequently in product design,
but they are more prevalent in the design of manufacturing processes. In

order to obtain product characteristics that are maximized or minimized, it

is necessary for the process parameters to be on target. For example, to

maximize engine power or minimize fuel consumption, a plethora of dimen-

sional and materials design parameters must be produced with precision. But

to accomplish this, manufacturing processes must be desiened such that their

performance characteristics (i.e., their ability to produce precision dimen-

sions, coating thicknesses, alloy compositions, etc.) are on target, with very
little variability.

A basic premise of Taguchi methodology is that it is much easier to

eliminate bias from the target characteristics than to reduce the variance.
Thus quality improvement is achieved most effectively by first concentrating
on variance reduction, even if a side effect is to increase the bias. Once the

variance is reduced, the removal of the bias is more straightforward. The plastic
sheet problem cliscussed earlier provides a transparent example. Achieving a
small variance in the thickness requires precision sheet-forming machinery
and careful control of the composition of the polymer feed stock and of
the temperature, pressure, and other process variables. Changing the mean
thickness of the sheet, however, required only a single change of process
parameter fbr the forming machinery. This two-step approach for reducing
variability in performance characteristics serves as a basis for the robust design
methodology that we treat next.

Robust Design

A robust design may be defined as one for which the performance characteris-
tics are very insensitive to variations in the manufacturing process, variability
in environmental operating conditions, and deterioration with age. Taguchi
desigçnates these factors as product noise, outer noise, and inner noise respec-
tively.* Likewise, in his writings he fiequently refers to performance character-
istics as functional or product characteristics. In attempting to develop highly
robust products it is useful to distinguish between the techniques that may
be employed during the conceptual and detailed design phases.

* G. Taguchi, Introduction to Qyality Engineering, Asian Productivity Organization, I986 (Distributecl

by American Supplier Institute, Inc., Dearborn, MI).
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In conceptual design the specifications of customer needs and desires
are translated into a product concept. The physical principles to be employed,
the geometrical configuration, and the materials of- construction are deter-
mined in this stase. In a conceptual engine design, for example, the fuel to
be burned, the number of cylinders, the configuration (opposed or V) the
coolant (water or air) and the engine block material would be included among
the host of issues to be settled. Each decision made in the conceptual design
process has quality and reliabiliry implications that are fixed once the product
concept has been delineated. Concepts requiring fewer and simpler parts may
reduce susceptibility to manufacturing variability. Configurations conducive
to natural convection may reduce sensitivity to environmental temperature
changes. And judicial materials selection may stave off deterioration from
corrosion, warpage, or fatigue. Even with the conceptual design complete,
however, much remains to be done to make a product more robust.

The conceptual product design, often existing as a set of sketches, config-
uration drawings, models, and notes is transfbrmed through detailed design
to a set of working drawings and specifrcations that are sufficiently complete
so that the product-or at least a prototype-can be built. Within detailed
design a distinction is frequently made between parameter and tolerarrce
design, since each dimension, material composition, or other design parame-
ter must have tolerance limits associated with it before the task is complete.

The Taguchi robust design methodology focuses on choosing mean values
of the design parameters such that the product performance characteristics
are made less sensitive to parameter variance. If this is accomplished, the
performance sensitivity to manufacturing variability will be reduced. Likewise,
since the design parameters tend to vary with temperature and other environ-
mental conditions as well as with wear, sensitivity to enr,'ironmental and aging
effects also will be reduced. The product quality is thus increased and a
concomitant increase in reliability may be expected. This is a more intelligent
approach than reducing performance variability simply by specifying righrer
design parameter tolerances. Tighter tolerances will increase manufacturing
costs and they are not likely to decrease performance sensitivity to environmen-
tal or aging effects.

The two-step robust design methodology is illustrated schematically in
Fig. 4.4a, b and c. Initially, as indicated in Fig. 4.4a, rhe mean value of the
performance characteristic is on target, but the variance is too large. First,
optimize the value of one or more design parameters to minimize the perfor-
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(b)

FIGURE 4.5 Performance characteristic x vs. (a) design parameter A, (b) design parameter B.

mance sensitivity to the value of that parameter, regardless of the effect on
the performance mean. To achieve this transformation a design parameter
must be identified for which the performance characteristic displays a nonlin-
ear response. Such a situation is shown in Fig. 4.lawhere increasing the value
of the design parameter A, increases the mean value of the performance
characteristic x, but decreases the variance in x. Success in this effort leads
to a performance distribution such as that shown in Fig. 4.4b,were the variance
is greatly reduced, though a large positive bias from the target value has been
introduced. Second, identiS an adjustment parameter to bring the mean back
on target without increasing the variance. The result is shown in Fig. 4.4c.
Such a parameter must have a linear effect on the performance characteristic.
As indicated in Fig. 4.5b, increasing the parameter B will increase the mean
value of the performance characteristic x, while leaving its variance unaffected.

Two examples-one electrical and the other mechanical-illustrate the
foregoing procedure.* Consider first a circuit that is required to provide a
specified output voltage. This voltage is determined primarily by the gain of
a transistor and the value of a resistor. The transistor is a nonlinear devise.
As a result, graphs of output voltage versus transistor gain appear as the two
curved lines shown in Fig. 4.6 for resistor values Rr and &. Suppose the
prototype design achieves the target voltage, indicated by the arrow, with
resistance rR1 and transistor gain G1 as shown. The inherent variability in the
transistor gain depicted by the bell-shaped curve about G1, however, causes
an unacceptably wide distribution of output voltages as indicated by curve a.

Improving performance quality directly through tolerance reduction is
difficult, because a substantially higher quality component-the t12n5lste1-
would be required to reduce the width of the curve centered about G1, thus
increasing costs. In robust design, parameter values are used to improve

*' P. J. Ross, T'aguchi Techniques for Quality Engineering, McGraw-Hill, Nerv York, 1988.

A2
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Transistor  gain

FIGURE 4.6 Output voltage vs transistor gain. (From Ross, P. T'aguchi Techniques for euatie En-
gtneering, pgs. 176, l78, 258, McGraw-Hill, New york, l9BB. Reprinted by permission.)

performance quality before the tightening of tolerances is considered. To
accomplish this we again follow the two-step procedure of decreasing variance
and then removing bias. If we operate the transistor at a higher gain, at point
G2, the gain variance will also increase as indicated by the normal distribution
about G2. Nevertheless, the nonlinear relationship between gain and output
voltage causes the output voltage distribution, given by curve b, to have a
much narrower distribution.

Increasing the gain in going from case a to case b introduces a large
positive bias in the output voltage. We must now proceed with the second
step to eliminate this bias. After examining several possible values of the
resistance, we choose the value rRr that results in the lower voltage versus gain
curve plotted in Fig. 4.6. The resistance ft2 brings the output voltage back on
target, and as indicated by curve c, the narrow spread in the output voltage
is maintained. Thus we have achieved a smaller quality loss in the performance
characteristic without resorting to the use of a higher quality-and therefore
more expensive-transistor.

Finally, note that in addition to allowing a lower quality componenr ro
be used, the forgoing parameter optimizationreduced the effects of operating
environment and transistor aging on the output voltage. Since the transistor
gain is likely to be somewhat effected by the ambient temperature, reducing
the output voltage sensitivity to the gain also reduces its sensitivity to ambient
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temperature. Likewise, the output voltage in the improved design is less sensi-

tive to the drifts in transistor gain, which are likely to be a result of aging.

The engine, metal, oil-fill tube and associated rubber cap pictured in Fig.

4.7 provides a second instructive example. The cap must be easy to remove

or install. It must also seal the tube against the engine crankcase pressure.

Consequently, the force required to release the cap must be small enough

for any owner to remove and insert the cap easily, but large enough that the

crankcase pressure will not be capable of blowing the cap off under foreseeable

operating conditions. Thus, the required release force is a performance char-

acteristic. The vertical axis of Fig. 4.8 shows the upper force limit determined

by minimum user strength and the lower force limit determined by maximum

crankcase pressure; the target is centered benveen the limits.
The force resisting installation or removal results from the crimped ridge

in the metal tube over which the rubber cap must deflect. The cap can be

removed or inserted only when it deflects sufficiently for its outside diameter
(OD) to become less than the inside diameter (ID) of the crimp in the tube.

Roughly speaking, the force required is proportional to the product of the

required deflection and the cap stiffness. The resisting force can thus be

increased by increasing the difference between the cap OD of the tube crimp

ID. The required force can also be made larger by observing that the cap

stiffness increases with wall thickness.
The deflection is much more difficult to control than the stiffness. The

stiffness predominantly depends on the wall thickness, which is easily con-

trolled within a small percentage variation. The required deflection is deter-

mined by a small difference in diameters that is likely to be very sensitive to

variability in the manufacturing process. Itwill also be sensitive to environmen-
tal conditions since different coefficients of thermal expansion are likely to

change the necessary deflection with temperature.
Two force versus deflection curves are shown in Fig. 4.8 for different

wall thicknesses and therefore for different cap stiffness. The initial design

O D

W a l l
th  i ckness

FIGURE 4.7 Engine oil fill tube and cap. (From

Ross, P. Taguchi Techniques for Quality Engineering

pgs. 176, 178, 258, McGraw-Hill, New York, 1988.

Reprinted by permission.)
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Force

Target

De f  l ec t i on

FIGURE 4.8 Cap removal force using parameter design.
(From Ross, P. T'aguchi 'fechniques 

for euality Engineering, pgs.
176, 178,258, McGraw-Hill, New York, 1988. Reprinred by
permission.)

corresponds to the high stiffness curve, which results in an unacceptably
wide force distribution spread about the target characteristic. The stiffness is
decreased by making the wall thickness of the cap smaller. This reduces the
spread in the force distribution significantly. However, if the same ID and
OD are retained, the result is a mean force that is too small to resist the
crankcase pressure. If the required deflection is then increased by increasing
the ID-OD difference, the mean force is brought back on target. As indicated
in Fig. 4.8, a design is then achieved in which the variability in the performance
characteristic is decreased by changing parameters, but without tightening
rnanufacturing tolerances.

Manufacturing processes as well as the products themselves can be im-
proved greatly through the use of the robust design methodology. By setting
the process parameters to minimize the variability in the process output,
higher quality parts and components are obtained without a commensurate
increase in cost for manufacturing equipment. Moreover, in process optimiza-
tion, it is often clear from the beginning what factor can be used for the
adjustment; it is often the length of time that the process is applied. To
illustrate, consider a spray coating operation. The thickness of the coating is
specified within avery narrow tolerance interval, i.e., a very smooth finish is
required. Suppose that the variability in the coating thickness is sensitive to
the temperature at which it is applied to the surface. The process engineer
first varies the application temperature and determines the temperature at
which the variance in the thickness is minimized. She then adjusts the spray
time until the mean thickness coincides with the target value.

The Design of Experiments

The robust design examples considered thus far could be illustrated graphi-
cally because in each case two identifiable design parameters are manipulated
to reduce the variance of the performance characteristic and return the mean
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to the target value. More often, however, many parameters interact in de-
termining the behavior of each performance characteristic. It is often unclear
which of these are important, and which are not. This situation arises fre-
quently regardless of whether the performance characteristic is of the larger-
is-better, smaller-is-better, or target value variety.

In some situations the relationships between parameters and the perfor-
mance characteristics may be studied through computer modeling. This is
often the case, for example, in circuit analysis and in the many mechanical
stress problems that are amenable to solution by finite element analysis. In
other situations, however, understanding of the process has not reached the
point where computer simulation can be utilized effectively. Then, experi-
ments must be performed on product or process prototypes, and the perfor-
mance evaluated with different sets of parameters. In either event-whether
the experiments are computational or physical-efficacy demands that the
optimal parameter combination be found with the fewest experiments possi-
ble, because the cost of the optimization effort tends to rise in direct propor-
tion to the number of experiments that must be performed.

Picking parameters by trial and error would be an exceedingly wasteful
effort and would not likely come close to the optimal conditions within a
reasonable number of trials. Varying one parameter at a time is more system-
atic, but is still relatively inefficient. Moreover, false conclusions may be
reached if the factors interact with one another. This can be illustrated with
a simple two-parameter case. Suppose we represent a performance characteris-
tic as the elevation in the contour plots shown in Fig. 4.9. The design parame-
ters, x and y, are to be selected to maximize the characteristic. Thus, the
object of the experimentation is to locate the point marked by a #. The
fundamental difference between Fig. 4.9a and b is that the contour ellipses
in Fig. 4.9b appear to be rotated with respect to the axes, while those in Fig.
4.9a are not. In statistical terms the parameters are said to interact in Fig.
4.9b, while those in Fig 4.9a do not.

Changing a single variable at a time will successfully find the optimum
in Fig. 4.9a, where there are no interactions. Starting at (xn, )r), we firstvary
x by performing a number of experiments while holding ) constant at a value

) : )0. Assume a maximum at x1 is found. Then I is varied by doing an

xg  x1  xg  x1

(a) (b)

FIGURE 4.9 Performance characteristic contour maps for design parameters x and 1 (a) no
interaction berween x and 1' (b) interaction between x and y.
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additional set of e xperiments while holding x constan tat x : xt . The maximum
found at) :  ) r ,  ând indeed the opt imal value, is at  (x1,) , ) .

This procedure will give a false result in Fig. 4.9b, however, where an
interaction is present. Starting at (rç0, )o) we again vary x, holding y constant
at ) : )0, and find a maximum at xy. But now varying y with x : xt yields a
maximum at !r, but (x1,)r) is far from the optimal point marked with a #.
In this situation one would need to iterate several times, next holding ) : )t
and searching for the maximum x2, then holding x : xz and searching for
the maximum ) : !2, and so on. The number of experiments required and
therefore the cost of the exercise could soon become prohibitive.

This simple two parameter problem indicates experiments in which only
one variable changes at a time are ineffective when statistical interactions exist
between parameters. The weakness becomes more pronounced as the number
of design parameters increases. As a result, more powerful strategies have
been developed in which all of the parameters are changed simultaneously
in order to reduce the total number of experiments needed to locate the
optimum. These strategies are collectively referred to as designed experiments.

The most complete of the designed experiments is the full factorial
experiment in which m valwes, called levels, of each parameter are used in
all possible combinations. Consequently, if there are n parameters, a full
factorial experimental design requires that m" experiments be performed. For
the two-parameter example above, 4 experiments would be required with 2
levels, 9 with 3 levels and so on. When several parameters must be examined,
the number of required experiments rises very rapidly. A tr.vo-level experiment
with ten parameters, for example, requires 2r0 : l}z4experiments. Even if the
experiments consist of computer simulations, the numbers can soon become
excessive. One strategy for reducing the number of experiments without
commensurate loss of information is the fractional factorial experiment.

The difference between full factorial, fractional factorial, and single pa-
rameter at a time experiments is illuminated by examining three parameters,
with nvo possible values (or levels) for each. The three strategies are shown
schematically in Fig. 4.10 where the dimensions correspond to the parameters.
Experiments are run for the (x, ), z) combinations indicated by solid circles

FIGURE 4.10 Three factor experimenral designs: (a)
factor at a time.

v
full factorial, (b) half factorial, (c) one-
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and are omitted where the open circles are shown. Thus, Fig.4.70a is a full

factorial design, with the 23 or eight experiments corresponding to all possible

combinations of the low and high level of each parameter. Only four experi-

ments are run using either the halÊfactorial design in Fig. 4.10b or the single

parameter ata time variation in Fig. 4.10c. Note that in the fractional factorial

design there are two experiments done at the high and at the low level of

each parameter, whereas in the single-parameter-at-a-time design two experi-

ments are performed at the low level of x, y and z, but only one at the high

level of each of these parameters.

Comparisons of Fig. 4.10ô and c allow us to examine how more effective

use is made of a given number of experiments in the half factorial designed

experiment than by changing a single parameter at a time. Assume we want

to maximize the value of a performance characteristic 4. To determine the

effect of the parameter x using the single parameter at a time experiment in

Fig. 4.10c, we calculate the difference between the two experiments for which

y and z are held constant:

A"/* :  r lz  -  Tr. (4 .16)

Consequently, only two experiments are utilized. In contrast, the partial facto-

rial design of Fig. 4.10b utilizes all four experimental results; we compute the

effect as an average difference between experiments in which x is at level 2
and at level 1.

44" : (rlo + \s 
- rlt - na) /2. (4.17)

The use of more experiments reduces the effects of the noise due to random

errors in individual measurements. It also tends to average out effects due to

changes with respect to y and z, since both high and low level values of y and
z are included. The same argument applies to determining the effects of the

y and z parameters. The fractional factorial design also allows one to estimate
the effects of selected statistical interactions between variables.

Fractional factorial experiments become more valuable as the number
of parameters increases and the number of levels per parameter is increased
to three or possibly more. They eliminate many of the difficulties of single-
parameter-at-a-time experiments but require many fewer trials than a full-
factorial experiment. Taguchi has packaged techniques for performing frac-
tional factorial experiments in a particularly useful form called orthogonal
arrays. Moreover, he has coupled the parameter selection with techniques for
including the noise arising from temperature, vibration, humidity, or other
environmental effects.

Figure 4.71a is an example from the collection of orthogonal arrays
provided by Taguchi for dealing with different numbers of parameters and
levels. For this threeJevel experiment the effects of four design parameters
are to be studied. A full-factorial experiment would require 3a : Bl trials.
The array shown in Fig. 4.17a reduces the number of trials to nine, each
represented by a row of the affay. The columns represent the four design
parameters, with the entries in each column representing the test level for
that parameter in each of the nine experiments. Observe that each level for
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FIGURE 4.ll Orthogonal arrays: (a) three-
level design parameter array, (b) nvo-level
noise array.

each parameter appears in the same number of experiments: level 1 of 06 for

example appears in trials 1, 4 and 7; level 2 in trials 2, 5 and B; and level 3
in trials 3, 6 and 9.

The balance between parameter levels in the orthogonal array allows
averages to be computed that isolate the effect of each parameter by averaging
over the levels of the remaining parameters. Procedures for estimating the
effects of each of the parameters on the performance characteristic 4 are
sometimes referred to as analysis of means (or ANOM). Suppose that Tt, Tz,
Ts, . . . 'ns are the results of the nine experiments. Let 4r, be the performance
characteristic averaged over those experiments for which 01 is at level one,
rf,12 over those experiments for which 01is atlevel two, and so on. We then have

4at:  (Tr *  T2 + ry)  /3,

r laz:  (nn * qb + 116) /  3,

4az: 0t,, + nB + qs) /3.

ia t :  ( " t ,  +  q4+ q7) /3 (4 .1e)
and so on.

Plots are instructive in determining the main effect of each parameter
on the performance characteristic. To determine the effect of 0x, we plot
i^r, nurand r1;g versus the value of il at each of the three levels. If the result
appears as in Fig. 4.12a, there is no effect on the performance characteristic,
and the value of 06 may be chosen on the basis of cost. If the plot appears as
in Fig. 4.12b or c, however, there is a significant effect. Then, since the object
of this particular exercise is to maximize q, tlire value of 0n that corresponds
to the largest value of 4 should be chosen. The procedure is illustrated with
the following example.

(4 .18)

Similarly we would have



86 Introduction to Rckability Enginering

a

O
(g

(E

. O

o'=
q)

.E

U

a

c)

r 2 3
Parameter level

nD

L
l -
I

r 2 3

nc

I

t - /
f  ,  ,  , _

r 2 3

n B

t
l -
t-
l , ' .

r z 5

N

o

1 2 3

Parameter level

t 2 3
Parameter level

FIGURE 4.12 Performance characteristic vs. design parameters.

D(AMPLE 4.4

A manufacturer of filaments for incandescent lamps wants to determine the effect of

the concentration of two alloy metals and of the speed and temperature at which the
filaments are extruded on the filament life. A threelevel experiment is to be used.

The three levels of parameters 01 and 0s are the concentrations of alloy metals A and

B, parameter 0ç is the extrusion speed, and parameter 0p the extrusion temperature.
Levels L,2, and 3 correspond to low, intermediate, and high values of each parameter.
Nine sets of specimens are prepared according to the parameter levels given in Fig.

4.77a. Each experiment consists of testing the thirty specimens to failure and recording

the mean time to failure (MTTF) for that set. The resulting MTTFs for the nine

exper iments  are:  105,  106,  109,  119,  119,  115,  129,  122,125} l ' r .
Determine which parameters are most significant and estimate the optimal factor

levels to rnaximize filament life.

Solution Calculate the three level averages for parameter 01 from Eq. 4.18, and
the averages for 0u, 0r,, and 0p can be obtained analogously:

T ,u :  (105 +  106 +  109) /3 :  106.7  Tar :  (105 +  119 +  129) /3 :  177.7
T t 2 :  ( 1 1 9  +  1 1 9  +  1 1 5 ) / 3 : 1 1 7 . 7  r t g z :  ( 1 0 6  +  1 1 9  +  1 2 2 ) / 3 : 1 1 5 . 7
r t ,q t :  (129 +  L22 +  125) /3 :125.3  r tg f � :  (109 +  115 +  125) /3 :  116.3

' r tq rx :  (105 +  115 +  122) /3 :  114.0  r lo t :  (105 +  119 +  125) /3 :  116.3
r t c : z :  ( 1 0 6  +  1 1 9  +  1 2 5 ) / 3 : 1 1 6 . 7  \ u 2 :  ( 1 0 6  +  1 1 5  +  1 2 9 ) / 3 : 1 1 6 . 7
' r t n :  ( 1 0 9  +  1 1 9  +  1 2 9 ) / 3 : 1 1 9 . 0  T m :  ( 1 0 9  +  1 1 9  +  1 2 2 ) / 3 : 1 1 6 . 7

Graphs showing the main effects of the four parameters are shown in Fig. 4.13. Clearly
parameter 01 is most significant, and whereas 0s, ar'd 9çhave significantly less effect,
02 has virtually no effect on the results. To maximize the MTTF, 0,1 should be set at

FIGURE 4.13 Performance characteristic vs. design parameters for example 4.4.
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level 3, 0s, and gr; at levels I and 3, respectively; 0o can be determined strictly on the
basis of cost.

The foregoing procedure provides a means of determining which factors
have the largest effects on performance. It also allows the optimum settings
for the various parameters to be determined. Thus far we have implicitly
assumed, however, that all the factors are significant. No quantitative method
has been provided for determining whether the changes in parameter level
are significant or are just the result of random effects or measurement errors.
In the foregoing example, for instance, repeated measurements of the MTTF
for a given set of the four parameters would not be expected to yield identical
results, since the time-to-failure is an inherently random variable. By averaging
over many measurements this randomness is reduced, but it still may be
significant. Thus the following question must be addressed: Are the changes
that occur with different parameter levels significant, or would changes of
comparable magnitude occur if the experiments were repeated with a single
set of parameters?

Such questions, related to the determination of which effects are signifi-
cant and which are not, can be addressed with a powerful statistical technique
referred to as the analysis of the variance or ANOVA. The step-by-step proce-
dures of applying ANOVA to the results of partial-factorial experiments may
be found in a number of texts, but are too lengthy to be treated here. Suffice
it to say that the techniques are extremely valuable in the early stages of
designed experiments, where many design parameters must be screened to
determine which have a significant impact on performance, and which can
safely be ignored in optimization studies.

Arrays such as that shown in Fig. 4.lla are often called design arrays,
and the design parameters 01, 0u, 0c, 01;are referred to as control factors in the
Taguchi literature, since they can be prescribed by the designer. Frequently, it
is desirable also to understand the sensitivity of the performance characteristic
to those environmental factors that cannot easily be controlled under field
conditions: ambient temperature, humidity, and vibration, for example. For
such situations a second orthogonal array, referred to as a noise array, is
added to the experimental procedure. Standard nomenclature is then to
designate design and noise arrays as inner and outer arrays, since they deal
with what Taguchi defines as product and outer noise: noise due to parameter
and environmental variability, respectively.

An example of a noise array-this one being a two-level array for three
environmental noise f2ç1sp5-is shown in Fig. 4.1lb.In order to do the parame-
ter optimization with this noise array included, each of the nine experiments
with different parameter combinations must be repeated four times with the
noise levels specified in the outer a;rray. Thus 36 trials must be carried out.
If w2 is temperature and levels one and two are 50"F and 100"F, then for each
of the nine parameter combinations the first and third runs would be at 50'F
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and the second and fourth at 100"F. The analysis would then be the same as
with Eq. 4.18, but now each of the values of n, on the right of these equations
would be averaged over the four runs corresponding to the rows of the
noise array.

Carefully designed experiments typically take place in three-phase proto*
cal. In the first, several design parameters-perhaps ten or more-are
screened using a two-level orthogonal array. The ANOVA then identifies the
two to four design parameters and their interactions that are most important
in determining the performance characteristic 4. The second phase then
involves performing experiments with a threeJevel array only for the design
parameters that are found to be most significant. The ANOM of the second
phase experiments then estimates of value of the performance characteristic
and the optimal combination of design parameters. The third and final phase
consists of a confirmation experiment to assure that the predicted value of 4
is achieved with the design parameters that have been selected.

Taguchi, adopting terminolog'y common in electrical engineering, speci-
fies 4, the quantity to be maximized, not as the performance characteristic
itself, but as the signal-to-noise or SA/ ratio. For larger-is-better or smaller-is-
better performance characteristics, 4 is expressed in terms of the expected
quality loss Z given by Eq. 4.15 or 4.12 respectively, as the logarithmic rela-
tionship

'Tl  -  -10 logo(Lz). (4.20)

In the discussion of robust design emphasis is placed on the two step
procedure in which design parameters are first selected to reduce the variance
of the performance characteristic about the mean, even if a shift in the mean
results. In using designed experiments based on orthogonal arrays for this
purpose, Taguchi recommends that the ratio F/ a, the inverse of the coeffi-
cient of variation for the characteristic distribution f(x), be used as a basis
for the signal to noise ratio

T 
- -10 logut(ar/ pr) (4.21)

Once design parameters have been chosen to maximize this signal-to-noise
ratio, an adjustment factor is employed to bring p back on target. A number
of other signal-to-noise ratio's are also defined in Taguchi's writing for the
analysis of differing forms of the loss function.

4.3 THE SD( SIGMA METHODOLOGY

Thus far we have discussed the measurement of quality loss. We have also
examined robust design methods for minimizing the effects of variability
in parts fabrication and assembly on the performance characteristics. The
achievement of a robust design allows the specification limits on parts dimen-
sions, materials composition, and the myriad of other parameters that appear
on shop drawing and specifications to be less stringent without a commensu-
rate loss of reliability" Nonetheless, while good design will reduce the cost of
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the manufacturing processes, those processes still must be implemented to
reduce the number of parts that do not meet specifications to very small
numbers. For as products become more complex, the number of parameters
that must fall r,vithin specification limits increases rapidly. To deal with this
challenge, process capability concepts and the stringent requirements associ-
ated with them must be understood.

After providing some basic definitions, we examine the six sigma criteria
which are increasingly coming into use for the improvement of product qual-
ity. Nthough the terminology and notation is somewhat different than that
used in defining Taguchi loss function concepts, the approaches have much
in common, for they take into account the related problems of reducing
process variability and maintaining the process mean on target. Taguchi analy-
sis is aimed primarily at ofÊline quality control; it targets the design of products
and manufacturing processes to make performance as insensitive to part
variability as possible. The six sigma methodology is focused primarily on
controlling manufacturing processes such that the production of an out-
oÊtolerance part is an exceedingly rare event. In the analysis the normal
distribution is a widely assumed model for parameter variability. This isjustifi-
able, since variability in such parameters tend.s to arise from many small causes,
no one of which is dominant.

Process Capability Indices

The basic quantity aboutwhich much of the analysis is centered is the capability
index, Co. lt is the ratio of the specification interval,

USL - LSL : 2L, (4.22)

to the process variability. The process parameter is assumed to be distributed
normally, with the variability represented by 6o, six times the standard devia-
tion. Thus

Cp : (USL - LSL) /6o. (4.23)

The factor 6 is employed since traditionally specification limits have been
most often taken to be three standard deviations above and below the target
value. Equation 4.22 rr,ay be used to eliminate the USL and lSl and express
the capability index in terms of the specification halÊwidth A. We then have

Cr:  L ' /3o' (4.24)

The definition of the capability index assumes that the mean value of
the parameter x is the target value, causing the distribution to be centered
between the tolerance limits as indicated in Fig. 4.14. Since x is assumed
to be normally distributed, the fraction of out-oÊspecification parts can be
determined from O, which is the CDF of the standardized normal distribution
defined in Chapter 3. Of the parts that don't meet specifications, half will
have values of x I r - A and the other half will have values of x ) r * A.
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Thus introducing the reduced variant

z :  ( x -  t r ) / r r , (4.25)

and taking x: r - A, at the lower specification l imit, we obtain z- - L/o.

If we use Eq. 4.24, we maywrite zin terms of Cr: z: -3C0.'I.} ire fraction of

rejected parts is then twice the area under the normal CDF to the left of the

lSl,. Hence

P : 2 Q ( - z )  : 2 O ( - 3 C ù .  ( 4 . 2 6 )

The corresponding yield is defined as the fraction of parts accepted:

Y : l - z A e Z C t ) .  ( 4 . 2 7 )

From the definition of the capability index and the assumption of a centered

normal distr ibution, avalue of Co: 1.0 corresponds to 0.27% out-oÊtolerance

parts, or ayield of Y:99.73%. As indicated in Fig.4. l4, a larser capabil i ty

index implies that the fraction of items out of specification is smaller, while

a smaller index corresponds to a larger fraction being outside the specifica-

tion interval.

The capability index Co is used as a measure of the short term or part-

to-part variation of parameters against the specification interval. For example,

if metal parts are being machined, no two successive parts will have exactly

the same dimension. Machine vibrations, variability in the local material prop-

erties, and other random causes result in the part-to-part spread that gives

rise to the normal distribution. If these short term variations are completely

random, however, the distribution mean should remain equal to the target

value.

Over longer periods of time more systematic variations in the manufactur-

ing process are likely to cause the distribution mean to drift away from the

target value. Possible causes for such drift are tool wear, changes in ambient

temperature, operator change, and differing properties in batches of materi-

als. To take these effects into account a second index, often referred to as

the location index. is defined as

C p u :  C p ( l  -  k ) ,

where À is defined as the ratio of the mean drift to the specification halÊwidth:

(4.28)

k : l r -  p l / L . (4.2e)



Thus if either the part-to-part variability
from the target value, the index Cr will

E)(AMPLE 4.5
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increases or the process mean drifts
decrease.

Calculate C1,, k, and C1,* for the distribution of shaft diameters in Example 4.1

Solut ion From Example 4.1 we know that p,:  10.002, o :  0.0036, and À : 0.01.
From Eq. 4.24 Co: 0.01/ (3 X 0.0036) :  1.02. Since r :  10.00, from Eq. 4.29 k :

110.00 
-  10.0021/0.01 :  0 .2  and f rom Eq.  2 .28 Cbh:  (1  -  0 .2)  x  1 .02 :  0 .816.

The quantities C, and Cp, are often referred to as the short- and long-term
process capability, respectively. If the long-term drifts tend also to be of a
random nature, it is useful to picture Cpn in terms of a normal distribution
with an enlarged standard deviation. This is illustrated in Fig. 4.15 where the
part-to-part variation at a number of different times is indicated by normal
distributions. With mean shifts which are randomly distributed over long
periods of time, we obtain the normal distribution indicated in Fig. 4.15 by

Shor t - te rm capab i l i t y

T ime  I

Time 2

Time 3

rimà ru

Long- te rm capab i l i t y

L S L  N O M I N A L  U S L

FIGURE 4.15 Effect of long term variability on process capability.
(From Harry M. L. and Lawson, J. R., ^Szx Sigma Producitity Analysis
and Process Charactehza,tion,, pgs.3-5 and 6-9, Addison-Wesley Pub-
lishing Co. Inc. and Motorola, Inc. 1992. Reprinred by permission.)
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time averaging. The capability index may be written in this form as

Cpu: A,/3an, (4.30)

where o1 is a measure of the increased spread of the distribution. We may
view the standard deviation appearing in Cpr as

(Tp : ccr, (4.31)

where the a on the right is again the contribution of the part-to-part variability
that appears in Cp, whereas c is a multiplier greater than one that arises from
the variability induced over longer periods of time by the movement of the
mean away from the target value r. Clearly, we may also combine Eqs. 4.28,
4.30 and 4.31 to obtain k: | - 1/ c, where ft is referred to as the equivalent
shift in the mean.

Since Eqs. 4.30 and 4.31 are equivalent to assuming that the time-aver-
aged, long-term variability is also normally distributed about the target value,
the long-term yield can be calculated simply by replacing Coby Ct*in Eq. 4.27:

Y :  |  -  2 O ( - 3 C * ) .

A third, and final, capability index, Cp,,, is finding increased use. Like Cpr
it measures both the variation about the mean and the bias of the mean from
the target value. This index is closely related to the Taguchi loss function
and thereby does not implicitly assume that the PDF is normally distributed.
We define

Cp*:  L, / \o^,

(4.32)

(4.33)

where the newly defined variance

oT:  oz  +  (p  -  r )2  (4 .34)

is the sum of contribution of the variance about the mean and the bias. We
see from Eq. 4.9 that Cp^ is closely related to the expected value Z, of the
Taguchi loss function. Combining Eqs 4.6, 4.9 and 4.34, we have oI:
L2L/ L,, or equivalently

(4.35)

Yield and System Complexity

Historically, the target in manufacturing processes has been to yield a short-
term capability index of Cp: 1. Consequently, the process was considered
satisfactory if the specification limits were three standard deviations from the
process mean. This resulted in 0.27Vo out-oÊspecification parts. Over a wide
range of processes, it was found that the long-term variability tended to be
considerably larger,* with values of r commonly in the range 1.4 < c < 1.6.

x M.J. Harry andJ. R. Lawson, Six Sigma Producibility Analysis and Process Characterization, Addison-

Wesley Publishing Company, Reading, MA, 1992.

1 _

Cr^: 
U{ 

t t tT.
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For example, ifwe take c : 1.5, for which k : l/3,we find that with Cp : I
the long-term capability index is only Cfu: 2/3.'lhus Eq. 4.32 indicates that
over time the yield is reduced to 1 - 2A(-2) or 95.55%.

\4elds computed in this way, however, apply only to a single part, and
then only to a part with one specification" Real parts typically have a number
of specifications that must be met. As products or systems grow more complex,
having many parts, the total number of specifications grows very rapidly.
Computer memory chips, for example, have many identical diodes, each of
which must meet a performance specification. Conversely, an engine may
have fewer parts, but each part may have a substantial number of specifications
on critical dimensions, materials properties, and so on. In each case a large
number of specifications must be satisfied if the product is to meet perfor-
mance requirements. Indeed the complexity of the system may be measured
roughly by the number of such specifications.

To better understand the relationship between complexity and yield,
consider a device with M specifications, and let { signi$' the event that the
i'h specification is met. If all of the specifications must be met for the device
to be satisfactor/, then the yield will be

Y :  P { X 1  n  &  n  & . . . O  X , r , r } . (4.36)

If we consider the specifications to be independent, then

Y:  P{X1}P{X| }P{XL} . . .P{X* } .  (4 .37)

For simplicity, assume that the probability of each specification not being met
is p, or equivalently P{X;} - 1 - p. Hence

Y :  ( t  _  p ) * .  (4 .3S)

Since the natural logarithm and exponential are inverse operations we may
rewrite this equation as

I / :  e x p [ l n ( l  -  p ) * ] . (4.3e)

However, ln(l - 
P)' : Mln (l - p). Furthermore, for any reasonable values

of the capability indices we can assume that p << 1, and for small values of
pthe approximation ln(l - 

F) - 
-Fi" adequate. Hence the yield equation

reduces to

Y :  e P M (4.40)

The importance of small rejection probabilities per specification is obvious.
The yield decays exponentially as the number of specifications increases,
unless the probability p of violating each specification is reduced. To maintain
the same yield, the value of p must be halved for each doubling in the number
of specifications.

D(AMPLE 4.6

A manufacturer of circuits knows that 5 percent of the circuit boards fail in proof
testing due to independent diode failures. The failure of any diode causes board
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failure. (a) If there are 100 diodes on the board, what is the probability of any one

diode's failing? (à) If the size of the boards is increased to contain 500 diodes, what

percenr of the new boards will fail the proof testing? (c) What must the failure

probability per diode be if tkre îVo failure rate is to be maintained for the 500 di-

ode boards?

S o l u t i o n  ( a )  I / r o o : 1 -  0 . 0 5  -  e - l } ) p , t h u s p :  - t o l n  ( 0 . 9 5 ) : 0 . 5  X  1 0 - 3

(b) 1 - Yunu - 1 - e- 500p - 1 - exp[-500 X 0.5 X l0-3] :  0.22 : 22%

(c) Yr,o :  0.95 : ,-500P', thus p' :  -  5*! ln (0.95) :  0.1 X 10-3.

Six Sigma Criteria

The exponential decay of yield with the number of required components or

specifications has given rise to the demand to decrease the variability in

manufacturing proiesses relative to the specification width. As indicated by

our example, àtinough it only leads to a 0.27 percent rejection rate on a single

specificati,on, the tràditional three sigma criteria will quickly tend to 100

p.r...r, rejection as the number of specifications is increased: in a 100 specifi-

cation system, for example, 76 percent will be found acceptable. If the long-

term variability is also taken into account, using the multiplier of c : 1.5,

then only 1.1 percent are acceptable.
This dilemma has appeared in many industries. It is perhaps most pro-

nounced in microelectronics where integrated circuits may require millions

of individual diodes to function properly. In order to produce highly complex

systems that are also reliable, the probability of any one specification not

being met must be measured in parts per million or pPm (where 1 pp- :

0.0001 percent). As a result, the Motorola Corporation formulated a strict set

of criteiia, and a methodology for implementing them that has seen increas-

ingly wide spread use in recent years. The methodology is referred to as six

rig*u since the basic requirement is that the tolerance halÊwidth be at least

six standard deviations of the process distribution for short-term variation.

This implies that Cp> 2.0. The fraction rejected on a short-term basis is then

reduced to

p < 2@(-6) :  0.002 ppm (4.41)

The improvement in yieldwhen going from the traditional three sigma criteria

to four, five, and finally six sigma is illustrated in Fig. 4.L6rt as a function of

the number of specifications that must be met.

The six sigÀa methodology also places a tighter criterion on the long-

term multiplier c. Under the six sigma methodology it is required that long-

term variability be reduced to c 1 1.333. Thus from Eq. 4.28 we have Cpa)

1.5, and from [.;q. 4.32 we see that the rejection rate will be less than 6.8 ppm.

The relationship between Cpn,yield and complexity is shown in Fig. 4.16b.
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Implementation

The implementation of the six sigma criteria requires close interaction be-
tween the design and manufacturing processes. Assume a manufacturing pro-
cess is to be implemented with the requirement that specified values of Co
and Cpn must be obtained. Since the specification limits have been set by the
designer, these requirements can be met only by achieving sufficiently small
o and ap in the manufacturing process. Success requires first bringing the
process into control. This entails making the process stable so that over the
short term there is a well-defined o. Then the systematic causes of long-term
variation must be eliminated to reduce the value of c, and therefore of op, to
specified levels.

The techniques for bringing a process into control and then reducing
and maintaining the smallest possible levels of short- and long-term variability
require two engineering talents. An intimate knowledge of the manufacturing
process and its physical basis is needed to identi$'and eliminate the causes
of variability. The tools of statistical process control(SPC) must be mastered
in order to identify the sources of long-term variation in the presence of
background noise, to measure the reductions in variability, and to gain early
warning of disturbing influences. The methods of SPC are discussed briefly
in the concluding section of Chapter 5.

Reducing the causes of long-term variation may require a number of
systematic changes to the manufacturing process. These may include better
operator training, improved control over batch to batch variability of stock
materials, more frequent tool changes, and better control over ambient tem-
perature, dust or other environmental conditions, to name a few. Once the
process has been brought into control, and the identifiable causes of long-
term variation are reduced to a minimum, process capability, and therefore
yield, cannot be further improved without decreasing crz, ttre short term
process variance, or increasing A, the specification half interval.

To decrease u2, one must return to the process design and make it more
robust. That is, one must perform designed experiments to find combinations
of process parameters, which will yield a smaller part-to-part variance in the
production output. Similar experiments may by performed to optimize the
compositions of the feed stock materials. If the process parameter improve-
ments achieved by robust design efforts are inadequate, then either of two
alternatives may be considered, each of which is likely to add substantially to
the production costs. Higher purity materials or better quality machinery of
the same type may be specified to reduce the short-term variability. Alternately,
a totally different process that is inherently more expensive may be required.

Alternately, A may be increased. To permit such an increase, however,
one must retreat to earlier in the product development cycle in order to
make the product performance characteristics less sensitive to the particular
component or part parameter. Only then can an increase in the specification
interval be justified. If this is inadequate, then features of the conceptual
design or of the performance requirements may require reexamination. This
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iterative procedure for improving process and product design makes clear
the necessity for concurrent engineering-the simultaneous design of the
product and manufacturing processes. Costly delays or diminished quality
and reliability are avoided only if the proposed manufacturing processes and
their inherent limitations are considered concurrently while design concepts
are worked out and product parameters and tolerances set.
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Exercises

4.1 The allowable drift on a voltage regulator has a specification of 0.0 -+-

0.8 volts. Each time a regulator does not satisSz this specification, there
is an $80.00 cost for rework.

a. Write the expression for the Taguchi loss function and evaluate
the coefficient.

b. If the PDF for the drift in volts is

- f (*)  :  (3/4) (1 -  " ' )  l r l  < I

- f (x )  :0  l r l  >  I

what is the expected value of the Taguchi loss?

c. With the PDF given in b, what fraction of the regulators do not meet
the specifications?

4.2 Widgets are manufactured with an impurity probability density func-
tion of

0  s  x =  r l
l <  x = 2 ,

othrr-fru )

r ( * ) : [ r : . '



(a) Sketch the PDF.
(b) Determine the mean.
(c) Determine the variance.

(d) The Taguchi smaller-is-better loss function for the widgets is given
bY L(x) :  10x2.

Determine the expected value Z of the loss function.

The probability density function for impurities is given by

I  o ,  x ( o  I
t l

f ( x ) : 4 l / U S L ,  0 ( x < U S t l
t l

I o, x> ïJSL )
where USlis the upper specification limit. Evaluate the expected smaller-
is-better quality loss, assuming that L" is the penalty for exceeding the
USL.

The target value for release pressure on a safety valve is p, with a tolerance
of + A'p. The manufacturer barely manages to meet this criterion with
a PDF of

4.4
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4.3

I<  ̂ p l
r= ̂ p)

the average Taguchi loss Z

by a PDF of

x S  æ .

The specifications are 1.0 -t- 0.5.

(a) What is the probability that the specification will not be met?
(b) \Arhat is the expected value of the Taguchi loss function if the cost

of being out of specification is $5.00?
(c) Calculate the signal-to-noise ratio.

{Note: see useful integrals in Appendix A.}

4.6 Suppose four parameters are to be chosen to maximize a toughness
parameter. Nine experiments are to be analyzed using the orthogonal
array shown in Fig. 4.11a. The results of the experiments are (in as-
cending order)  76,  79,92, 84,65, 68, 73, 86 and 74.

(a) Draw the linear graphs.
(b) \tVhich factor or facrors do you think are most importanr?
(c) What settings (1,2 or 3) for each factorwill maximize the parameter?

I t  ,
f(P) : ln*' 

tP - P''l

I  o '  l p -p " l
If L, is the valve replacement cost, what is
for the valves?

4.5 The luminescence of a surface is described

- f ( * ) : 4 x ? - 2 * ,  0 <
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4.7 A component's time-to-failure PDF is given by
l "

I Q ) : ; r - r ' ,  o < t < o o .

The lower specification limit is ISZ : 0.25 and the cost of not meeting
the specification is $100.

(a) Evaluate the expected Taguchi larger-is-better loss function.

(b) \Arhat is the probability that the specification will not be met?

The following La orthogonal array can be used to treat three factors:

Trial
I

2
J

4

A
I
1
I

2

B C
1 1
2 9

r 2
2 r

Suppose four tests are run to maximize the strength of an adhesive.
They are run for two different application pressures (Factor A), nvo
temperatures (Factor B), and two surface roughnesses (Factor C). The
results for trials 1 through 4 are 24, 19,28, and 2l kg/mm2.

(a) Draw the linear graphs.

(b) \A/hich is the most important factor?

(c) \Àrhat are the optimal levels for the three factors?

4.9 A widget manufacturer is trying to improve the process for producing
a crit ical dimension of 10.0 + 0.0005 cm.

(a) If there is a short-term capability index of Co: 7.4, what fraction
of the widgets will fail to meet specifications, assuming the mean is
on-target?

(b) If the mean moves ofÊtarget by 0.0001 cm, calculate Cpn and deter-
mine what fraction of the widgets will fail to meet specifications.

4.10 Suppose the specifications on a part dimension are 40 + 0.01 cm.

(a) If the mean is on target, what must the standard deviation of a
normal distribution be if no more than 0.1% of the parts are to
be rejected?

(b) What value of Co is required to meet the criteria of part a?
(c) If the mean moves off target by 0.003 cm, what is the value of C1,a?
(d) With the mean off target by 0.003 cm, to what must the value of C,

be increased to in order to produce no more than 0.1% of the parts
out-oÊspecification?

(e) \Arhat will be the value of Cp, after Co is increased?

4.ll Suppose that a batch of ball bearings is produced for which the diameters
are distributed normally. The acceptance testing procedures remove all
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those for which the diameter is more than 1.5 standard deviations from
the mean value. Therefore. the truncated distribution of the diameters
of the delivered ball bearings is

,f(*) :

(a) What fraction of the ball bearings is accepted?
(b) What is the value of A?

(c) \Arhat fraction of the accepted ball bearings will have diameters
between p - cand p, * ù

(d) \,\hat is the variance of f@), the PDF of delivered ball bearings?

{Note: numerical integration is required.}

4.12 A large batch of 50 Ohm resistors has a mean resistance of 49.96 Ohms
and a standard deviation of 0.70 Ohms. The resistances are normally
distributed. The lower and upper specification limits are 48 and52 Ohms.

(a) Evaluate Cr.

(b) Evaluate C7,r.

(c) Evaluate Cp*.

(d) What is the expected Taguchi quality loss if the cost of an out-oÊ
specification resistor is $0.80?

(e) What is the signal-to-noise ratio calculated from Eq. 4.21?

4.13 A process is found to have Cp: 1.5 and Cpu: 1.0. What fraction of the
parts will not meet the specifications?

4.14 Repeat exercise 4.12 for a batch of 1.0 cm diameter ball bearings with
a mean diameter of 0.9996 cm and a standard deviation of 0.0012 cm.
The specification limits are 0.9950 and 1.0050 cm and the cost of an
out-oÊspecification bearing is $0.35.

4.15 If a part must meet six independent specifications, estimate the largest
failure probabilify per specification that can be tolerated if the part yield
must be at least 907a.

4.16 Suppose the specification on battery output voltage is given by 10.00 -*

0.50 volts. After measuring the voltage of many batteries the distribution
is found to be normal, with p : 10.10 volts and o : 0.16 volts.

(a) What is the value of Cr?
(b) What is the value of C1,n?

(c) What fraction of the output will have a value greater than the upper
tolerance limit?

[A'.p[ 
- #' ' - ' r 'J '  w - r"t1 t  bc'

[0,  l*  -  p l> t .bc.
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4.L7 Over a short period of time a roller bearing manufacturer finds thatZVo

of the bearings exceed the USL diameter of 2.01 cm and ZVo are less

rhan the LSL of 1.99 cm. If the distribution of diameters is normal:

(a) What is the mean diameter?

(b) What is the standard deviation?

(c) What is C, for the process?
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5.I INTRODUCTION

In the preceding chapters some elementary concepts concerning probability
and random variables are introduced and utilized in the discussions of a
number of issues relating to quality and reliability. Thus far statistics have
been discussed only in the context of the simple binomial trials for estimating a
failure probability. But statistical analysis of laboratory experiments, prototype
tests, and field data is pervasive in reliability engineering. Only through the
statistical analysis of such data can reliability models be applied and their
validity tested. We now take up the questions of statistics: Given a set of data,
how do we infer the properties of the underlying distribution from which the
data have been drawn? If, for example, we have recorded the times to failure
of a number of devices of the same design and manufacture, what can we
surmise about the probability distribution of times-to-failure that would
emerge if a very large population of all such devices was to be tested to failure?

Two approaches may be taken to data analysis; nonparametric and para-
metric. In nonparametric analysis no assumption is made regarding the distri-
bution from which the sample data has been drawn. Rather, distribution-free
properties of the data are examined. The construction of histograms from
the sample data is probably the most common form of nonparametric analysis.
The sample mean, variance, and other sample statistics can also be obtained
from the data without reference to a specific distribution. In addition to
histograms and sample statistics, we introduce elementary rank statistics in
Section 5.2. They provide an approximate graph of the CDF of the random

102
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variable even though there is insufficient data to construct a reasonable histo-
gram. Rank statistics also serve as a basis for the probability plotting methods
covered in Section 5.3.

Parametric analysis encompasses both the choice of the probability distri-
bution and the evaluation of the distribution parameters. A number of factors
guide distribution choice. Frequently, previous experience in fitting distribu-
tions to data from very similar tests may strongly favor the choice of a particular
distribution. Alternatively, the choice between distributions may be made on
the basis of the phenomena. If the sum of many small effects is involved, for
instance, the normal distribution may be suitable; if it is a weakest link effect
the Weibull distribution may be more appropriate. Corresponding arguments
can be made for the exponential, lognormal, extreme-value, and other distri-
bution functions. Finally, the nonparametric analysis tools discussed in Section
5.2 may often provide insight toward the selection of a distribution.

Once a distribution has been selected, the next step is the estimation of the
parameters. Probability plotting, described in Section 5.3, has the advantage of
providing both parameter estimates and a visual representation of how well
the distribution describes the data. Such plotting is particularly valuable when
the paucity of data makes more classical methods for parameter estimation
problematical. In Section 5.4we return to the notion of the confidence interval
in order to determine the precision with which we can estimate the distribution
parameters. Only the most elementary results-those applicable to large sam-
ple sizes-are presented, however, for the determination of confidence limits
for smaller sample sizes requires statistical techniques that are beyond the
scope of an introductory text.

The methods described in Sections 5.2 through 5.4 deal with complete
sets of data;thatis, data that come from tests that have been run to completion.
Important situations exist, however, where results are needed at the earliest
possible time. In testing products to failure, for example, decisions must often
be reached before the last test specimen has failed. The data is then said to
be censored. The methods for handling such data are examined in Chapter
8. A second situation where timely decisions must be made is in statistical
process control, where inadvertent changes in manufacturing processes must
be detected rapidly to prevent the production of defective items. Section 5.5
contains a brief introduction to the statistical process control techniques by
which this is accomplished.

5.2 NONPARAMETRIC METHODS

Nonparametric methods allow us to gain perspective as to the nature of the
distribution from which data has been drawn without selecting one particular
distribution. \Arhen there is a sufficient number of data points, the representa-
tion of the distribution by a histogram or with sample statistics can be quite
helpful. In many situations, however, the amount of data is insufficient to
construct a realistic histogram. It is then useful to approximate the CDF by
the technique plotting the median rank-a term that is defined below.
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TABLE 5.1 Raw data: 70 Stopping Distance Measurements
in Feet

*r, ,oouTJ 
?ieruschka, Principlcs of Rzliability, Prentice-Hall, Englewood cliffs,

Histograms

The histogram may be constructed as follows. We first find the range of the
data (i.e., the maximum minus the minimum value). Knowing the range, we
choose an interval width such that data can be divided into some number ly'
of groups. Consider, for example, the stopping distance data displayed as
Table 5.1. If the interval for this data is chosen to be 10 ft. a table can be
made uP according to how many data points fall in each interval. This is
carried out in Table 5.2, with the data falling into seven intervals. A histogram,
referred to as a frequency diagram ,frày then be drawn as indicated in Fig. 5.1a.

In order to glean as much information from the data as possible, the
number of intervals into which the data are divided must be reasonable. If too
few intervals are used, as indicated in Fig. 5.Ib, the nature of the distribution is
obscured by the lack of resolution. If the number is too large, as in Fig. 5.lc,
the large fluctuations in frequency hide the nature of the distribution. More
data points allow larger numbers of intervals to be used effectively, and result
in better representation of the distribution. Although there is no precise rule
for determining the optimum number of the intervals, the following rule of

TABLE 5.2 Frequency Table

r 3 9 5 4 2 1 4 2 6 6 5 0 5 6
2 6 2 5 9 4 0 4 1 7 5 6 3 5 8
3 3 2 4 3 5 1 6 0 6 5 4 8 6 1
4 2 7 4 6 6 0 7 3 3 6 3 8 5 4
5 6 0 3 6 3 5 7 6 5 4 5 5 4 5
6 7 1 5 4 4 6 4 7 4 2 5 2 4 7
7 6 2 5 5 4 9 3 9 4 0 6 9 5 8
8 5 2 7 8 5 6 5 5 6 2 3 2 5 7
9 4 5 8 4 3 6 5 8 6 4 6 7 6 2

l0 51 36 73 37 42 53 49

Class interval, ft Tally Frequency

20-29
30-39
40-49
50-59
60-69
70-79
80-89

///// ///// /
/ / / / /  / / / / /  / / / / /
///// ///// ////t
///// ///// ////
/ / / / /  /

2
l l
l 6

20
t 4
6
I

Source'. Erich Pieruschka, Principles of fuliakliry, O 1963, p. 5, with permission from
Prentice-Hall, Englewood Cliffs, NJ.
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FIGURE 5.1 Effect of the choice of the number of class intervals. (From Eric Pieruschka,

Principles of Rztiability. O 1963, p. 6, with permission from Prentice-Hall, Englewood Cliffs,

N.I.)

thumb may be used.* If l/is the number of data points and ris the range of

the data. a reasonable interval width A is

A :  r [ 1  +  3 . 3 l o g r o ( l / ) 1 - '

A crude method for observing how well a known distribution describes a

data set consists of plotting the analytical form of the distribution over the

histogram. But first, the frequency diagram must be normalized to approxi-

mate f(*), the PDF. This is accomplished by requiring that the histogram

satisfy the normalization condition Eq. 3.7.
Suppose that n1, n2, . . . are the frequencies with which the data appear

in the various intervals, and n1 * n2 t r\ . . . - ^/. If we want to approximate

f(*) by f in the i'h interval, f must be proportional to n;:

f r  
:  ahi ,

where a is the necessary proportionality constant. For the histogram to satisfy
Eq. 3.7, the normalization condition on the PDF, we must have

) r l : r .

Combining the two equations yields

an; A, : aL2 ,,: a Àly'.

Hence  a :  l /  ( l /A ) ,  and

t : \ l^ Z-)
i

1 -
J i -

The histogram that approximates f(x) for the stopping distance data is plotted
in Fig. 5.2. For comparison, we have plotted the PDF for a normal distribution;

*  H.  A.  Sturges,  "The Choice of  a Class Interval , "  J .Am. Stat .  Assoc. ,2 l ,65-66 (1926);  see also

E. Pieruschka, Principles of Rcliability, Prentice-Hall, Englewood Cliffs, NJ, 1963.

l n i

À F

Closs  w id th :23 .3  f t
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H

0 10 20 30 40 50 60 70 80 90 r00
Stopping distance, ft

FIGURE 5.2 Normal distribution and histo-
gram fbr the data in Table 5.1.

the values of trl and aused in the distribution are estimated from nonparamet-

ric sample statistics, which we treat next.

Sample Statistics

The sample statistics treated here are estimates of random variable properties
that do not require the form of the underlying probability distribution to be
known. We consider estimates for the mean, variance, skewness, and kurtosis

defined in Chapter 3. Suppose we have a sample of size l/of a random variable
x. Then the mean can be estimated with

o : f r Ë ' ' (5 .6 )

and the variance with

-  p ) 2 (5.7)

estimated fromif the mean is known. If the mean is not known, but must be
Eq. 5.6, then the variance is increased to

20

15

l0

a' :1rË t ' '

r r  l -  t  - \ '

a 2 : - -  1 1 - > ' : -N- I LN,-^

a' :  N= 
j  , , ,  -  tù , (5.8)

The same technique which is applied to Eq. 3.20 rr'ay be employed to rewrite
the variance as

(* , ; , , ) ' ] (5.e)

The estimators for the skewness and kurtosis are, respectively:

i,Ë t'' 
- Êùo trË ,', - î,)na :

l - r  . r  - l : z

|  + ,> @,-  t  ) ' |
L r v  / = L  I

f r  v  1 2

I  *> @,- r") ' I
L rv  r - r  I

t : (5 .10)
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These sample statistics are said to be point estimators because they yield
a single number, with no specification as to how much in error that number
is likely to be. They are unbiased in the following sense. If the same statistic
is applied over and over to successive sets of l/ data points drawn from the
same population, the grand average of the resulting values will converge to
the true value as the number of data sets goes to infinity. In Section 5.4
the precision of point estimators is characterized by confidence intervals.
Unfortunately, with the exception of the mean, given by Eq. 5.6, confidence
intervals can only be obtained after the form of the distribution has been spec-
ified.

D(AMPLE 5.I

Calculated the mean, variance, skewness, and kurtosis of the stopping power data
given in Table 5.1

Solution These four quantities are commonly included as spread-sheet formulae.
The data in Table 5.1 is already in spread sheet format. Using Excel-4,* we simply
calculate the four sample quantities with the standard formulae as follows:

Mean: ,tc : A\TERAGE (A1:G10) : 52.3
Variance: â2 : VAR (A1:G10) : 168.47
Skewness: -t ' :  SKEW (A1:G10) :  0.0814
Kur tos i s :  f r :KURT(A l :G l0 )  : - 0 .268

Note that in applying the formulae to data in Table 5.1, all the data in the rectangle
with Column A row 1 on the upper left and Column G row 10 on the lower right
is included.

Rank Statistics

Often, the number of data points is too small to construct a histogram with
enough resolution to be helpful. Such situations occur frequently in reliability
engineering, particularly when an expensive piece of equipment must be
tested to failure for each data point. Under such circumstances rank statistics
provide a powerful graphical technique forviewing the cumulative distribution
function (i.e., the CDF). They also serve as a basis for the probability plotting
taken up in the following section.

To employ this technique, we first take the samplings of the random
variable and rank them; that is, Iist them in ascending order. We then approxi-
mate the CDF at each value of x;. With a large number l/ of data points the
CDF could reasonably be approximated by

Ê@) : i : 1 , 2 , 3 , . . . L 4 ,

where F(0) : 0 if the variable is defined only for x ) 0.

* Excel is a registered trademark of the Microsoft Corporation.

L

1 V '
( 5 . 1 1 )
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If l/is not a large number, say less than 15 or 20, there are some shortcom-
ings in using Eq. 5.11. In particular, we find that F-(x) : 1 for values of x
greater than x1,'. If a much larger set of datawere obtained, say 101/values,
it is highly likely that several of the samples would have larger values than x1..
Therefore Eq. 5.11 may seriously overestimate F(x). The estimate is improved
by arguing that if a very large sample were to be obtained, roughly equal
numbers of events would occur in each of the intervals between the x;, and
the number of samples larger than x7"- would probably be about equal to the
number within one interval. From this argument we may estimate the CDF as

F(*,) : i : 7 , 2 , 3 , . . . 1 r { .  ( 5 . 1 2 )

This quantity can by derived from more rigorously statistical arguments; it is
known in the statistical literature as the mean rank. Other statistical arguments
may be used to obtain slightly different approximations for F(x). One of the
more widely used is the median rank, or

i
,^/il

A ,  i - 0 . 3
f  \x i )  :  

ry*  Or ,
i : 1 , 2 , 3 , . . . N . ( 5 . 1 3 )

In practice, the randomness and limited amounts of data introduce more
uncertainty than the particular form that is used to estimate F. For large values
of l/, they yield nearly identical results for ,F(x) after the first few samples.
For the most part we shall use Eq. 5.12 as a reasonable compromise between
computational ease and accuracy.

E)(AMPLE 5.2

The following are the times to failure for 14, six volt flashlight bulbs operated at 72.6
volts to accelerate rate the fai lure: 72, 82, 97, 103, 113, 117, 1,26, 727, 127, 739, I54,
159, 199, and207 minutes. Make a plot of F(l) ,  where l is the t ime to fai lure.

Solution Table 5.3 contains the necessary calculations. The data rank i is in
column A, and the failure times in column B. Column C contains i/ (14 * 1) (Columns

D and E are used for Example 5.5) for each failure time. F(1,) vs. /; (i.e., column C
vs. column B) is plotted in Fig. 5.3.

5.3 PROBABILITY PLOTTING

Probability plotting is an extremely useful technique. With relatively small
sample sizes it yields estimates of the distribution parameters and provides
both a graphical picture and a quantitative estimate of howwell the distribution
fits the data. It often can be used with success in situations where too few
data points are available for the parameter estimation techniques discussed
in Section 5.4 to yield acceptably narrow confidence intervals. With larger
sample sizes probability plotting becomes increasingly accurate for the esti-
mate of parameters.
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TABLE 5.3 Spreadsheet for Weibull Probability Plot of Flashlight Bulb Data in

Example 5.4

109

l i t

2 r 7 2
3 2 8 2
4 3 9 7
5 4 1 0 3
6  5  1 1 3
7 6 1 t 7
8 7 1 2 6
9 8 1 2 7

t0 I 127
11  l 0  139
12  11  r54
13  12  159
14 13 199
15 t4 207

F ( t ) : i / ( N + l )
0.0667
0.1333
0.2000
0.2667
0.3333
0.4000
0.4667
0.5333
0.6000
0.6667
0.7333
0.8000
0.8667
0.9333

x : LN(t)
4.2767
4.4067
4.5747
4.6347
4.7274
4.7622
4.8363
4.8442
4.8442
4.9345
5.0370
5.0689
5.2933
5.3327

y : L N ( L N ( l / ( 1  - F ) ) )
-2.6738
-1.9442
- 1.4999
-1.1707
-0.9027
-0.6717
-0.4642
-0.2716
-0.0874

0.0940
0.2790
0.4759
0.7006
0.9962

Basically, the method consists of transforming the equation for the CDF
to a form that can be plotted as

y : ax * b. (5.14)

Equation 5.12 is used to estimate the CDF at each data point in the resulting
nonlinear plot. A straight line is then constructed through the data and the
distribution parameters are determined in terms of the slope and intercept.

The procedure is best illustrated with a simple example. Suppose we want
to fit the exponential distribution

F ( x ) : 7 - e - * / 0 , 0 s x s o o (5 .15)

LL

0 . 0
300

ï
FIGURE 5.3 Graphical estimate of failure time cumulative dis-

tribution.

2001 0 0
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to a series of failure times x;. We can rearrange this equation by first solving
for 1/ (1 - F.) and then taking the natural logarithm to obtain

, [  I  
- l  

r'n  
L l  -  r ( t r )  l :  E* ' (5 .16)

We next approximate F( x;) by Eq. 5.12 and plot the resulting values of

1
1 - l.(r)

_ l
;

1 -  
"

N + l

: ,...............�,...............�1/1 I 
$J7)N + 1 - i

on semilog paper versus the corresponding x;. The data should fall roughly
along a straight line if theywere obtained by sampling an exponential distribu-
t ions.  Comparing Eqs.5. l4 and 5.16, we see that 0:  l /a can be est imated
from the slope of the line. More simply, we note that the left side of Eq. 5.16
is  equa l  to  one when l / (1  -  F )  :  e :2 .72 ,  and thus  a t  tha t  po in t  0 :  x .
Since the exponential is a one-parameter distribution, b, the y intercept is
not uti l ized.

E>(AMPLE 5.3

The fol lowing fai lure t ime data is exponential ly distr ibuted:5.2,6.8, 11.2, 16.8, 17.8,
79.6,23.4,25.4, 32.0, and 44.8 minutes. Make a probability plot and estimate 0.

So lu t i on  S ince  N :  10 ,  f r om Eq .5 .17we  have l /  [ l  -  F (1 , ) ]  :  11 / ( l l  -  i )  o r
1 .1 ,  1 .222 ,  I . 373 ,1 .571 ,1 .833 ,2 .2 ,2 .75 ,3 .666 ,5 .5  and  11 .  I n  F ig .5 .4  t hese  numbers

J

2 . 7 2

2

T ime (m in )

FIGURE 5.4 Probability plot of exponentially distributed data.
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have been plotted on semilog

line through the data we note
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paper versus the failure times. After drawing a straight
thatwhen I /0  -  F)  :  2 .72,  x  -  0  :  21 min.

Two-parameter distributions require more specialized graph paper if the
plots are to be made by hand. The more common of such graph papers and
an explanation of their use is included as Appendix D. Approximate curve
fitting by eye that is required in the use of these graph papers, however, is
becoming increasingly dated, and may soon go the way of the slide rule. With
the power of readily available spread sheets, the straight line approximation
to the data can be constructed quickly and more accurately, by using least-
squares fitting techniques. These techniques, moreover, provide not only the
line that "best" fits the data, but also a measure of the goodness of fit.
Readily available graphics packages also display the line and data to provide
visualization of the ability of the distribution to fit the data. The value of these
techniques is illustrated for several distributions in examples that follow. First,
however, we briefly explain the least-squares fitting techniques. \Arhereas the
mathematical procedure is automated in spread sheet routines, and thus need
not be performed by the user, an understanding of the methods is important
for prudent interpretation of the results.

Least Squares Fit

Suppose we have l/ pairs of data points, (xt, )) that we want to fit to a
straight line:

y :  ax *  b,  (5.18)

where a is the slope and, bthe y axis intercept as illustrated in Fig. 5.5. In the
least squares fitting procedure we minimize the mean value of the square
deviation of the vertical distance between the points (x,, )i) and the correspond-
ing point (x', )) on the straight l ine:

1 N

s: :> (  r ,  -  r) ' ,
N  

- ; = t  ' ' ' (5 .1e)

FIGURE 5.5 Least squares fit of data to the
func t ion  y :  ax*  b .
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or using Eq. 5.18 to evaluate y on the line at x;, we have

t :  
* , Ë  

( ) , -  a x ; -  b ) 2 . (5.20)

(5 .21)

(5.26)

To select the values of a and b that minimize S, we require that the partial
derivatives of S with respect to the slope and intercept vani dn: ô S/ ô a: 0 and
ôS/ôb:0.  We obta in ,  respect ive ly

4 - a æ - 6 x : 0

and

y - o* - b: 0, (b.ZZ)

where we have defined the following averages:

" - l $ " "  :  ' �  \:  F) *" t :  ià '"
(5.23)

u: frà *,r, ,  7: i  
j  " t  ,  î : ]nuà rt

Equations 5.21 and 5.22 may be solved to yield the unknowns a and b,

o:  2:- ! )  $.24)x , ' -  x '

and

b : ) - a x .  ( 5 . 2 5 )

If these values of n, and b are inserted into Eq. 5.20 the minimum value of S
is found to be

S:  ( l  -  , r ) ( f  - r r ) ,

where 12, referred to as the coefficient of determination, is given by

" :  ( 4 -  x ) ) '

6, - 
-.r) (-r., - r.,)' 

(5'27)

The coefficient of determination is a good measure of how well the line is
able to represent the data. It is equal to one, if the points all fall perfectly on
the line, and zero, if there is no correlation between the data and a straight
line. Thus as the representation of the data by a straight line is improved, the
value of r2 becomes closer to one.

The values of a, b, and r2 rnay be obtained directly as formulae on spread
sheets or other personal computer software. It is nevertheless instructive to
use a graphics program to actually see the data. If there are outliers, either
from faulty data tabulation or from unrecognized confounding of the experi-
ment from which the data is obtained, theywill only be reflected in the tabular
results as decreased values of 12. In contrast, offending points are highlighted
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on a graph. The value of visualization will become apparentwith the examples
which follow.

Weibull Distribution Plotting

We are now prepared to employ the least-squares method in probability
plotting. We consider first the two-parameter Weibull distribution. The CDF
with respect to time is given by

F ( t 1  : 1 - e x p l - ( t / 0 ) ^ 1 ,  0 = t < o o .  ( 5 . 2 8 )

The distribution is put in a form for probability plotting by first solving for
1 / ( r  *  F ) ,

--l^ : exp( t/o)'
l - F ( l )  r \ /

and then taking the logarithm twice to obtain

f r - l
ln  ln  

Lt  -  Ff t )  l :  
mln I  -  mln 0.

This can be cast into the form of Eq.5.lB if we define

):rn,"[61

(5.2e)

(5.30)

( 5 . 3 1 )

and

x : lnt. $.32\

We find that the shape parameter is just equal to the slope

û -- a, (5.33)

whereas the scale parameter is estimated in terms of the slope and the inter-
cept by

â : exp ? b/ a). ( 5.34)

The procedure is best illustrated by providing a detailed solution of an exam-
ple problem.

E)(AMPLE 5.4

Use probability plotting to fit the flashlight bulb failure times given in Example 5.2
to a two parameter Weibull distribution. What are the shape and scale parameters?

Solution The ranks of the failures, the failure times, and the estimates of F(t')
are already given in columns A, B and C of Table 5.3. In column D we tabulate ln(l;)
and in column E, ln( ln(I/(1 - f))).  Then we plot column E versus column D and
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FIGURE 5.6
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x  =  In ( t )

Weibull probability plot of failure times.

calculate a, b and 12. The result are shown in Fig. 5.6. Since a : 3.41 and Ô : - 16.95,

we have from Eqs. 5.33 and 5.34: rh : 3.4I and 0 : exp( +L6.95/3.47) : 744 min.

Extreme Value Distribution Plotting

The procedure for treating extreme-value distributions is quite similar to that

employed for Weibull distributions. For example, with the minimum extreme-

value distribution, the CDF is given by

F ( x ) : 1 - e x p l - e 0 - " t r o 1 ,  - o o ( x ( æ  ( 5 . 3 5 )

in Eq.3.101. If we solve for 7/ (1 * 4, and take the natural logarithm twice,

we obtain

I  t  l - f  ^ " _ ul n l n L r - r ( * ) - l  : e x - @ '

Thus we can make a linear plot with

) : In , " [= ;1
The scale parameter is estimated in terms of the slope as

6  :  1 /  a

and the location parameter as

(5.36)

(5.37)

(5 .38)

(5.3e)û , :  - b / a ,
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respectively. Likewise, for the maximum extreme value CDF, given by

F(x) :  exp[ - t (x-u)/@1, co (  x {  oo (5.40)

an analogous procedure can be used to determine the rectified equation

(5 .41)

where the distribution parameters may be estimated in terms of the slope and
intercept to be

@ :  - l / a

t i :  - b / a .

r' : RSQ(E2:E15, D2:BD5)

a :  SLOPE(E2:E15, D2:D15)

:  0 .96

: 3 . 4 I

à :  INTERCEPT(E2:E15,  D2:D15)  :  -  16.95

Not surprisingly, these are the same values exhibited in Fig. 5.6. From Eq.
5.33 and 5.34,  the Weibu l l  parameters  are ?h -  a :  3 .41;0:  exp(-b /a)  :

exp(16.9 5/3.41) : 744 min. The resulting value of 12 :0.88 for the extreme-value
distribution is substantially smaller than that of 0.96 obtained with the Weibull distribu-
tion. Therefore the extreme value fit is poorer.

rnlnt#]  :  -à **9,

and

E)GMPLE 5.5

Determine whether the failure data in Example 5.2 can be fitted more accurately with
a minimum extreme-value distribution than with a Weibull distribution. Estimate the
parameters in each case. Employ spread sheet slope, intercept and coeffrcient formulae.

Sohttion The necessary values of y; and ,rr, respectively, are already tabulated in
Table 5.3, columns E and B, for the minimum extreme value distribution and in
columns E and D for the Weibull distribution. Thus for the extreme-value distribution,
we obtain

12 :  RSQ(E2:E15,  B2:815)  :  0 .88

a:  SLOPE(E2:E15,  B2:815)  :  0 .025

à :  INTERCEPT(E2:E15,  B2:815)  :  -3 .76.

Thus, from Eqs. 5.38 and 5.39 the extreme value parameters are

6 : l /  a :  7/0.025 : 40 min., and tr -  *b/ 61 : 3.76/0.025 : 150.4 min.

For the Weibull distribution

(5.42)

(5.43)
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Normal Distribution Plotting

Normal and lognormal distributions find frequent application. However, un-
like the Weibull and extreme value distributions they cannot be inverted to
obtain y in analytical form. Rather we must rely on inverse operator notation.
First consider the normal distribution with the CDF

/ \
F(x) : O {{: 

r.c 
)

\ o /

We invert the standard normal distribution to obtain

o - , ( F )  : ! * - ! p .
( , C

Thus the linear equation ) : ax t à is obtained by taking

)  :  o* , ( f , ) .

The standard deviation estimate is then

and the mean

ù :  l / a

û ' :  - b / a .

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

The availability of the standardized normal distribution and its inverse as
spreadsheet formulae allows normal data to be analyzed with a minimum of
effort. This is illustrated in the following example.

D(AMPLE 5.6

An electronics manufacturer receives 50 -f 2.5 ohm resistors from two suppliers. A
sample of 30 resistors is taken from each supplier. The resistance values are measured
and tabulated in rank order in columns B and C of Table 5.4. All of the resistance's
are noted to fall within the specification limits of LSL : 47.5 ohm and USL : 52.5
ohms. Assume that the resistors are normally distributed and make probability plots
of the two samples. Evaluate the Taguchi loss function, assuming a loss of $1.00 per
orrt-oÊspecification resistor, and the process capability Cp for each supplier. Which
supplier should you choose if there were no difference in price?

Solution The estimates of F(x) : i/ (N + 1) are tabulated in columns D and I
of Table 5.4. In columns E andJ we use the Excel formula NORMSINV for the inverse
of the standard normal distribution to tabulate

); :  O-r(4) :  NORMSINV(4)

from Eq. 5.46. The probability plots for suppliers #1 and #2 are shown in Fig. 5.7.
The mean and standard deviation of each sample can be calculated from the Eqs.
5.47 and 5.48. They are

t r :  59.2/  1.19 :  49.7 and ù:  7/ I .19:  0.84 for #1

ît: 37.4/0.627 : 50.1 and ô : 1/0.627 : 1.59 for #2
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TABLE 5.4 Spreadsheet for Normal Probability Plot of Resistor Data in Example 5.6

HGD

I
2
J

4

6
,]
R

0

IO
l 1
12
1 3
1 4
l 5
l 6

i  x i  (#1)
| 48.47
2 48.49
3 4U.66
4 48.84
5 49.14
6 49.27
7 4s.29
8 49.30
I 49.32

10 49.39
11 49.43
12 49.19
13 49.52
14 49.54
15 49.69

xi (#2) F(xi)
47.67 0.û323
47.70 0.0645
48.00 0.0968
48.41 0.1290
48.42 0.1613
48.44 0.1935
48.64 0.22b8
48.ô5 0.2581
48.68 0.2903
48.85 0.3226
49.17 0.3548
49.72 0.3871
49.85 0.4t94
49.87 0.4516
50.07 0.4u39

yi i  xi  (#1)
- 1.85 16 49.75
-r.52 17 49.78
-  1 .30 18 49.93
-  1 .13 19 49.96
-0.99 20 50.03
-0.86 2)  50.0ô
-0.75 22 50.07
-0.65 23 50.09
-0.55 24 50.42
-0.46 25 50.44
-0.37 26 50.57
-0.29 27 50.70
-0.20 28 50.77
-0. r2  29 50.87
-0.04 30 51.87

xi (#2) F(xi) yi
50.75 0.5161 0.04
50.60 0.5484 0.12
50.63 0.5806 0.20
50.90 0.6129 0.29
51.02 0.6452 0.37
51.05 0.6774 0.46
51.28 0.7097 0.55
51.33 0.7479 0.65
5r.38 0.7742 0.75
5t.43 0.8065 0.86
51.60 0.8387 0.99
51.70 0.8710 1.13
51.74 0.9032 1.30
52.06 0.9355 r.52
52.33 0.9677 1.85

For the Taguchi Loss function is 4 :  $1.00 and A : (52.5 - 47.5) /2. :  2.5. Therefore
the coef f ic ients  g iven by Eq.4.6  is  L :  $1.00/2.52:  $0.16.  F lence,  f rom Eq.4.9 ,  we
estimate

Z :  $0.1610.842 + (49.7 -  50) ' l  :  $0.13 for #1

Z :  $0.1611.592 + (50.1 -  50) ' l  :  $0.41 for #2.

4 7

X  =  O n m S

FIGURE 5.7 Normal probability plot of resistances.
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From Eq. 4.24 we estimate

Co: 2.5/  (3 X 0'84) :  0 '99 for  #1

Cn: 2.5/  (3 x 1.59) :  0 '52 for  #2'

Since the loss factor is smaller and the process capability higher, #1 is the prefera-

ble supplier.

Lognormal Distribution Plotting

Probability plotting with the normal and lognormal distributions is very similar'

From Eq. 3.65 we may write the CDF for the lognormal distribution as

[ r  I
F(r) : * 

L; 
rn(t/ t,) 

).

We invert the standard normal distribution to obtain

o - ' ( F ) : ] l n  t - L l n l , .

(5.4e)

(5.50)

The required linear equation is obtained by once again taking

)  :  o* ' (F ) , (5 .51)

but with x : ln t. The estimates for the lognormal parameters are

ù :  t / a  ( 5 . 5 2 )

and

â : .*p( - b/ a). (5.53)

E)(AMPLE 5.7
'ihe fatigue lives of 20 specimens, measured in thousands of stress cycles are found

t o  b e  3 . 1 ,  6 . 1  , 7 . 3 , 7 0 . 4 ,  1 5 . 5 ,  2 0 . 9 , 2 I . 7 , 2 1 . 8 9 ,  2 5 . 3 , 3 0 . 5 , 3 1 . 4 , 3 2 . 7 , 3 5 . 4 , 3 5 . 9 , 3 8 , 9 ,

39.6, 40.1, 65.5, 70.9, and 98.7. Use probability plotting to fit a lognormal distribution

to the data, and estimate the parameters and the goodness-oÊfit.

Solution The calculations are made in Table 5.5.

The data rank and the failure times are tabulated in columns A and B, the natural

logarithms of the failure times are tabulated in column C. In column D the estimates

of F(xi) :  i / (N * 1) are tabulated. In column Ewe tabulate l � i :  Q-r(F,) from Eq.

5.51. In Fig. 5.8 we have plotted column E versus column C and used least-squares fit

to obtain the best straight line through the data. From Eqs. 5.52 and 5.53 we find the

parameters to be eo : l /  a,:  1/1.01 : 0.99 and â : exp(- b/ a\ :  exp(3.22l1.01) :

24.2 thousand cycles. The fit is quite good with rz : 0'929.
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TABLE 5.5 Spreadsheet for Lognormal Probability Plot of
Data in Example 5.7

I

2
3

4
5
6
n
I

8
9

l 0
l 1
t 2
l 3
t4
l 5
1 6
r7
1 B
l 9
20
2 l

I

I
,
3
4
5
6
,1

8
9

l 0
l l
r2
l 3
t 4
l 5
l 6
r 7
l 8
l 9
20

ti
3 .1
6 .1
7.3

10.4
15 .5
20.9
2r.7
2 1 . 8
25.3
30.5
31.4
32.7
35.4
35.9
38.9
39.6
40.1
65.5
70.9
98.7

ln( t i )
r . 1 3 1 4
1.8083
1.9879
2.3418
2.7408
3.0397
3.0773
3.0819
3.2308
3.4177
3.4468
3.4874
3.5667
3.5807
3.6610
3.6788
3.6914
4.1821
4.2613
4.592r

F(t i)
0.0476
0.0952
0.14:29
0.1905
0.2381
0.2857
0.3333
0.3810
0.4286
0.4762
0.5238
0.5714
0.6190
0.6667
0.7143
0.7619
0.8095
0.8571
0.9048
0.9524

yr
- 1.6684
- 1.3092
* 1.0676
-0.8761
-0.7124
-0.5659
*0.4307
-0.3030
-0.1800
-0.0597

0.0597
0.1800
0.3030
0.4307
0.5659
0.71,24
0.8761
1.0676
1.3092
1.6684

y = - 3 . 2 1 6 7 + 1 . 0 0 5 1 x
R^2 = O.929

l!

;
E
O ^
c v
o)
U)

Ln ( t )

FIGURE 5.8 Lognormal probability plot of failure times.



f 20 Introduction to Rzliability Enginening

Goodness-of-Fit

The forgoing examples illustrate some of the uses of probability plotting in

the analysis of quality and reliability data. They also serve as a basis for the

extensive use of these methods made in Chapter B for the analysis of failure

data. With the computations carried out quite simply on a spread sheet or

other software, one is not limited to a single analysis. Frequently, it may be

advisable to try to fit more than one distribution to the data to determine the

best fit. Comparison of the values of r2 is the most objective criterion for this

purpose. Other valuable information is obtained from visual inspection of the

graph. Outliers may be eliminated, and if the data tends to fall along a curve

instead of a straight line it may provide a clue as to what other distribution

should be tried. For example, if normally distributed data is used to make an

exponential probability plot, the data will fall along a curve that is concave

upward. With some experience, such visual patterns become recognizable,

allowing one to estimate which other distribution may be more appropriate.
More formal methods for assessing the goodness-of-fit exist. These estab-

lish a quantitative measure of confidence that the data may be fit to a particular

distribution. The most accessible of these are the chi-squared test, which is

applicable when enough data is available to construct a histogram, and the

Kolmogorov-Smirnov (or K-S) test, which is applicable to ungrouped data.

These tests are presented in elementary statistics texts but are not directly

applicable to the analysis of much reliabiliry data. In their standard form they

assume not only that a distribution has been chosen but that the parameters
are known; they establish only the level of confidence to which a specific

distribution with known parameters fits a given set of data. In contrast, in

probability plotting we are attempting both to estimate distribution parameters
and establish how well the data fit the resulting distribution.

Aside from the simple comparison of 12 values obtained from probability
plotting, establishing goodness-oÊfit from estimated parameters requires the

use of more advanced maximum likelihood, moment, or other techniques
and often involves a significant amount of computation. Such techniques
are treated in advanced statistical texts and increasingly incorporated into

statistical software packages. The use of these techniques is often justified to
maximize the utility of reliability data. They are, however, beyond the scope
of what can be included in an introductory reliability text of reasonable length.
Instead, we focus next on an elementary treatment of confidence levels of

estimated parameters.

5.4 POINT AND INTERVAL ESTII\,IATES

The mean, variance, and other sample statistics introduced in Section 5.2
are referred to as nonparametric point estimators. They are nonparametric
because they may be evaluated without knowing the population distribution
from which the sample was drawn, and they are point estimators because they
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yield a single number. Point estimates can also be made for the parameters
of specific distributions, for example, the shape and scale parameters of a
Weibull distribution. The corresponding interval estimates, which provide
some level of confidence that a parameter's true value lies within a specified
range of the point estimate, occupy a pivotal place in statistical analysis.

We begin our examination of interval estimates by expressing the sample
static properties in terms of the probability concepts developed in Chapter
3. Suppose we want to estimate a property 0, where 0 might be the mean,
variance, or skewness, or a parameter associated with a specific distribution.
The estim ator 0 is itself a randorn variable with the sampling variability charac-
terized by a PDF, referred to as a sampling distribution. Let the sampling
distribution be denoted by fa(6;. If w. repeatedly form â fro- samples of size

{ and make a histogram of the values of 0, after many trials the sampling
distribution fe(B) wltt emerge. A sketch of a typical sampling distribution is
provided in Fig. 5.9a. If the estimator is unbiased, then E{0} : 0, which is to
say that the mean value of the sampling distribution is the true value of 0:

L2r

f æ
|  0 fe(0)  d0:  0.
,  _ M

(5.54)

(5.55)

the right

(5.56)

Along with the value of the point estimate 0,we would like to gain some
idea of its precision. For this we calculate a confidence interval as follows.
Suppose we pick a value 0 + A on the 0 axis in Fig. 5.9b such that the
probability that O = O * A is 1 - a/2, where a is typically a small number
such as one or five percent. This condition may be written in terms of the
sampling distribution as

P{o- e + A} : f'.: feG) d,g : t - a/2.

As shown in Fig. 5.9b the area under the sampling distribution to
of 0 * A is a/2. Rearranging the inequality on the left, we have

,  f o ' A
P{0 -  A= e} :  l_*  fe@) d0:  1  -  o /2 .

(a)

FIGURE 5.9 Sampling distribution.

f6@) f6@)

< B > l < A
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Likewise, if we choose a value B such that the probability that â > g - B is

1 - a/2 we obtain

p { s = e - � B l :  f *  f , a l a â - l -  a / 2 ,
J  o - B ' " '

( 5 . 5  / )

and as indicated in Fig. 5.9b, the area under the sampling distribution to the

left g - B is also a/2. Rearranging the inequality on the left, we have

P{o = ê + a}: l": feê) d,o : | - d/2.
J o - 8 " " '

The probability that 0 - B < 0 and 0 = 0 * A is just the area

the central section of the sampling distribution, or

P{0 -  A< e-  0  +  B} :  [ ' ^ - : feG)  d ,0 :  L  -  a .'  
J  0 - B ' '  

'

The lower and upper confidence limits for estimates based on

ly'are defined as

(5.58)

I - a under

(5.5e)

a sample size

Lo /z ,N :  0  -  A (5.60)

and

u a / z . N : 0 +  B ,  ( 5 . 6 1 )

respectively. Hence the 100(1 - a) percent two-sided confid.ence interval is

P{L"n , *<  0  =  U* t , .N) :  L  -  a . (5.62)

We must be specific about the preceding probability statements, for they

define the meaning of confidence intervals. Equation 5.62 may be understood

with the aid of Fig. 5.10 as follows. Suppose that a large number of samples

each of size ly' are taken, and â, Loy2,11, arîd Ua/z,* are calculated for each

sample. These three quantities are random variables and in general will be

different for each sample. In Fig. 5.10 we have plotted them for 10 such

samples. If Lo/2,N and (Joy2,1,1define tlrre g\Vo confidence interval, then for g0%

of the samples of size l/ the true value of 0 will lie within the intervals indicated

by the solid vertical lines. Conversely, there is an a : 0.1 risk that the true

value will lie outside of the confidence interval. For brevity we frequently

suppress the subscripts in Eq. 5.60 and 5.61 and denote the lower and upper

confidence limits by 0- = Lo/z,N and 9* = Uo/2,N.
For the foregoing methodology to be applied to the computation of the

confidence interval for a particular^parameter, the properties of the corre-

sponding sampling distribution, fa(0), must be sufficiently well understood.

In this respect the situation is quite different for the mean variance, skewness,

and kurtosis, which may be defined for any distribution, and the specific
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t--1:.r i"u.rra", s 6 7 8 9 10

o = point estimate â

I : lower confidence limil Lo2. y

Y : upper confidence limil Ua2, y

FIGURE 5.10 Confidence limits f'or repeated estimates of a parameter.
See, for example K. C. Ikpur and L. R. L,amberson, Rzliability in Engt-
neering Design, Wiley, NY 1977.

parameters appearing in the normal, lognormal, Weibull, or other distribu-
tion. If the parent distribution is not designated, then a confidence interval
can be determined only for the mean, p,, and then only if the sample size is
sufficiently large, say l/ > 30. In this situation the sampling distribution be-
comes normal and, as shown in the following subsection, the confidence
interval can be estimated.

If the parent distribution is known, then the point and interval estimates
of the distribution parameters become the center of attention. Here, the
situation differs markedly depending on whether l/, the sample size, is large.
For small or intermediate sample sizes taken from a normal distribution, the
Student's -/and the Chi-squared sampling distributions can be used to estimate
the confidence interval for the mean and variance respectively. The proce-
dures are covered in elementary statistical texts. The more sophisticated proce-
dures required for other parent distributions are found in the more advanced
statistical literature, but are increasingly accessible though statistical software
packages. Large sample sizes, point estimates, and confidence interv'als for
distribution parameters may be expressed in more elementary terms; then the
sampling distributions approach the normal form, enabling the confidence
intervals to be expressed in terms of the standard normal CDF. In subsequent
subsections, the results compiled by Nelson* are presented for point estimates
and confidence intervals of the normal, lognormal, Weibull, and extreme-
value parameters.

x W, Nelson, Altplied l.ife Data AnaQsis, John Wiley & Sons, New York, NY, 1982.

(D

o
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Estimate of the Mean

The sample mean given by Eq. 5.6, in addition to being the most ubiquitous
statistic, has a unique property. An interval estimate is associated with the
mean that is independent of the distribution from which the sample is drawn.
Provided the sample size is sufficiently large, say ly' > 30, the central limit
theorem provides a powerful result; the sampling distribution fp(tl") for p

becomes normal with a mean of p and variance of o'/ N. Thus,

ï-où :;!u,.*o

Replacing 0 with g, in Eq. 5.59, we have

It,+s \Æ [ I t l  ,^ , ,- l
J-- ,  t * r . "P L-  , " 'çL 

-  ù ' )aA:  r  -  a

or with the substitution ( : {t{(lt - tù / a,

ç {xttu I

J -n*,"GexP[ 
-Y't ' ]  d(: 1 - a'

l -X@-", ' ] (5.63)

(5.64)

(5.68)

(5.6e)

(5.65)

Comparing this integral with the normal CDF given in standard form by Eq.
3.44, we see that

oO,Rat o) - ot-r,6rr / o) : 1 - a. (5 .66)

The standardized normal distribution is plotted in Fig.5.11. Recall that
A is chosen so that the area under the sampling curve to the right is u/2.We
designate zo12 to be the value of the reduced variate for which this condition
holds. Thus the area to the left of zoy2 is given by

Q ( r , n ) : l - a / 2 .  ( 5 . 6 7 )

The symmetry of the normal distribution results in the condition given by
Eq. 3.45. Consequently, we also have

O(-  z ,y2)  :  a /2 .

Thus Eq. 5.66 is satisfied if we take

A :  B : 2 , 7 2 o / { l { .

-  za12

FIGURE 5.II

O "otz z

Standard normal distribution.
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If we combine these conditionswith Eqs.5.60 and 5.61, and estimate a
from the sample variance given by Eq. 5.9, the 100(1 - a) percent two-sided
confidence interval for p is given by

and

r  - à - � -  ù
Lar2,N - lL ."r, 

{N

Uar2.N: ÊL + ,* , i .- 
V^nr

(5.70)

(5 .71)

Some of the more commonly used confidence intervals are 80, 90, 95,
and99%. These correspond to risks of a : 20, 10, 5 and lVo respectively.
The corresponding values of zo12 may be found from the CDF for the normal
distribution tabulated in Appendix C. They are, respectively:

Zo)  :  1 .28,

D(AMPLE 5.8

zo.ob : 1.648, 26.e25 :  1.96 Zo.{tob : 2.58.

Find the 90% and the 95Vo confidence interval for the mean of the 70 stopping power

data given in Table 5.1

Solution The sample mean and variance obtained in Example 5.2 are p : 52.3

and ô2 :768.47. Thus the standard deviation is ô: 12.98. For two-sided 90 percent

confidence za/2: 1.645. Thus z"pù/Y N: l .645 X 12.98/8.367 : 2.55 and thus from

Eqs. 5.70 and 5.71, tt : 52.3 'r 2.55 with 90 percent confidence. Likewise, for 95

percent confidence, za/2: 1.960 and 2,12ù/VN: 1.960 x 12.98/8.367 : 3.04. Thus

te : 52.3 -r 3.04 with 95 percent confidence.

To recapitulate, the interval estimate for the mean, fr, is nonparametric
in that the distribution from which the sample of -À/ derives need not be
normal. The two-sided confidence limits can be used for any distribution so
long as the variance exists, and -À/ is sufficiently large, usually greater than
l/: 30. In Eq. 2.86 we applied this result to estimate the confidence interval
of the mean of the binomial distribution for a sufficiently large sample size.
No distribution-free confidence intervals exist for the variance. skewness or
other properties.

Normal and Lognormal Parameters

Since the two parameters appearing in the normal distribution are just the
mean and the standard deviation (i.e., the square root of the variance) the
unbiased point estimators are given by Eqs. 5.6 and 5.8. For N> 30 the central
limit theorem is applicable to the mean, and therefore the confidence interval
is given by Eqs.5.70 and 5.71. The 100(1 - a) percent two-sided confidence
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limits are thus

p = : & t z o n +  $ . 7 2 )
V N

The confidence interval for the standard deviation for l/ > 30, may be esti-
mated as

c ! :  ù +  z o n - r - g - .  ( 5 . 7 3 )
vz( l / -  1 )

D(AMPLE 5.9

Find the point estimate and the 90Vo confidence interval for the mean and the standard
deviation for the population of resistors coming from supplier 1 in Example 5.6.

Solution We first obtain the mean and the variance, applying the spread sheet
formula to Table 5.4

l.c : AVERAGE (83:81 7, G3:G77) : 49.77

ô2 :  VAR(B3:Bl7 ,  G3:G17)  :0 .5732

t :  tM32:  0.7571

Since there are 30 data points, we may use the expressions for large sample size. For
the mean we use Eq. 5.72 to obtain

tr :  49.77 -r 1.645 x 0.7571/t/30: 49.77 -r 0.23

For the standard deviation we use Eq. 5.73 to obtain

ù  :  0 .757 ' r  t . 645  x  0 .7577 / {2  x  n  :  0 .757  +  0 .164

Note that the point estimate of the variance is not identical to that obtained from
probability plotting in Example 5.6. The result from plotting, however, does lie within
the 90% confidence limit.

The CDF of a random variable 1 that is lognormally distributed is directly
related to the standard normal distribution through the relationship * :

ln(l) yielding the CDF

(5.74)

(5 .75)

or solving for j, and simpli$'ing

F(r )  :  *  [1  n (y /  y " ) ] .
L t ) l

Flere, ln yo, the log mean, is estimated by

ln jr, : 
*r) 

t", ,

j,, : (-l,Ir,)"'. (5.76)



Likewise we may write

^ e  N  [ t '  
/ r

ôe:rïLi? (rn1i) . , -  ( , i?t" r,) ]
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\ 5 . t  t )

(5.80)

( 5 . 8 1 )

(5.82)

The 100(1  -  a )
by transforming

and

percent two-sided confidence limits are similarly obtained

Eqs. 5.72 and 5.73

(5.78)

(5.7e)

yi :  
) ,  .*p( * zorzôI '{-t /2),

( r ) t : ô ) + z o n - +
\ /2 (N-  1 )

Extreme Value and Weibull Parameters

Point estimates for the parameters appearing in extreme value and Weibull
distributions can also be made. Determining the confidence intervals that can
be associated with these parameters is more problematical. In cases where
the sample size is not large, say less than 30, tedious and sometimes iterative
procedures are employed that are beyond the scope of what space allows us
to consider here. For larger sample sizes, rough estimates of the confidence
interval are obtainable using the relationships recommended by Nelson.* It
is these that appear in what follows.

Extreme ualue distributiorx In Eqs 3.92 and 3.93 the mean and the variance
of the maximum extreme value distribution are given in terms of the shape
and location parameters. If we invert these equations, the @ and z/ parameters
can be given in terms of the mean and variance:

l6( 9 : - û

{6
u : p - r ; o .

Accordingly, we may replace p and a on the right of these equations by
the sample mean and variance; we obtain the following point estimates of
the parameters:

^ G

ô :  
t o ô

I t

\'G "
u :  l L - y - ( t .

and

and

* W. Nelson, Applied l.ife Data Analysis, Wiley, New York, 1982, Ch. 6.

(5.83)
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Since @ in the minimum extreme value distribution is also related to the

variance by Eq. 5.82, we may estimate @ for both minimum and maximum

extreme value distributions. As indicated in Chapter 3 the maximum extreme

value distributiorr r.tr, p,, and u are related by

(5.84)

parameters yields

(5.86)

(5.87)

v6= p - r y ; c .

Hence replacing p. and tr by their point estimators the

rî: Êt * yY ù. (5.85)

For large values of the sample size, say t = UO, Nelson provides the following

confidence limit estimates:

@t :  ô  exp(- t -1 .049 zonN* l /2)

11. :  t t  + 1.018 2,1261tr-t /2.

The two-parameter Weibull distribution is obtained from the mtnrmum
extreme value distribution by making the transformation x : ln ), whereas
in Eqs. 3.106 and 3.107 thre Weibull parameters are given in terms of the

corresponding minimum extreme-value parameters as 0 : e" and m: 1/@.
These relationships may be combined with the estimators for u and @, given
by Eqs. 5.82 and 5.83, to yield

(5.88)7 n :

and

(5.8e)

For the Weibull distribution, however, the transformation x : ln y must also
be applied to the definitions of the mean and the variance. Thus we now
have the log mean and log variance

î.,, : ln yi (5.e0)

and

û
t t

{oa

â: exp (o. ,+ r)

I \-,
Lra

u ' : * [ t ; 1 r n v , ) 2 - (t"; '"'') ]

,: (Tr,)"'.*p (y +ù

(5 .e1)

With these definitions, p can by eliminated from Eq. 5.89 to yield

(5.e2)
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Approximate confidence intervals for the Weibull parameters can also
be obtained by applying the transforms of Eqs. 3.106 and 3.107 to Eqs. 5.86
and 5.87. The result are the following estimates for m and 0 confidence
intervals, which are applicable for sufficiently large sample size:

and

n'tt : rh exp(-f 1.049 zonN-t/z)

0 .  :  g  exp(- f  l .01B zoy2rû, - l1{ -1 /2) ,

(5.e3)

(5.e4)

where the zo12 are determined as before.

E>(AMPLE 5.10

The data points in Table 5.6a for voltage discharge are thought to follow a Weibull

distribution. Make point estimates of the Weibull shape and scale parameters and

determine their 90Vo confidence limits.

Solution We tabulate the natural logarithms of the 60 voltage discharges in Table

5.6b. We calculate the log mean and log variance, Eqs. 5.90 and 5.91, from the data
in Table 5.6b:

rr.c: A\TERAGE(A1:C20) : 4.101

ô?:VAR(A1:C20)  :0 .0056

TABLE 5.6 Voltage Discharge Data for
Example 5.10

1 6 3 6 5 6 2
2 7 2 6 7 7 0
3 6 6 6 8 5 9
4 7 5 6 3 6 3
5 6 1 7 2 6 9
6 6 3 7 0 7 3
7 7 0 6 4 6 1
8 5 7 5 8 6 6
9 6 8 6 8 5 5

10 74 57 68
1l 70 68 64
12 63 64 68
13 64 57 59
74 72 74 69
15 66 72 63
16 62 57 73
17 72 64 66
18 69 64 65
19 64 66 66
20 63 62 65
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TABLE 5.7 Natural Logarithms of Voltage

Discharge Data

I

2
3

.̂|
5
6
P7

B
9

1 0
1 l
r2
1 3
t 4
l5
l 6
1 7
1 8
1 9
20

4.1431
4.2767
4.t897
4.3775
4 .1109
4.t437
4.2485
4.0431
4.2195
4.3041
4.2485
4.7431
4.1589
4.2767
4.1897
4.t277
4.2767
4.234r
4.1589
4.7431

4.1744
4.2047
4.2195
4.1431
4.2767
4.2485
4.1589
4.0604
4.2195
4.043r
4.2795
4.1589
4.0431
4.3041
4.2767
4.0431
4.1589
4.1589
4.t897
4.r271

4.127r
4.2485
4.0775
4.t431
4.2341
4.2905
4 .1109
4.1897
4.0073
4.2195
4.1589
4.2195
4.0775
4.2347
4.1431
4.2905
4.7897
4.r744
4.1897
4.7744

and hence ù: 0.075. Thus from Eqs. 5.88 and 5.89 the shape and scale point estimates

are

û:  3 .741/  (2 .449 x  0 .075)  :  17.1

0 : exp(4.101 + 0.5772 x 2.449 x 0.075/3.14I) :  62.5

For the 90 percent confidence interval,  zo/2: I .645. Thus from Eq.5.93:

m'  :  LT. Iexp( t  1 .049 x  1 .645/ {60)

or m* :2L.4and m- : I3.7.

From Eq. 5.94:

0' :  62.5exp(t 1.018 x 1.645/17 '1\/60)

or g* : 63.3 and 0- : 61.7

5.5 STATISTICAL PROCESS CONTROL

Thus far we have dealt with the analysis of complete sets of data. In a number

of circumstances, however, it is necessary to take data in time sequence and

advantageous to analyze that data at the earliest possible time. One example

is in life testing where a number of items are tested to failure. Since the time

to the last failure may be excessive, it is often desirable to glean information

from the times of the first few failures, or even from the fact that there have

been none, if that is the situation. We take up the analysis of such tests in

Chapter 8.
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A second circumstance, which we treat briefly here, arises in statistical
process control or SPC. Usually, in initiating the process and bringing it under
control, a data base is established to demonstrate that the process follows a
normal distribution. Then, as discussed in Chapter 4, it is desirable to ensure
that the variability is due only to random, short-term, part-to-part variation.
If systematic changes cause the process mean to shift, they must be detected
as soon as possible so that corrective actions can be taken and the number
of out-oÊspecification items that are produced is held to a minimum.

One approach to the forgoing problem consists of collecting blocks of
data of say 50 to 100 measurements, forming histograms, and calculating the
sample mean and variance. This, however, is very inefficient, for if a mean
shift takes place many out-oÊtolerance items would be produced before the
shift could be detected. At the other extreme each individual measurement
could be plotted, as has been done for example in Fig. 5.12a and b. In Fig
5.72a all of the data are distributed normally with a constant mean and
variance. In Fig. 5.12b, however, a shift in the mean takes place at run number
50. Because of the large random component of part-to-part variability the
shift is difficult to detect, particularly after relatively few additional data points
have been entered.

More effective detection of shifts in the distribution is obtained by averag-
ing over a small number of measurements, referred to as a rational subgroup.
Such averaging is performed over groups of ten measurements in Fig. 5.13.
The noise caused by the random variations is damped, making changes in
mean more easily detected. At the same time, the delays caused by the group-
ing are not so large as to cause unacceptable numbers of out-of:tolerance
items to escape detection before corrective action can begin. Note that
upper- and lower-control limit lines are included to indicated at what point
corrective action should be taken. From this simple example it is clear that
in setting up a control chart to track a particular statistic, such as the mean
or the variance, one must determine (a) the optimal number l/ of measure-
ments to include in the rational subgroup, and (b) the location of the con-
trol limits.

Averaging over rational subgroups has a number of beneficial effects. As
discussed in section 5.4, the central limit theorem states that as the number
of units, { included in an average is increased, the sampling distribution will
tend toward being normal even though the parent distribution is nonnormal.
Furthermore the standard deviation of the sampling distribution will be the
o/{t{,where a is the standard deviation of the pur.rrt distribution. Typically
values of À/between 4 and 20 are used, depending on the parent distribution.
If the parent distribution is close to normal, ly': 4 rrray be adequate, for the
sampling distribution will already be close to normal. In general, smaller
rational subgroups, say 1r{ : 4,5, or 6, are frequently used to detect larger
changes in the mean while larger subgroups, say 10 or more, are needed to
find more subtle deviations. A substantial number of additional considerations
come into play in speci$zing the rational subgroup size. These include the
time and expense of making the individual measurements, whether every unit

1 3 1
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FIGURE 5.12 Part dimension vs. production sequence: (a) no disturbance,

(b) change in mean.
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1 0 0 . 0 8

1 0 0 . 0 6
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1 0 0 . 0 0
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Par t  number

FIGURE 5.13 Averaged part dimension vs production sequence.

is to be measured, or only periodic samplings are to be made, and the cost
of producing out of tolerance units, which must be reworked or scrapped.

The specification of the control limits also involves tradeoffs. If they are
set too tightly about the process mean, there will be frequent false alarms in
which the random part-by-part variability causes a limit to be crossed. In the
hypothesis-testing sense these are referred to as Type I errors; they indicate
that the distribution is deviating from the in-control distribution, when in fact
it is not. Conversely, if the control limits are set too far from the target value,
there will be few if any false alarms, but significant changes in the mean may
go undetected. These are then Typ. II errors, for they fail to detect differences
from the base distribution.

Control limits are customarily set only when the process is known to be
in control and when sufficient data has been taken to determine the process
mean and standard deviation with reasonable accuracy. Probability plotting
or the chi-squared test may be used to determine how nearly the data fits a
normal distribution. The upper- and lower-control limits (UCL and LCL) may
then be determined from

(g

o_

c
0)

(D
oo

0.)

c

a
c
o)

E
1

(s

(JCL: p. + Z4
V N

L C L :  *  -  z ]
V N

(5.e5)

where p, and c are the mean and standard deviation of the process, and o/
Vl/ is the standard deviation of the rational subgroup. The coefficient of
three is most often chosen if only part-to-part variation is present. With this

Upper  con t ro l  l im i t

Lower  con t ro l  l im i t
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value, 0.26% of the sample will fall outside the control limits in the absence

of long-term variations. This level of 26 false alarms in 10,000 average computa-

tions is considered acceptable.
Nore that the LCL and UCL are not related to the lower- and upper-

specification limits (the ZSt and USl,) discussed the Chapter 4. Control charts

are based only on the process variance and the rational control group size,

N, and not on the specifications that must be maintained. Their purpose is

to ensure that the process stays in control, and that any problems causing a

shift in p are recognized quickly so that corrective actions may be taken.

EXAMPLE 5.1I

A large number of +\Vo resistors are produced in a well-controlled process. The

process mean is 50.0 ohms and a standard deviation is 0.84 ohms. Set up a control

chart for the mean. Assume a rational subgroup of N: 6.

Solution From Eq. 5.!5 we obtain UCL : 50 +

LCL : 50 - 3 x 0.84/V6 : 49.0 ohms. Note that

LISL : 52.5 and I-SL : 47.5 are quite different.

3 x 0.84/V6 :  51.0 ohms
tlr'e +\Vo specification limits

The chart discussed thus far is referred to as a Shewhart x chart. Often,

it is used in conjunction with a chart to track the dispersion of the process

as measured by o, the process standard deviation. In practice, bootstrap meth-

ods may be used to estimate the process standard deviation by taking the

ranges of a number of small samples. One then calculates the average range

and uses it in turn to estimate a. Likewise, statistical process control charts
may also be employed for attribute data, and a number of more elaborate

sampling schemes employing moving averages and other such techniques are

covered in texts devoted specifically to quality control.
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Exercises

5.1 Consider the following response time data measured in seconds.*

1.48
L.34
1 .59
1 .66
1 .55
1 .61
1 .52
1 .80
1 .64
1.46
1 .38
1 .56
7 .62
1 .30
1 .56
r .27
L .37

t .46
1.42
1.59
1.58
1 .60
r .67
1 . 3 7
1 .55
1 .55
r .57
1 .66
1 .38
1.49
l .5B
1.48
1 .30
1 .68

r .49
r.70
1.6r
1.43
r.29
1.36
1.66
1.46
1.65
1 .65
1.59
1 .57
r .26
1 .43
1 .53
1 .72
1 .77

1.42 1.35
1 .56  1 .58
1 .25  1 .31
1 .80  1 .32
1 .51  l .4B
1.50 1.47
1.44 1.29
t .62 1.48
1 .54  1 .53
1.59 1.47
1 .46  1 .61
1.48 1.39
1 .53  1 .43
1 .33  1 .39
1.59 1.40
1.48 1.66
r .62  1 .33

(a) Compute the mean and the variance.

(b) Use the Sturges formula to make a histogram approximating f@).

5.2 Fifty measurements of the ultimate tensile strengçth of wire are given in

the accompanying table.

(a) Group the data and make an appropriate histogram to approximate

the PDF.

(b) Calculate p and ô2 for the distribution from the ungrouped data.

(c) Using p and ô from part b, draw a normal distribution through

the histogram.

Ultimate Tensile Strength

103,779
102,906
104,796
103,197
100,872
97,383

101 ,162
98 ,110

104,651

102,325
104,651
105,087
106,395
100,872
104,360
101,453
t03,779
101 ,162

102,325
105,377
t04,796
lc6,83l
105,087
103,633
107,848
99,563

105,813

103,799
100,145
703,799
103,488
102,906
101 ,017
104,651
103,197
r05,337

x Data from A. E. Green and A.J. Bourne, fuliability Technologl, Wiley, NY' 1972.



136 Introduction to Rzliability Enginerring

Ultimate Tensile Strength (continued)

102,906 102,470 108,430 101,744
103,633 105,232 106,540 106,104
102,616 106,831 101,744 100,726
103,924 101,598

Source: Data from E. B. Haugen, Probabilistic Mechanical Design,
Wiley, Nl 1980.

5.3 For the data in Example 5.3:

(a) Calculate the sample mean, variance, skewness, and kurtosis.

(b) Analytically determine the variance, skewness, and kurtosis for an
exponential distribution that has a mean equal to the sample mean
obtained in part a.

(c) What is the difference between the sample and analytic values of
the variance, skewness, and kurtosis obtained in parts a and b?

5.4 The following are sixteen measurements of circuit delay times in micro-
s e c o n d s :  2 . 1 ,  0 . 8 ,  2 . 8 , 2 . 5 ,  3 . L , 2 . 7 ,  4 . 5 ,  5 . 0 ,  4 . 2 , 2 . 6 , 4 . 8 ,  1 � 6 ,  3 . 5 ,  I . 9 ,  4 . 6 ,
and 2 .1 .

(a) Calculate the sample mean, variance, and skewness.

(b) Make a normal probability plot of the data.

(c) Compare the mean and variance from the probability plot with the
results from part a.

5.5 Make a Weibull probability plot of the data in Example 5.7 and determine
the parameters. Is the fit better or worse than that using a lognormal
distribution as in Example 5.7? What criterion did you use to decide
which was better?

5.6 The following failure times (in days) have been recorded in a proof test
of  20 uni ts of  a new product:  2.6,  3.2,  3.4,  3.9,  5.6,7.1,8.4,  B.B, 8.9,  9.5,
g .B ,  11 .3 ,  11 .8 ,  11 .9 ,72 .3 ,  L2 .7 ,16 .0 ,  21 .9 ,22 .4 ,  and 24 .2 .

(a) Make a graph of F(l) vs. r.

(b) Make a Weibull probability plot and determine the scale and
shape parameters.

(c) Make a lognormal plot and determine the two parameters.

(d) Determine which of the two distributions provides the best fit to
the data, using the coefficient of determination as a criterion.

5.7 Calculate the sample mean, variance, skewness, and kurtosis for the data
in Exercise 5.6

5.8 Make a least-squares fit of the following (x, 1) data points to a line of
the form y : ax * b, and estimate the slope and y intercept:

x :  0 . 5 4 , 0 . 9 2 ,  L . 2 7 , 1 . 3 5 ,  1 . 3 8 ,  1 . 5 6 ,  L . 7 0 ,  1 . 9 1 ,  2 . 7 5 , 2 . 1 6 , 2 . 5 0 , 2 . 7 5 ,
2 .90 ,  3 .11 ,  3 .20

y: 28.2, 30.6, 29.L, 24.3, 27.5, 25.0, 23.8, 20.4, 22.L, 17.3, 17.1, 18.5,
1 6 . 0 .  1 4 . 1 .  1 5 . 6
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5.9 Make a normal probability plot for the data in Example 5.6 using Eq.

5.13 instead of 5.12. Compare the means and the standard deviations
to the values obtained in Example 5.6.

5.10 (a) Make a normal probability data plot from Exercise 5.1.

(b) Estimate the mean and the variance, assuming that the distribution
is normal.

(c) Compare the mean and variance determined from your plot with
the values calculated in paft a of Exercise 5.1.

5.ll Make a lognormal probability plot of the data in Example 5.3 and deter-

mine the parameters. How does the value or r2 compare to that obtained

when a Weibull distribution is used to fit the data?

5.12 Make a lognormal probability plot for the voltage discharge data in

Example 5.10 and estimate the parameters.

5.13 Make a normal probability plot for the data in Exercise 5.2 and estimate

the mean, the variance and r2.

5.14 Calculate the skewness from the voltage data in Example 5.10. If it is

positive (negative) make a maximum (minimum) extreme value plot
and estimate the pararneters.

5.15 The times to failure in hours on four compressors are 240, 420, 630,

and 1080.

(a) Make a lognormal probability plot.

(b) Estimate the most probable time to failure.

5.16 Redo Example 5.3 by making the probability plot with a spread sheet,
and compare your estimate of 0 with Example 5.3.

5.17' Use Eqs. 5.72 and 5.73 to estimate the 90% and the gbVo confidence
intervals for the mean and for the variance obtained in Exercise 5.2.

5.18 
'The 

following times to failure (in days) result from a fatigue test of 10
flanges:

1.66, 83.36, 25.76, 24.36,334.68, 29.62, 296.82, L3.92, 707.04, 6.26.

(a) Make a lognormal probability plot.

(b) Estimate the parameters.

(c) Estimate the factor to which the time to failure is known with
90Vo confidence.

5.19 Suppose you are to set up a control chart for testing the tensile strength
of one of each 100 specimens produced. You are to base your calculations
on the data given in Exercise 5.2. Calculate the lower and upper control
limits for a rational subgroup size of -Ày' : 5.

5.20 Find the UCL and LCL for the control chart in Example 5.12 if the
rational subgroup is taken as (a) Ir,' : 4, (b) l/: 8.
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6.I INTRODUCTION

Generally, reliability is defined as the probability that a system will perform

properly for a specified period of time under a given set of operating condi-

tions. Implied in this d.efinition is a clear-cut criterion for failure, from which
we may judge at what point the system is no longer functioning properly.
Similarly, the treatment of operating conditions requires an understanding
both of the loading to which the system is subjected and of the environment
within which it must operate. Perhaps the most important variable to which
we must relate reliability, however, is time. For it is in terms of the rates of
failure that most reliability phenomena are understood.

In this chapter we examine reliability as a function of time, and this leads
to the definition of the failure rate. Examining the time dependence of failure
rates allows us to gain additional insight into the nature of failures-whether

they be infant mortality failures, failures that occur randomly in time, or
failures brought on by aging. Similarly, the time-dependence of failures can
be viewed in terms of failure modes in order to diff-erentiate between failures
caused by different mechanisms and those caused by different components
of a system. This leads to an appreciation of the relationship between failure

rate and system complexity. Finall/, we examine the impact of failure rate

138
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on the number of failures that may occur in systems that may be repaired

or replaced.

6.2 RELIABILITY CHARACTERIZATION

We begin this section by quantitatively defining reliability in terms of the PDF

and the CDF for the time-to-failure. The failure rate and the mean-time-to-

failure are then introduced. The failure rate is discussed in detail, for its

characteristic shape in the form of the so-called bathtub curve provides sub-

stantial insight into the nature of the three classes of failure mechanisms:

infant mortality, random failures, and aging.

Basic Definitions

Reliability is defined in Chapter 1 as the probability that a system survives for

some specified period of time. It may be expressed in terms of the random

variable t, the time-to-system-failure. The PDF, Ât), has the physical meaning

f ( t ) L t : P { t < t < / * A t } :

forvanishingly small Ar. From Eq. 3.1 we see that the CDF now has the meaning

f ( r )  :  P { t <  t } :

We define the reliability as

(6.2)

R( i r )  :  P{ t>  t } : (6.3)

Since a system that does not fail for t < / must fail at some t ) t, we have

l ? ( l ) : 1 - F ( t ) ,  ( 6 . 4 )

or equivalently either

R(t)  :  ' -  J ;  fQ,)  dt , (6.5)

f probabil ity that failurel

{ takes place at a time I
I between I and t + Lt )

I probanility that failure I
I takes place at a time less f .

I than or equal to / )

Iprobabil ity that a systeml

{ operates without tailure f .

I for a length of t ime I J

( 6 . 1 )

Â( t )

From the properties of the PDF,

l æ
- l

J t f( t ' )  dt '

it is clear that

Â(o; : 1

(6 .6 )

(6 .7 )
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and

f t (oo)  :  g . (6 .8 )

We see that the reliability is the CCDF of l, that is, rR( t) : F(/). Similarly,
since F(r) is the probability that the system will fail before t : t, it is often
referred to as the unreliability or failure probabilif; at times we may denote
the unreliability as

R1r; :

Equation 6.5 may be inverted by
times in terms of the reliability:

1  -  À(  t )  :  F ( t ) .

differentiation to give the PDF of failure

(6.e)

Insight is normally gained into failure mechanisms by examining the
behavior of the failure rate. The failure rate, À(t), rnay be defined in terms of
the reliability or the PDF of the time-to-failure as follows. Let À(r) A, be the

probability that the system will fail at some time t < t + At given that it has
not vet failed at t : /. Thus it is the conditional probabiliw

À( , )  A ,  :  P { t  <  t  +  Ar l t  >  r } .

Using Eq. 2.5, the definition of a conditional probabilig, we have

P { t < r + A r l t > 1 1  : r { ( t>  r )  n  ( t<  r+  A r ) }
P{t> t}

The numerator on the right-hand side is just an alternative way of writing the
PDF; that is,

P { ( t >  t )  n  ( t  < t +  À r ; } -  P { t < t < t  +  À r } :  f ( t )  L t .  ( 6 . 1 3 )

The denominator of Eq. 6.12 is just rR(/), as may be seen by examining Eq.
6.3. Therefore, combining equations, we obtain

f(t) : - !,nro.

À(r):ffi

À ( r ) : - + 4 ^ t O .
R(t)  dt

Then multiplying by dt, we obtain

À(t)  dt :  -  44L

( 6 . 1 0 )

( 6 . 1 l )

( 6 . 1 2 )

(6 . r4)

(6 .15)

This quantity, the failure rate, is also referred to as the hazard or mortality rate.
The most useful way to express the reliability and the failure PDF is in

terms of the failure rate. To do this, we first eliminate /(r) from Eq. 6.14 by
inserting Eq. 6.10 to obtain the failure rate in terms of the reliability,

( 6 . 1 6 )



Integrating betwee\ zero and t yields

[ '  \ f )  d , t '  :  - ln tn(r ) ]  (6 .17)
J o

since R(0) : 1. Finally, exponentiating results in the desired expression for
the reliability

R ( r ) : . * p [ - [ ' ^ ^ ( r >
L  

J U

To obtain the probability density function for
6.18 into Eq. 6.14 and solve for f(t):

I ( t )  :À(r)  exp [-  t :  À(r ' )  d, , '1.  (6.1e).  
L  J O  I

Probably the single most-used parameter to characterize reliability is the
mean time to failure (or MTTF). It is just the expected or mean value E{r} of
the failure time /. Hence

MrrF : 
/; 

tfQ) dt. (6.20)

The MTTF may be written directly in terms of the reliability by substituting
Eq. 6.10 into Eq. 6.20 and integrating by parts:

MrrF: -/; t ff at: -tr(t) 
l: 

. /; R(t) dt

o,l
failu

Rzliability and Rates of Faifure l4l

(6 . r8)

res, we simply insert Eq.

(6 .21)

Clearly, the tuR(f) term vanishes at t: 0. Similarly, from Eq. 6.18, we see that
R(r) will decay exponentially or faster, since the failure rate À(r) must be
greater than zero. Thus tR(t) --> 0 as / --> oo. Therefore, we have

MrrF: /; 
RQ) dt. (6.22)

E)(AMPLE 6.I

An engineer approximates the

rR( l )  :

Determine the failure rate.

Does the failure rate increase or decrease with time?

Determine the MTTF.

Sohtti,on (a) From Eq. 6.10,

reliability of a cutting assembly by

l t t -  t / h ) 2 ,  o 3 t < t o ,
{
L o  t à  t r .

\ a )

( b )

( c )

f ( t ) :  - ! " O -  t / t o ) 2 : T r t -  t / t o ) ,  0  < t < t 0 .
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and from Eq. 6.14,

f t t \  I
À ( t ) :  

î 6 : i O :  U  t ù ,  
o  <  t < - r , , .

(ô) The failure rate increases from 2/ t, at t : 0 to infinity at t : Q1.

(c) Frorn F,q.6.22

MTTF :  
[ ' '  at1 -  t /  h)2:  h/3.

The Bathtub Curue

The behavior of failure rates with time is quite revealing. Unless a system has
redundant components, such as those discussed in Chapter 9, the failure rate
curve usually has the general characteristics of a "bathtub" such as shown in
Fig.6.1. The bathtub curve, in fact, is an ubiquitous characteristic of living
creatures as well as of inanimate engineering devices, and much of the failure
rate terminology comes from demographers' studies of human mortality distri-
butions. In the biomedical community, for example, reliability is referred to
as the sur-vivability and denoted as S(/). Moreover, comparisons of human
mortality and engineerinpç failures add insight into the three broad classes of
failures that give rise to the bathtub curve.

The short period of time on the left-hand side of Fig. 6.1 is a region of
high but decreasing failure rates. This is referred to as the period of infant
mortality, or early failures. Flere, the failure rate is dominated by infant deaths
caused primarily by congenital defects orweaknesses. The death rate decreases
with time as the weaker infants die and are lost from the population or their
defects are detected and repaired. Similarly, defective pieces of equipment,
prone to failure because they were not manufactured or constructed properly,
cause the high initial failure rates of engineering devices. Missing parts, sub-
standard material batches, components that are out of tolerance, and damage
in shipping are a few of the quality weaknesses that may cause excessive failure
rates near the beginning of design life.

FIGURE 6.f A "bathtub" curve representing a tinre-
dependent failure rate.
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Early failures in engineering devices are nearly synonymous with the
' 'product noise' ' quality loss stressed in the Taguchi methodology. As discussed

in Chapter 4, the preferred method for eliminating such failures is through

design and production quality control measures that will reduce variability

and hence susceptibility to infant mortality failures. If such measures are

inadequare, a period of time may be specified during which the device under-

goes wearin.* During this time loading and use are controlled in such a way

that weaknesses are likely to be detectecl and repaired without failure, or so

that failures attributable to defective manufacture or construction will not

cause inordinate harm or financial loss. Alternately, in environmental stress

screening and in proof-testing products are stressed beyond what is expected

in normal use so that weak units will fail before they are sold or put in service.

The middle section of the bathtub curve contains the smallest and most

nearly constant failure rates and is referred to as the useful life. This flat

behavior is characteristic of failures caused by random events and hence

referred to as random failures. They are likely to stem from unavoidable loads

coming from without, rather than from any inherent defect in the device or

system under consideration. Consequently, the probability that failure will

occur in the next time increment is independent of the system's age. In

human populations, deaths during this part of the bathtub curve are likely

to be due to accidents or to infectious disease. In engineering devices, the

external loading may take a wide variety of forms, depending on the type of

system under consideration: earthquakes, power surges, vibration, mechanical

impact, temperature fluctuations, and moisture variation are some of the

common causes. In the Taguchi quality methodology such loads are referred

to as "outer noise."
Random failure can be reduced by improving designs: making them more

robust with respect to the environments to which they are subjected. As

discussed in detail in Chapter 7 this may be accomplished by increasing the

ratio of components capacities relative to the loads placed upon them. The

net outcome may be visualized as in Fig. 6.2, where for an assumed operating

environment, the failure rate decreases as the component load is reduced.

This procedure of deliberately reducing the loading is referred to as derating.

The terminology stems from the deliberate reduction of voltages of electrical

systems, but it is also applicable to mechanical, thermal, or other classes of

loads as well. Conversely, the chance of component failure is decreased if the

capacity or strength of the component is increased.
On the right of the bathtub curve is a region of increasing failure rates.

During this period of time aging failures become dominant. Again, with an

obvious analogy to the loss of bone mass, arterial hardening, and other aging

effects found in human populations, the failures tend to be dominated by

cumulative effects such as corrosion, embrittlement, fatigue cracking, and

diffusion of materials. The onset of rapidly increasing failure rates normally

forms the basis for determining when parts should be replaced and for speci-

* Also referred to as burnin or runin depending on the device under consideration.
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FIGURE 6.2 Time-dependent failure rates at diff'erent levels of load-
ing :  11  >  l r>  k .

fyirg the system's design life. Design with more durable components and
materials, inspection and preventive maintenance, and control of deleterious
environmental stresses are a few of the approaches in the enduring battle to
produce longer-lived products. In the Taguchi methodology the causes of
deterioration are referred to as "inner noise."

Although Fig. 6.1 displays the general features present in failure rate
cul'ves for many types of devices, one of the three mechanisms maybe predomi-
nant for a particular class of system. Examples of such curves are given in Fig.
6.3. The curye in Fig. 6.3a is representative of much computer and other
electronic hardware. In particular, after a rather inconspicuous wearin period,
there is a long span of time over which the failure rate is essentially constant.
For systems of this type, the primary concerns are with random failures,
and with methods for controlling the environment and external loading to
minimize their occurrence.

The failure rate curve in Fig. 6.3ô is typical of valves, pumps, engines,
and other pieces of equipment that are primarily mechanical in nature. Their
initial wearin period is followed by a long span of time with a monotonically
increasing failure rate. In these systems, for which the primary failure mecha-
nisms are fatigue, corrosion, and other cumulative effects, the central concern
is in estimating safe and economical operating lives, and in determining
prudent schedules for preventive maintenance and for replacing parts.

Thus far we have not discussed the reliability consequences of logical
errors or oversights committed in the design of complex systems. These, for
example, may take the form of circuitry errors imbedded in microprocessor

(o) Electronic hardware.

FIGURE 6.3 Representative fallure
systems.

(b)  Mechanical  equipment.

rates for different classes of



Reliability and Rates of Failure 145

chips, bugs in computer software, or even equation mistakes in engineerins

refèrence books. Prototypes normally undergo extensive testing to find and

eliminate such errors before a product is put into production. Nevertheless,

it may be impossible-or at least impractical-to test a device against all

possible combinations of inputs to assure that the correct output is produced

itr .u.ry case. Thus there may exist untested sets of inputs that will cause the

system to malfunction. In general, the resulting malfunctions may be expected

to occur randomly in time, contributing to the time-independent component

of the failure rate curve.

There is sometimes confusion with regard to failure rate definitions for

computer software. This results from the common practice of finding and

corrècting bugs after, as well as before, the software is released for use. Such

bugs tend to occur less and less frequently, giving rise to the notion of a

deireasing failure rate. But that is not a failure rate in the sense in which it

is defined here. In debugging, the software design is modified after each

failure, whereas the definition used here is only valid for a product of fixed

design. Hardware and software reliability growth attributable to test-fix debug-

ging processes is taken up in Chapter B.

In the following sections models for representing failure rates with one,

or at most a few parameters, are discussed. These are particularly useful when

most of the failures are caused by early failures, by random events, or by aging

effects. Even when more than one mechanism contributes substantially to the

fai|.rre rate curve, however, these models can often be used to represent the

combined failure modes and their interactions.

6.3 CONSTANT FAILURE RATE MODEL

Random failures that give rise to the constant failure rate model are the most

widely used basis for describing reliability phenomena. They are defined by

the assumption that the rate at which the system fails is independent of its

age. For continuously operating systems this implies a constant failure rate,

whereas for demand failures it requires that the failure probability per demand

be independent of the number of demands.

The constant failure rate approximation is often quite adequate even

though a system or some of its components may exhibit moderate eatly failures

or aging effects. The magnitude of early-failure effects is limited by strict

quality control in manufacture and installation and may be further reduced

by a wearin period before actual operations are begun. Similarly, in many

systems aging effects can be sharply limited by careful preventive maintenance,

with timely replacement of the parts or components in which the wear effects

are concentrated,. Conversely, if components are replaced as they fail, the

overall failure rate of a many-component system will appear nearly constant,

for the failure of the components will be randomly distributed in time as will

the ages of the replacement parts. Finally, even though the system's failure

rate may vary in time, we can use a constant failure rate that envelops the

curve; this rate will be moderately pessimistic.
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In the following sections we first consider the exponential distribution.
It is employed when constant failure rates adequately describe the behavior
of continuously operating systems. We then examine two demand failure
models, one in which the demands take place at equal time intervals and the
other in which the demands are randomly distributed in time. Both may be
represented as constant failure rates. Finally, we formulate a composite model
to describe the behavior of intermittently operating systems that may be subject
to both operating and demand modes of failure.

The Exponential Distribution

The constant failure rate model for continuously operating systems leads to
an exponential distribution. Replacing the time-dependent failure rate À(f)
by a constant À in Eq. 6.19 yields, for rhe PDF,

Similarly, the CDF becomes

f(t) : Àe ̂ '.

F ( t ) : l - e ^ '

and from Eq. 6.18 the reliability may be written as

R( t )  :  n  t ' t

Plots of f(t), R(t), and À(r) (the failure rare) are given in Fig.6.4. with the
constant failure rate model, the resulting distributions are described in terms
of a single parameter, À. The MTTF and the variance of the failure times are
also given in terms of À. From Eq. 6.22 we obtain

MTTF : l/ ^,

and the variance is found from Eq. 3.16 to be

o 2 :  l / À 2

A device described by a constant failure rate, and therefore by an exponen-
tial distribution of times to failure, has the following property of "memoryless-

ness' ' : The probabili ty that it will fail during some period of time in rhe furure
is independent of its age. This is easily demonstrated by the following example.

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

l/)\ 2/^ 3/i,
(a)Time to failure PDF

FIGURE 6.4 The exponenrial

L/)\ U)\

/ô/ Reliability

distribution.



Reliability and Rates of Failure 147

EXAMPLE 6.2

A device has a constant failure rate of 7 : g.Ql/hr.

(a) What is the probability that it will fail during the first 10 hr of operation?

(ô) Suppose that the device has been successfully operated for 100 hr. What is the

probability that it will fail during the next 10 hr of operation?

Solution (a) The probability of failure within the first 10 hr is

P{ t<  l0} :  | , t , ,n  
f lù  d t :  F(10)  -  1  -  e  u '02xt0:0 .181 '

(à) From F,q.2.5, the conditional probability is

P t t=  100  |  t >  100 )  -  P { ( t=  1 !0 )  n  ( l -  100 ) }  -  P {100  s  t=  100 }

P{t > 100} P{t > 100}

f r rrr f( t)  dt
: l

J 1 ( r o l  - f ( 1 0 0 )

_ fuo 0.02e o'02'dt
-  

J 'nn  1  -  1  +  exp( -0 .02  x  100)

exp( -0 .02  x  100)  - . "P( -0 .02  x  110)
exp(-0.02 x 100)

-  1  -  exp( -0 .02  x  10)  :  0 '181.

That the probability of failure within a specified time interval is indepen-

d.ent of the age of the device should not be surprising. Random failures are

normally those caused by external shocks to the device; therefore, they should

not depend on past history. For example, the probability that a satellite will

fail duiing the next month owing to meteor impact would not depend on

how long ihe satellite had already been in orbit. It would depend only on the

frequency with which meteors pass through the orbit.

Demand Failures

The constant failure rate model has thus far been derived for a continuously

operating system. It may also be shown to be applicabte to a system exposed

to a series of demands or shocks, each one of which has a small probability

of causing failure. Suppose that each time a demand is made on a system,

the probability of survival is r, giving a corresponding probability of failure of

F : l - r .  ( 6 . 2 8 )

The term demand here is quite general; it may be the switching of an electric

relay, the opening of a valve, the start of an engine, or even the stress on a

bridge as a truck passes over it. Whatever the application, there are two salient

poinls. First, we must be able to count or at least infer the number of demands;
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and second, the probabilig of surviving each demand
of the number of previous demands.

We define the reliability -R, as the probability that
operational after n demands. Let X, signiff the event
clemand. Then, if the probabilities of surviving each
independent, .R,, is given by Eq. 2.13 as

Rn : P{X}P{Xr}P{X3} . . . P{X,},

or since P{X,} : r for all n,

R n :  r n '

Then, using Eq. 6.28, we obtain

R n :  Q  -  p ) " .

We may put this result in a more useful approximate
the exponential of

must be independent

the system will still be
of success in the nth

demand are mutually

(6.2e)

(6.30)

(6 .31)

form. First, note that

l n  - R , :  1 n ( 1  -  p ) ' :  l n ( I  -  p )

is

R , :  e x p l n  l n ( l  *  p ) 1 .

If the probability for failure on demand is small, we may make the
mation

l n ( l  - p ) - - p

R n :  g  n f t ,

R(t)  :  n t ' t .

where the failure rate À is now given by

À : y p .

for p << 1, yielding

Since p << I is often a good approximation, we see that the reliability decays
exponentially with the number of demands. If the rate atwhich demands are
made on the system is roughly constant, we may express the number of
demands occurring before time / as

h :  y t , (6 .36)

where 7 is the frequency at which demands arrive. Thus if they arrive at time
intervals Arwe have y -- l/A/. We may then calculare the reliability ^R(r),
defined as the probabiliqr that the sysrem will still be operational ar rime /, as

(6.32)

(6.33)

approxi-

(6.34)

(6.35)

(6.37)

(6.38)

Equation 6.35 indicates that the exponential distribution arises for systems
that are subjected to many independent shocks or demands, each of which
creates only a small probability of failure. If we drop the assumprion rhat the
demands appear at equal time intervals Ar, and assume that the shocks arrive
at random intervals, the same result is obtained without assuming that the
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probabili ty p of failure per shock is small. Let y represent the mean number

of demands per unit time. Then

l L :  y t (6.3e)

is the mean number of demands over a time interval l. If the demands appear

randomly in time obeying a Poisson process, we may represent th,e probability

that there will be zr demânds per unit time with the Poisson probability mass

function given in Eq. 2.59:

Since the reliability after n independent demands is just r", the reliability

ar rime t will just be the expected value of r" at l. Using Eq' 2'32 for the

expected value we have

,R(t) : | ,"f(n),
n = 0

which yields in combination with Eq. 6'40:

R(t) :  )  
(rY !)" nr ' .  (6.42)

7,^, n!

We next note that upon moving e 7'outside the sum, we obtain a power series

for eryt. Thus the reliability simplifies to

f(n) : 
(vJ')" o".

R ( t )  :  e x P [  ( r  -  l ) Y t l '

and upon inserting Eq. 6.28 we again obtain

(6.40)

(6 .41)

(6.43)

(6.44)

where the failure

E)(AMPLE 6.3

R(t) -- s rt"

rate is given by Eq. 6.38.

A telecommunications leasing firm frnds that during the one-year warrantee period,

6Vo ofits telephones are returned at least once because they have been dropped and

damaged. An exrensive testing program earlier indicated that in only 20% of the drops

shoulà telephones be damagèa. ,Lttrr-ing that the dropping of telephones in normal

use is a Poisson Process, whàt is the MTBD (mean time between drops)? If the tele-

phones are redeiigned so that only 4% of drops cause damage, what fraction of the

pho.r., will be ,eiurned with dropping damage at least once during the first year

of service?

Solution (a) The fraction of telephones not returned is R : e lt" or 0'94 :

e-Yxo:xt. Therefore

1  1 1 \
v : o.t;lt" \o*/ 

: o'3}e+/Year,

MTBD: ! -  3 .23year .
v
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(à) For the improved design R- t ,P' -  a0'30e4x004xr - 0.9877. Therefore the fract ion
of the phones returned at least once is

1 - 0 . 9 8 7 7 : I . 2 3 % .

Time Determinations

Careful attention must be given to the determination of appropriate time
units. Is it operating time or calendar time? A warrantee of 100,000 miles or
ten years, for example, includes both, since the 100,000 miles is convertecl to
an equivalent operating time. Two failure rates are then relevant, one for
when the vehicle is operating, and another presumably smaller one for when
it is not. A third consideration is the number of start-stop cycles that the
vehicle is likely to undergo, for the related stress and thermal cycling may
aggravate some failure mechanisms. Whatever the situation, we must clearly
state what measure of time is being used. If the reliability is to be expressed
in calendar time rather than operating time the duty cycle or capacity factor
c, defined as the fraction of time that the engine is running, must also enter
the calculations.

Consider as an example a refrigerator motor that runs some fraction c
of the time; the failure rate is À6 per unit operating time. The contribution
to the total failure rate from failures while the refrigerator is operating will
then be cÀ0 per unit calendar time. If the demand failure is also to be taken
into account, we must know how many times the motor is turned on. Suppose
that the averase length of time that the motor runs when it comes on is 76.
Then the average number of times that the motor is turned on per unit
operating time is 1/1,,. Tlne average number of times that it is turned on per
unit calendar time is rn : c/ls. To obtain the total failure rate, we add the
demand and operating failure rates. Consequently, the composite failure rate
to be used in Eqs. 6.23 through 6.27 is

À :  !  p  +  c ^ 0 . (6.45)

In the foregoing developmentwe have neglected the possibitity that the motor
may fail while it is not operating, that is, while it is in a standby mode. Often
such failure rat.es are small enough to be neglected. However, for systems that
are operated only a small fraction of the time, such as an emergency generator,
failure in the standby mode may be quite significant. To take this inro accounr,
we define À. as the failure rate in the standby mode. Since the system in our
example is in the standby mode for a fraction | - c of the time, we add a
contribution of (1 - c)À, to the composite failure rate in Eq. 6.45:

*  r À o  +  ( l  -  . ) À , . (6.46)

EXAMPLE 6.4

A pump on a volume control system at a chemical process plant operates intermittently.
The pump has an operating failure rate of 0.0004/hr and a standby failure rate of

. Co:  
u . ,F



0.00001/hr. The probability of failure

the pump is turned on f,, and turned

following table.
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on demand is 0.0005. The times at which

off tl over a 2Çlnr period are listed in the

f ,u

t,1

t,,

L . ,

t,1

0.78
1.02
8.91
9 .14

16.69
16.98

1.69
2 . l  l
9 .B l

10.08
17 .71
18.04

2.89
3.07

l0 .B l
11 .02
18.61
19.01

3.92
4.21

r  1 .87
12.14
19.61
19.97

4.71
5.08

12.98
13 .18
20.56
20.91

5.97
6.31

13 .81
14.06
21.49
21.86

6.84 7.76
7.23 8.12

14.87 15.97
15.19 16.09
22.58 23.61
22.79 23.89

Assuming that these data are representative, (a) Calculate a composite failure rate for

th. pump under these operating conditions. (â) What is the probability of the pumP's

failing during any 1-month (30-day) period?

Solution (a) From the data given we first calculate

NI

2  to , :3o l .5o
i : l

M

and ) ,,,: 294.36,
; - l

where M : 24is the number of operations. The average operating time fu of the

pump is estimated for the data to be

(ta; - t,) :

I: 
* tSOt.50 - 294.36): 0.2975 hr'

Then the capacitY factor is

M, to  :24x  0 .Zg7b :0 .2g7b.': z[ 24
Thus the failure rate from Eq. 6.46 is

0'2975 x 0.000b +0.2s7bx 0.0004+ (1 -  0.2975) x 0 '00001n: L2gzs
: 6 . 2 6  X  l 0 - a  h r - ' .

(ô) The rel iabi l i ty is

R:  exp(-À x  24 x  30)  :  exp(-0 .4507)  :  0 '637,

yielding a 30-day failure probability of

1  -  R :  0 . 3 6 3 .

6.4 TIME.DEPENDENT FAILUR.E, RATES

A variety of situations in which the explicit treatment of early failures or aging

effects, or both, require the use of time-dependent failure rate models' This

may be illustrated ty considering the effect of the accumulated operating

# É ,,,-i_,,",)' - 1 $t r r -  
M ? l
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time T6 on the probability that a device can sulive for an additional time L
Suppose that we define Â( I I fr) as the reliability of a device rhar has previously
been operated for a time 76. We may therefore write

R ( t l f o )  :  P { t ' }  7 ' o +  t l t ' >  f o } , (6.47)

where l' : 70 + / is the time elapsed at failure since the device was new.
From the definition given in Eq. 2.5,we maywrite the conditional probabiliryas

P { t ' > T o + t l  t ' > f , , }
P { ( t ' } T o + r ) n ( t ' > f n ) }

(6.48)
P{ t '>  To+ t }

However, since (t' > Tn -f ,) n (t' > fu) : t' ) To * /, we may combine
equations to obtain

R ( t l T o )
P{t '>  To+ t I

(6.4e)

(6.50)

(6 .51)

P{t' > To]1

The reliability of a new device is then just

Â( r ;  :  R ( t lTo  -  0 )  :  P { t '>  t } ,

and we obtain

R(r l r , ) :o ! i :3)
,q( fr)

Finally, using Eq. 6.18, we obtain

R(t l ro) :  exp 
[ -  l ; t  

À( t , )  0 , ,1 . (6.52)

(6.53)

The significance of this result may be interpreted as follows. Suppose that we
view Ze as a wearin time undergone by a device before being put into service,
and t as the service time. Now we ask whether the wearin time decreases or
increases the service life reliability of the device. To determine this, we take
the derivative of Æ( tl n) with respecr ro the wearin period and obtain

Increasing the wearin period thus improves the reliability of the device only
if the failure rate is decreasing [i.e., À(f0) > À(n + ù]. If the failure rare
increases with time, wearin only adds to the deterioration of the device, and
the service life reliability decreases.

To model early failures or wear effects more explicitly, we must turn to
specific distributions of the time to failure. In contrast to the exponential
distribution used for random failures, these distributions must have at least
two parameters. Although the normal and lognormal distributions are fre-
quently used to model aging effects, the Weibull distriburion is probabty the
most universally employed. With it we may model early failures and random
failures as well as aging effects.
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The Normal Distribution

To describe the time dependence of reliability problems, we write the PDF

for the normal distribution given by Eq. 3.38 with / as the random variable,

r(t):#".*o[-W],
where 1u, is now the MTTF. The corresponding CDF is

F(t) : l ' -#. .p[-Wfo, ' ,
or in standardized normal form,

(6 .54)

(6.55)

(6.58)

and the associated failure rate is obtained by substituting this expression into

Eq.  6 .14 :

F(t)  :

From Eq. 6.4 the reliability for the

R(t)  :  1

y - 2 o  p  p l Z o

/o/Timetofailure PDF

FIGURE 6.5 The normal distribution.

/ .  \
o { , - p ) .  ( 6 . 5 6 )

\  ( r /

normal distribution is found to be

/ \
_ o { I - I , ) ,  ( 6 . 5 7 )

\ a /

À(r) : #.,.p [ - 5Y] [' - . (t*)]'
The failure rate along with the reliability and the PDF for times to failure

are plotted in Fig. 6.5. As indicated by the behavior of the failure rate, normal

distributions are used to describe the reliability of equipment that is quite

d.ifferent from that to which constant failure rates are applicable. It is useful

in describing reliability in situations in which there is a reasonably well-definecl

wearout time, pr.. This may be the case, for example, in describing the life of

a tread on a tire or the cutting edge on a machine tool. In these situations

the life may be given as a mean value and an uncertainty. \Mhen normal

distribution is used, the uncertainty in the life is measured in terms of interyals

1.0

È

4/o

3/o

2/o

I/o

0
p - 2 o  p  p * 2 o

/ô/ Reliability

p - 2 o  p  p l 2 a

(c)Failurerate

t
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in time. For instance, if we say that there is a 90% probability that the life
will fail between, p - Lt and p. + L4 then

P { p -  A ^ t < t =  L t  +  A t } : 0 . 9 .  ( 6 . 5 9 )

If the times to failures are normally distributed, it is equally probable that the
failure will take place before p - Lt or after trr, * Ar. Moreover, we can
determine the failure distribution time from the standardized curye. Equation
6.59 impl ies that

L, t  :  L.645o. (6.60)

Therefore, û can be determined. The corresponding values for several other
probabilities are given in Table 6.1. Once g, and a are known, the reliability
can be determined as a function of time from Eq. 6.57.

D(AMPLE 6.5

A tire manufacturer estimates that there is a g0% probability that his tires will wear
out between 25,000 and 35,000 miles. Assuming a normal clistribution, find p, and o.

Solution Assume thatS% of failures are at fewer than 25 X 103 miles and 5Vo at
more than 35 X 105 miles:

o( r , )  :  0 .05 ,  " ,  :? ! - -F ,e ( "ù :  0 .95 ,  " r :W.
A U

From Append i x  C ,  z t :  - 1 .65 ,  zz :  *1 .65 .  Hence

-1 .65o  :  25  -  
1 t ,  *  1 .65o :  35  -  t " ,

and the solutions are p : 30 thousand mileS, û : 3.03 thousand miles.

The Lognormal Distribution

As we have indicated, the normal distribution is particularly useful for describ-
ing aging when we can specify a time to failure along with an uncertainq, Lt.
The lognormal is a related distribution that has been found to be useful in

TABLE 6.f Confidence Intervals for a

Normal Distribution

Standard Confidence
deviati<rns intewal, Vo

+0.5cr 0.3830
+  l .Oa  0 .682ô
+l .5rr  0.8664
+2.0cr 0.9544
+2.5o 0.9876
+3.0n 0.9974
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describing failure distributions for a variety of situations. It is particularly

appropriite under the following set of circumstances. If the time to failure

is âssociated with a large uncertainty, so that, for example, the variance of

the distribution is a large fraction of the MTTF, the use of the normal distribu-

tion is problematical. However, it still may be possible to state a failure time

and to estimare with it the probability that the time to failure lies within some

factor, say n, of this value. For example, if it is known that 90% of the failures

are within a factor of n of some time /e,

( 6 . 6 1 )

As indicated in Chapter 3, the lognormal distribution describes such situations.

The PDF for the time to failure is then

, {+=  t< , r , }  :  o  o

r(,t -- #,..0 { 
- *['" (;)]'],

and the corresponding CDF

(6.62)

(6.63)

indicated in

(6.64)

(6 .65)

and c,r may be
occur between

(6.66)

(6.67)

F(r)  :  ç

Now, however, /o is not the MTTF; rather, they are related as

Chapter  3 ,by

MTTF :  FL: to exp(atz/Z).

Similarly, the variance of/(l) is not equal to tù2, but rather to

o2 : tïexp(<,r2) fexp(or2) - 1].

\Arhen the time to failure is known to within a factor of n, t0

determined as follows. If it is assumed that90% of the failures

t- : t{)/ n and /- : to/ vr, then /0 is the geometric mean,

t o :  l t -  X  t * f r / z

and

, :  i * tn n.

[:'" 
(t/ tùf]

3/a

2/o

l/o

0  ro  2x ro  3x to

/o/Timetofailure PDF

FIGURE 6.6 The lognormal

0 to zxto 3xh

/b/RellabilitY

distribution.

ro  2xh 3xro
/c/ Failure rate
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The PDF for the time to failure, reliability, and failure rate À(r) for the
lognormal distribution are plotted in Fig. 6.6. Note that the failure rate can
be increasing or decreasing depending on the value of co. The lognormal
distribution is frequently used to describe fatigue and other phenomena
caused by aging or wear and results in failure rates that increase with time.

E>(AMPLE 6.6

It is known that 90% of the truck axles of a particular type will suffer fatigue failure
between 120,000 and 180,000 miles. Assuming that the failures may be fit to a lognor-
mal distribution.

(a) To what factor n is the fatigue life known with 90 percent confidence?

(ô) What are the parameters /s and rrr of the lognormal distribution?

(c) \tVhat is the MTTF?

Solution (a) For 90Vo certainty, ton: 180 and t11/n: 120. Taking the quotients
of these equations yields

"  180' ' :  rzo
n :  L . 2 2 4 7 .

(à) Taking the products of t1nand tr/n, we have

, l :  1 8 0  x  1 2 0

tn: 146.97 X 103 miles.

For 90% confidence Eq. 6.67 gives

I , ln(1.2247)
, :  

l . 64b ln  
n :  

Ë  
: 0 .1232 .

(c) From Eq. 6.64,

MTTF : 146.97 x exp(à x 0.72322) : 148.09 x 103 miles.

The Weibull Distribution

The Weibull distribution is one of the most widely used in reliability calcula-
tions, for with an appropriate choice of parameters a variety of failure rate
behaviors can be modeled. These include, as a special case, the constant
failure rate, in addition to failure rates modeling both wearin and wearout
phenomena. The Weibull distribution may be formulated in either a two- or
a three-parameter form. We treat the two-parameter form first.

The two-parameter Weibull distribution, introduced in Chapter 3, as-
sumes that the failure rate is in the form of a power law:
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From this failure

F ( t ) : 1 - e x P l - ( t / 0 ) ^ 1

and since R : I - ,8, the reliability is

rR(r ;  :  exP[  -  ( t /  q* ] '

The mean and the variance of the Weibull distribution

and

À(r; _ ,,(i)*'

rate we may use Eq. 6.19 to obtain

f(t) : t, (à'-' .*o [ 
- (r']

the PDF:

(6.68)

(6.6e)

Then, integrating over the time variable from zero to t, we obtain the CDF

to be

P :  0 l ( L  +  l / m )

( r 2  :  g r l f ( l  +  2 / m )  -  f ( L  +  l / m ) 2 ] .

In these expressions the complete gammafunction f (u) is given by the integral

of Eq. 3.78 where a graph is also provided.
Figure 6.7 shows the properties of À(ù,fft) and R(/) for a number of

values of m. From these figures and the foregoing equations it is clear that

the Weibull distribution provides a good deal of flexibility in fitting failure

rate data. When zz : l, the exponential distribution corresponding to a

constant failure rate is obtained. For values of m < I failure rates are typical

of wearin phenomena decrease, and for m > I failure rates are typical of

aging effects and increase. Finally, as mbecomes large, say m) 4,a normal

PDF is approximated.

0 2 0 3 0

ôr Reliability

(6.70)

(6 .71)

may be shown to be

(6.72)

(6.73)

0 2 e 3 8
l n t F z i l , t r F . ? i )

! /  !  v ' r v i  v  ,  v r v

0 0 2 e 3 8 0

ial Time to failure PDF

FIGURE 6.7 The Weibull distribution.

E)(AMPLE 6.7

A device has a decreasing failure rate characterized by a trvo-parameter Weibull distribu-

tion with g : 180 years and m: |. The device is required to have a design-life reliability

of 0.90.

m = 2
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(a) \Ahat is the design life if there is no wearin period?

( ô) lVhat is the design life if the device is first subject to a wearin period of one month?

Solut ion (a)  ,R(T)  :  exp [ -Q/q ' ] .  Therefo te ,  T :  0{ ln l l /R(T) l } ' / - .Then

T :  180Un(1 /0 .9 )12  :  2 .00  yea rs .

( à) The reliability with wearin time Tu is given by Eq. 6.51. With the Weibull distribution

it becomes

|  ( t +  T o \ ' l

R(r I r.,) :'"oL - t' -g-1 l
'"pL \;/ i

Setting t : T, the design life, we solve for Z,

' r :  o{r" f^l 
- l  
.  f !)^\" '  -,o

r  1 , 1 ( T ) l ' \ e l  )

f  / f ) * (  t  \ ' " - l ' _ !: l 8 0  l l n Ir  r0 .9 /  \12  x  180/  J  12

: 2.81 years.

Thus a wearin period of 1 month adds nearly 10 months to the design life.

(?)'l

The three-parameter Weibull distribution is useful in describing phenom-
ena for which some threshold time must elapse before there can be failures.

To obtain this distribution, we simply translate the origin to the right by an
amount ln orl the time axis. Thus we have

À(r )

: = ; ]

0,

.,.p 
[-

"f(t) (6.74)

F(t) : { ' -exp[ - ' (+) ' ]  
:=^ ]

The variance is the same as for the two-parameter distribution given in Eq.

6.73, and the mean is obtained simply by adding /o the right-hand side of

Eq. 6.72.
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6.5 COMPONENT FAILURES AND FAILURE MODES

In Sections 6.3 and 6.4 the quantitative behavior of reliability is modeled for

situations with constant and time-dependent failure rates, respectively. In real

systems, however, failures occur through a number of different mechanisms,

causing the failure rate curve to take a bathtub shape too complex to be

described by any single one of the distributions discussed thus far. The mecha-

nisms may be physical phenomena within a single monolithic structure, such

as the tread wear, puncture, and defective sidewalls in an automobile tire. Or

physically distinct components of a system, such as the processor unit, disk

àrives, and memory of a computer may fail. In either case it is usually possible

to separate the failures according to the mechanism or the components that

caused them. It is then possible, provided that the failures are independent,

to generalize and treat the system reliability in terms of mechanisms or compo-

nent failures. We refer to these collectively as independent failure modes.

Failure Mode Rates

Whether we refer to component failure or failure modes-and the distinction

is sometimes blurred.-we may analyze the reliability of a system in terms of the

component or mode failures provided they are independent of one another.

Independence requires that the probability of failure of any mode is not

influence by that of any other mode. The reliability of a system with Mdifferent

failure modes is

R(r) : P{X' n & n ... '...' X,v}, (6.75)

where X, is the event in which the i'r' failure mode does not occrn before

time l. If the modes are independent we may write the system reliability as

the product of the mode survival probabilities:

À(r; : P{X}P{Xr} . . ' P{x,,}.

where the mode i reliability is

yielding

fi,(t) : P{X,},

Â(r) : f l  no(,).

(6.76)

(6.77)

(6.78)

component l ,  then ,R,(f) is just the

for t ime to failure, f,(t), and an
is exactly the same as in Section

Naturally, if mode i is the failure of

component reliability.
For each mode we may define a PDF

associated failure rate , Ài(f). The derivation

6.2 yielding

R,(r) - 1 - 
I ' r . f ,( t ' )  dt" (6.7e)
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and

Combining Eq. 6.76 and 6.77 with Eq. 6.81 then yields:

Rie) :.-o 
[ 
- 

I 'oo,rt ') dt'f

f ,(t) :À,(r) exp 
[- t; 

À,u') o, ' f .

(+,)'" . (*,)'

À;(r): ffi,

R(r) :  .-o 
[- / ,  ̂

 ( t ' )  dt '1,

(6.80)

( 6 . 8 1 )

(6.82)

(6 .84)

(6.85)

(6 .83)

where

À(r )  :  ) , t , ( r ) .
Thus, to obtain the system reliability, we simply add the mode failure rates.

Consider a system with a failure rate that results from the contributions
of independent modes. Suppose some modes are associatecl with failure rates
that decrease with time, while the failure rates of others are either constant
or increase with time. Weibull distributions are particularly useful for modeling
such modes. If we write

/, o< t ') d,t '  : (;)^' *

and take 0 I m,, I 7, ffib : 1, and ffi, ) 1, the three terrns correspond,
respectively, to contributions to the failure-rate contributions that decrease,
remain flat, and increase with time. These are associated with early failures,
random failures, and wear failures, respectively. Thus the shape of the bathtub
curve can be expressed as a superposition of Weibull failure rates. It is not
valid to think of these individual terms as arising from Eqs. 6.78 through 6.84
unless each of them results from independent failure modes or the failures
of different components. When they arise as the result of a single cause, the
contributions from infant mortality, random and aeing effects are strongly
interactive. In these cases Eq. 6.Bb may be a useful empirical representation
of the failure rate curve so long as the individual terms are not identified
uniquely with infant mortality, random, or aging failures. We shall consider
the interactions which give rise to the bathtub curve in more detail in Chapter
7, where they are related to loading and capacity.

For situations in which independent failure modes may be approximated
by constant failure rates, À;(r) -+ À1, the reliability is given by Eq. 6.25 with

À :  )  À , ,
I

(6 .86)
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and Eq. 6.26 may be used to determine the system's mean time to failure. If

we define the mode mean time to failure as

MTTF' : l/ À't '

the system mean time to failure is related by

(6.87)

(6.88)1 \ - ,  1
IvtrrF 

: 
+ I\4TTI

Component Counts

The ability to add failure rates is most widely applied in situations in which

each failure mode corresponds to a component or part failure. Often, failure

rate data may be available at a component level but not for an entire system.

This is true, in part, because several professional organizations collect and

publish failure rate estimates for frequently used items, whether they be diodes,

switches, and other electrical components;pumps, valves, and similar mechani-

cal devices; or a number of other types of components. At the same time the

design of a new system may involve new configurations and numbers of such

standard items. The foregoing equations then allow reliability estimates to be

made before the new design is built and tested. In this chapter we consider

only systems without redundancy. Consequently, failure of any component

implies system failure. In systems with redundant components, the idea of a

failure mode is still applicable in a more general sense. We reserve the treat-

ment of such systems to Chapter 9.
When component failure rates are available, the most straightforward,

but crudest, estimate of reliability comes from the parts count method. We

simply count the number nl of parts of type 7 in the system. The system's

failure rate is then

nitr. i

the system.

(6.8e)

where the sum is over the part

D(AMPLE 6.8

A computer-interface circuit card assembly for airborne application is made up of

interconnected components in the quantities listed in the first column of Table 6.2.

If the assembly must operate in a 50oC environment, the component failure rates are

given in column 2 of Table 6.2. Calculate

À : >
types in

( a )

( b )

\ c )

the assembly failure rate,

the reliability for a l?-hr mission, and

the MTTF.

Solution (a) We have calculated the
type with Eq. 6.89 and listed them

total failure rate n1À.1for each component

in the third column of Table 6.2. For a



162 Introduction to Rzliability Engineering

nonredundant system the assembly failure rate is just the sum of these numbers,
or, as indicated, À : 2L6720 x 70-6/hr.

The 12-hr reliability is calculated from ft: t-Àr to be

R(12) :  .*p( -2L.672 x 12 x 10-ô) :  0.9997.

For constant failure rates the MTTF is

1  l o b
MTTF : 

À 
: 

rr*n: 
46,142hr.

( b )

(  c )

TABLE 6.2 Components and Failure Rates for Computer
Circuit Cardx

Component type Quantity

Failure Total failure
ratel106 hr  rate/106 hr

Capacitor tantalum
Capacitor ceramic
Resistor

J-K, M-S flip flop
Triple Nand gate
Diff line receiver
Diff line driver
Dual Nand gate

Quad Nand gate
Hex invertor
B-bit shift register

Quad Nand buffer
4-bit shirt register
And-or-inverter
PCB connector
Printed wiring board
Soldering connections

Total

I
l 9
5
9
5
J

I
,
7
5

4

0.0027
0.0025
0.0002
0.4667
0.2456
0.2738
0.3196
0.2707
0.2738
0.3196
0.8847
0.2738
0.8035
0.3196
4.3490
1.5870
0.2328

0.0027
0.0475
0.0010
4.2003
1.2286
0.8214
0.3196
0.4214
1.9166
1.5980
3.5388
0.2738
0.8035
0.3196
4.3490
1.5870
0.2328

2r.6720 <

* Reprinted from 'Mathematical Modelling' by A. H. K. Ling, Reliabilily and Maintainability

of Electronic Systems, edited by Arsenault and Roberts with the permission of the publisher

Computer Science Press, Inc., 1803 Research Boulevard, Rockville, Maryland 20850, USA.

The parts count method, of course, is no better than the available failure
rate data. Moreover, the failure rates must be appropriate to the particular
conditions under which the components are to be employed. For electronic
equipment, extensive computerized data bases have been developed that allow
the designer to take into account the various factors of stress and environment,
as well as the quality of manufacture. For military procurement such proce-
dures have been formalized as the parts stress analysis method.

In parts stress analysis each component failure rate, À;, is expressed as a
base failure rate, À6, and as a series of multiplicative correction factors:

À . ; :  À 6 f I e t r q . . . n t (6.e0)
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The base failure rate, À.6, takes into account the temperature at which the

component operates as well as the primary electrical stresses (i.e., voltage,

current, or both) to which it is subjected. Figure 6.8 shows qualitatively the

effects these variables might have on a particular component type.
The correction factors, indicated by the lls in Eq. 6.90, take into account

environmental, quality, and other variables that are designated as having a

significant impact on the failure rate. For example, the environmental factor

llp accounts for environmental stresses other than temperature; it is related

to the vibration, humidity, and other conditions encountered in operation.

For purposes of military procurement, there are 11 environmental categories,

as listed in Table 6.3. For each component type there is a wide range of values

of lll.for example, for microelectronic devices fl6ranges from 0.2 for "Ground,

benign" to 10.0 for "Missile launch."
Similarly, the quality multiplier llntakes into account the level of specifica-

tion, and therefore the level of quality control under which the component
has been produced and tested. Typically, llq : 1 for the highest levels of

specification and may increase to 100 or more for commercial parts procured
under minimal specifications. Other multiplicative corrections also are used.

These include ll1 the application factor to take into account stresses found
in particular applications, and factors to take into account cyclic loading,

system complexig, and a variety of other relevant variables.

6.6 REPLACEMENTS

Thus far we have considered the distribution of the failure times given that

the system is new at t : 0. In many situations, however, failure does not
constitute the end of life. Rather, the system is immediately replaced or
repaired and operation continues. In such situations a number of new pieces
of information became important. We maywant to know the expected number

Stress level3

Stress level 2

Stress level I

Temperature

FIGURE 6.8 Failure rate versus temperature for different levels of

applied stress (power, voltage, etc.).
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TABLE 6.3 Environmental Symbol Identification and Description

l le

Environment symbol Nominal environmental condit ions value"

Ciround, benign

Space, fl ight

Ground, fixed

Ground, mobile
(and portable)

Naval, sheltered

Naval,
unsheltered

Airborne,
inhabited

Airborne,
r.rninhabited

Missile, launch

0.2

0.2

4.0

5.0

4.0

G,,

s,

GT

GM

N.

A l

Nearly zero environmental stress with optimum engi-

neering operation and maintenance.
Earth orbital. Approaches G6 conditions without ac-

cess for maintenance. Vehicle neither under pow-
ered flight nor in atmospheric reentry.

Conditions less than ideal: installation in perma-
nent racks with adequate cooling air, mainte-

nance by military personnel, and possible installa-

tion in unheated buildings.
Conditions less favorable than those for Gp, mostly

through vibration and shock. The cooling air sup-

ply may be more limited and maintenance less

uniform.
Surface ship conditions similar to Gpbut subject to

occasional high levels of shock and vibratic-rn.

Nominal surface shipborne conditions but with re-

petitive high levels of shock and vibration.
Typical cockpit conditions without environmental

extremes of pressure, temperature, shock and vi-

bration.
Bomb-bay, tail, or wing installations, where extreme

pressure, temperature, and vibration cycling may

be aggravated by contamination from oil, hydrau-
lic fluid, and engine exhaust.

Severe noise, vibration, and other stresses related to

missile launch, boosting space vehicles into orbit,
vehicle reentry, and landing by parachute. Condi-

tions may also apply to installation near main

rocket engines during launch operations.

4 , ,

MI

Sonrra: From R. T. Anclers on, tutiubility O^En;;onabooÂ RDH-376, Rome Air Development (lenter, Griffiss Air Force Base,

NY, 1976.

of failures over some specified period of time in order to estimate the costs
of replacement parts. More important, it may be necessary to estimate the
probability that more than a specific number of failures l/ will occur over a
period of time. Such information allows us to maintain an adequate inventory
of repair parts.

In modeling these situations, we restrict our attention to the constant
failure rate approximation. In this the failure rate is often given in terms of
tlre mean time between failures (MTBF), as opposed to the mean time to failure,
or MTTF. In fact, they are both the same number if, when a system fails it is
assumed to be repaired immediately to an as-good-as-new condition. In what
follows we use the constant failure rate model to derive p"(t), the probability
of there being n failures during a time interval of length /. The derivation
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leads again to the Poisson distribution introduced in Chapter 2. From it we

can calculate numbers of failures and replacement requirements.

We first consider the times at which the failures take place, and therefore

the number that occur within any given span of time. Suppose that we let n

be a discrete random variable representing the number of failures that take

place between t : 0 and a time /. Let

p , ( t ) : P { n : r l t }

be the probability that exactly n failures have taken place before
if we start counting failures at time zero, we must have

Fo(O)  :  L ,

P , , ( 0 )  : 0 ,  n : 7 , 2 , 3 ,  ' . . ,  @ .

In addition, at any time

(6.e1)

time /. Clearly,

F" ( t )  :  7 .

(6.e2)

(6.e3)

(6.e4)

For small Ar, let failure À Atbe the probability that the (n + 7)th failure

will take place during the time increment between t and t + Lt, given that
exactly n failures have taken place before time l. Then the probability that
no failure will occur during Al is I - À Ar. From this we see that the probability
that no failures have occurred before t + Lt may be written as

PoQ + Âr ;  :  (1  -  À Lt )  po( t ) . (6.e5)

(6.e6)

Then noting that

\
Z-/
n=u

#ro"rt) : l*l
we obtain the simple differential equation

d

àPr(t) 
:  -  ÀPo(t).

Using the initial cond.ition, Eq. 6.92, we find

p,( t+ Lt )  -  p , , ( t )
L^t

(6.e7)

(6.e8)FuU) : u Àt

With Pr(t) determined, we may now solve successively for p"(t), h: I,

2, 3, .. . . in the following manner. We first observe that if n failures have
taken place before time /, the probability that the (n + l)th failure will take
place between / and t + Lt is À At. Therefore, since this transition probability
is indepenclent of the number of previous failures, we may write

p, ,e+ At ;  :  t r  L tp , , r ( r )  +  (1  -  À A, t )p , ( t ) .  (6 .99)

The last term accounts for the probability that no failure takes place during

Ar. For sufficiently small Ar we can ignore the possibility of two or more

failures taking place.
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Using the de
to the dilferentia

This equat ion al l
multiply both sicl

we have

d  ,  ^ , ,
î r l r ^ 'p " ( r ) l  

:  À .p , - tQ)u^ ' .  (6 .102)

Multiplying both sides by dt and integrating between 0 and /, we obtain

e^ ,p , ( t )  -  p , (0 )  :  I  [ ' , .p , - r ( t ' )  e^ t '  d , t ' .  (6 .103)
J  o '  "  - '

But, since from Eq. 6.93 p,,(0) : 0, we have

p,( t )  -  Àe-^ '  
[ ' r0, , - r ( t ' )  

e^ ' '  d, t '  .

finition of the derivative once again, we may reduce Eq. 6.99

I equation

d
;p"( t )  

:  -^p"( t )  + À"P",rU).  (6.100)

ows us to solve for p,(r) in terms of p,-t(t). To do this we

es by the integrating factor exp(À/). Then noting that

l t  l a  I

ot , lo^ 'p , ( l ) l  
:  , ^ ' l i tp , , ( l )  +  ̂ p , , ( t )  

) ,  
(6 .101)

This recursive relationship allows us to calculate the p, successively. For

pr, inserr Eq. 6.98 on the right-hand side and carry out the integral to obtain

p n -  E { " } :  À t ,

c'l ',: Àt'

(6 .104)

(6 .105)

(6.106)

n > 0 b y

(6 .107)

(6.108)

(6.10e)

hQ) :  I tu-^t '

Repeating this procedure for n : 2 yields

PzQ) : 
(4)' 

o-^' '

and so on. It is easily shown that Eq. 6.104 is satisfied for all

P ' ( t )  
-  (Lt) '  

o-^ ' '

and these quantities in turn satisfz the initial conditions given by Eqs. 6.92

and 6.93.
The probabilities p,(t) are the same as the Poisson distribution f(n),

provided thatwe set p : À.t. We may therefore use Eqs. 2.27 through 2.29 to

determine the mean and the variance of the number n of events occurring

over a time span /. Thus the expected number of failures during time t is

and the variance of n is
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Of course, since p"(t) are the probability mass functions of a discrete variable
n, we must have, according to Eq. 2.22,

æ
2 P"(/)  :  1 '
ï-o

The number of failures can be related to the mean

, tItrn : MTBF'

We have derived the expression relating 9," and the MTBF assuming a constant
failure rate. It has, however, much more general validity.* Although the proof
is beyond the scope of  th is book, i tmaybe shown thatEq.6.111 is alsoval id
for time-dependent failure rates in the limiting case that t >> MTBF. Thus,
in general, the MTBF may be determined from

MTBF: ( 6 . 1 1 2 )

( 6 . 1 1 0 )

time between failures by

( 6 . 1  I  1 )

!
n

where n, t}:.e number of failures, is large.
We may also require the probability that more than l/ failures have

occurred. It is

Ptrr>14:  i  
( t r t . ) ' r -^ '

'  )  
n?** ,  n !  

(6 '113)

Instead of writ ing this infinite series, however, we mayuse Eq.6.110 towrite

P{n>À4:  t  -à  (a) "  
r -^ ' .  (6 .114)

E)(AMPLE 6.9

ln an industrial plant there is a dc power supply in continuous use. It is known to
have a failure rate of )t: 0.40/year. If replacement supplies are delivered at Gmonth
intervals, and if the probability of running out of replacement power supplies is to be
limited to 0.01, how many replacement power supplies should the operations engineer
have on hand at the beginning of the ômonth interval.

Solution First calculate the probability
failures with r : 0.5 vear.

^ t :  0 .4  x  0 .5  :  0 .2 :

Now use Eq. 6.114

P { o > 0 } : 1 - e - À ' : 0 . 1 8 1 ,

P {n>  l }  :  I  -  t - t t ( l +  À r )  :  0 .018 ,

P{n > 2} : 1 - t*ttll + Àt + t1t)21 : 0.001.

* See, for example, R. E. Barlow and F. Proschan, Mathematical Theory of fuliabilily, Wiley, New
York, 1965.

that the supply will have more tLtan n

e-o'2 - 0.819.
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There is less than a 1% probability of more than two power supplies failing. Therefore,

two spares should be kept on hand.
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Exercises

6.1 The PDF for the time-to-failure of an appliance is

f ( t )  :  ,  ?2  t , r '  t >  o ,
( t  +  4 ) 3 '

where f is in years

(a) Find the reliability of R(r).

(b) Find the failure rate À(t).

(c) Find the MTTF.

6.2 The reliability of a machine is given by

R(t ;  :  expl-0.04t -  0.008 f ]  ( t  in years).

(a) What is the failure rate?

(b) What should the clesign life be to maintain a reliabiliry of at least
0.90?

6.3 The failure rate for a high-speed fan is given by

À(t ;  :  (2 x l0-4 + 3 x l0-6t) /hr ,

where /is in hours of operation. The required designJife reliability is 0.95.

(a) How many hours of operation should the design life be?

(b) If, by preventive maintenance, the wear contribution to the failure
rate can be eliminated, to how many hours can the design life
be extended?

(c) By placing the fan in a controlled environment, we can reduce the
constant contribution to À(l) by a factor of two. Then, without
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preventive maintenance, to how many hours may the design

be extended?

(d) What is the extended design life when both reductions from

and ( c) are made?

6.4 If the CDF for times to failure is

169

F(t ) :  r  -  .  1o,o=, -^  
( t  +  1 0 ) 2

(a) Find the failure rate as a function of time.

(b) Does the failure rate increase or decrease with time?

Repeat Exercise 6.3, but fix the design life at 100 hr and calculate the
design-life reliabil i ty for conditions (a), (b), (t), and (d).

An electronic device is tested for two months and found to have a
reliability of 0.990; the device is also known to have a constantfailure rate.

(a) What is the failure rate?

(b) What is the mean-time-to-failure?

(c) \Arhat is the design life reliability for a design life of 4 years?

(d) What should the design life be to achieve a reliability of 0.950?

A logic circuit is known to have a decreasing failure rate of the form

À(r) : f ix-1/2/year,

where I is in years.

(a) If the design life is one year, what is the reliability?

(b) If the component undergoes wearin for one month before being put
into operation, what will the reliability be for a one-year design life?

A device has a constant failure rate of 0.7 /year.

(a) What is the probability that the device will fail during the second
year of operation?

(b) If upon failure the device is immediately replaced, what is the proba-
bility that there will be more than one failure in 3 years of operation?

The failure rate on a new brake drum design is estimated to be

À( r )  :  I .2  x  10-6  exp(10-4 t )

per set, where / is in kilometers of normal driving. Forfy vehicles are
each test-driven for 15,000 km.

(a) How many failures are expected, assuming that the vehicles with
failed drives are removed from the test?

(b) What is the probability that more than two vehicles will fail?

life

( b )

b .5

6.6

6.7

6.8

6.9
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6.10 The failure rate for a hydraulic component is given empirically by

À(r; : 0.001 (l -t 2e-2t + et/4l)/year

where / is in years. If the system is installed at t: 0, calculate the
probability that it will have failed by time l. Plot your results for 40 years.

6.11 A home computer manufacturer determines that his machine has a
constant failure rate of À : 0.4 year in normal use. For how long should
the warranty be set if no more than 5% of the computers are to be
returned to the manufacturer for repair?

6.12 \t\hat fraction of items tested are expected to last more than I MTTF if
the distribution of times-to-failure is

(a) exponential,
(b) normal,

(c) lognormal with @ : 2,

(d) Weibull with m : 2?

6.13 A one-year guarantee is given based on the assumption that no more
than 10% of ttte itemswill be returned. Assuming an exponential distribu-
tion, what is the maximum failure rate that can be tolerated?

6.14 There is a contractual requirement to demonstrate with g0% confidence
that a vehicle can achieve a 100-km mission with a reliability of 99%.
The acceptance test is performed by running 10 vehicles over a 50,000-
km test track.

(a) What is the contractual MTTF?

(b) \Alhat is the maximum number of failures that can be experienced
on the demonstration test without violating the contractual require-
ment? (Note: Assume an exponential distribution, and review Sec-
t ion 2.5.)

6.15 The reliability for the Rayleigh distribution is

R(t1 :  s-( t /01' .

Find the MTTF in terms of 0.

6.16 Suppose the CDF for time to failure is given by

I t  -  a t ' .  t < 1 / f ;
Æ(l)  :  1

[0 ,  t>  t  / fà

Determine the following:

(a) the PDF ïQ),
(b) the failure rate,
(c) the MTTF.
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6.17 Suppose that amplifiers have a constant failure rate of À" : 0.08/month.
Suppose that four such amplifiers are tested for 6 months. What is the
probability that more than one of them will fail? Assume that when they
fail, they are not replaced.

6.18 A device has a constant failure rate with a MTTF of 2 months. One
hundred of the devices are tested to failure.

(a) How many of the devices do you expect to fail during the second
month?

(b) Of the devices which survive two months, what fraction do you
expect to fail during the third month?

(c) If you are allowed to stop the test after 80 failures, how long do you
expect the test to last?

6.19 A manufacturer determines that the average television set is used 1.8
hr/day. A one-year warranty is offered on the picture tube having a
MTTF of 2000 hr. If the distribution is exponential, what fraction of the
tubes will fail during the warranty period?

6.20 Ten control circuits are to undergo simultaneous accelerated testing to
study the failure modes. The accelerated failure rate has previously been
estimated to be constant with a value of 0.04 days-t.

(u) \Arhat is the probability that there will be at least one failure during
the first day of the test?

(b) What is the probability that there will be more than one failure
during the first week of the test?

6.21 The reliability of a cutting tool is given by

[ 1 t - 0 . 2 r ) 2 ,  o < r < b ,
R(r) = 1

Lo ,  t>  5 ,
where / is in hours.

(a) \Arhat is the MTTF?

(b) How frequently should the tool be changed if failures are to be held
to no more than 5%?

(c) Is the failure rate decreasing or increasing? Justi$' your result.

6,22 A motor-operated valve has a failure rate À6 while it is open and À. while
it is closed. It also has a failure probabiliry Fo to open on demand and
a failure probability p, to close on demand. Develop an expression for
the composite fâilure rate similar to Eq. 6.46 for the valve.

6.23 A failure PDF for an appliance is assumed to be a normal distribution
with p : 5 years and n: 0.8 years. Set the design life for

(a) a reliabil i ty of 90Vo,

(b) a reliability of ggVo.
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6.24 A designer assumes a g07o probability that a new piece of machinery
will fail at some time between 2 years and l0 years.

(a) Fit a lognormal distribution to this belief.
(b) \Àrhat is the MTTF?

6.25 The life of a rocker arm is assumed to be 4 million cycles. This is known
to a factor of two with g0% probability. If the reliabiliqz is to be 0.95,
how many cycles should the design life be?

6.26 Two components have the same MTTF; the first has a constant failure
rate Àe and the second follows a Rayleigh distribution, for which

[ '  ̂ ( r ' \  . t '  :  l , ] ) t .J , ,  " '  
\ 0 /

(a) Find I in terms of Às.

(b) If for each component the design-life reliability must be 0.9, how
much longer (in percentage) is the design life of the second (Ray-
leigh) component?

6.27 Night watchmen carry an industrial flashlight B hr per night, 7 nights
per week. It is estimated that on the average the flashlight is turned on
about 20 min per B-hr shift. The flashlight is assumed to have a constant
failure rate of 0.08/hr while it is turned on and of 0.005/hr when it is
turned off but being carried.

(a) In working hours, estimate the MTTF of the light.

(b) \Arhat is the probability of the ligtrt's failing during one B-hr shift?

(c) What is the probability of its failing during one month (30 days) of
8-hr shifts?

6.28 Consider the two components in Exercise 6.26.

(a) For what designJife reliability are the design lives of the two compo-
nents equal?

(b) On the same graph plot reliability versus time for the two compo-
nents.

6.29 The two-parameter Weibull distribution with m : 2 is known as the
Rayleigh distribution. For a nonredundant system made of l/ compo-
nents, each described. by the same Rayleigh distribution, find the system
MTTF in terms of N and the component 0.

6.30 If waves hit a platform at the rate of 0.4/l;:'in and the "memoryless"

failure probabiliq is L0-6/wave, estimate the failure rate in days-l.

6.31 The one-month reliability on an indicator lamp is 0.95 with the failure
rate specified as constant. \Arhat is the probability that more than two
spare bulbs will be needed during the first year of operation? (Ignore
replacement time.)
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6.32 A part for a marine engine r,vith a constant failure rate has an MTTF of

two months. If two spare parts are carried,

(a) What is the probability of surviving a six-month cruise without losing

the use of the engine as a result of part exhaustion?

(b) What is the result for part a if three spare parts are carried?

6.33 In Exercise 6.27, suppose that there are three watchmen on dufy every

night for B hr.

(a) How many flashlight failures would you exPect in one year?

(b) Assuming that the failures are not caused by battery or bulb wearout

(these are replaced frequently), how many spare flashlights would

be required to be on hand at the beginning of the year, if the

probability of running out of spares is to be less than l0%?

6.34 An electronics manufacture mixes 1,000 capacitors with an MTTF of 3

months and 2,000 capacitors with an MTTF of 6 months. Assuming that

the capacitors have constant failures rates:

(a) What is the PDF for the combined population?

(b) Use Eq. 6.15 to derive an expression for the failure rate of the

combined population.

(c) What is the failure rate at t : 0?

(d) Does the failure rate increase or decrease with time?

(e) What is the failure rate at very long times?

6.35 A servomechanism has an MTBF of 2000 hr. with a constant failure rate.

(a) What is the reliability for a 125-hr mission?

(b) Neglecting repair time, what is the probability that more than one

failure will occur during a 125-hr mission?

(c) That more than two failures will occur during a 725-hr mission?

6.36 Assume that the occurrence of earthquakes strong enough to be damag-

ing to a particular structure is governed by the Poisson distribution. If

the mean time between such earth quakes is nryice the design life of

the structure:

(a) What is the probability that the structure will be damaged during

its design life?

(b) What is the probability that it will suffer more than one damaging

earthquake during its design life?

(c) Calculate the failure rate (i.e., damage rate due to earthquakes).

6.37 A relay circuit has an MTBF of 0.8 yr. Assuming random failures,

(a) Calculate the probability that the circuit will survive one year with-

out failure.
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(b) What is the probability that there will be more than two failures in
the first year?

(c) What is the expected number of failures per year?

6.38 Demonstrate that Eq. 6.106 satisfies Eq. 6.104.

6.39 The MTBF for punctures of truck tires is 150,000 miles. A truck with 10
tires carries 1 spare.

(a) What is the probability that the spare will be used on a 10,000-
mile trip?

(b) What is the probability that more than the single spare will be
required on a 10,000-mile trip?

6.40 Widgets have a constant failure rate with MTTF : 5 days. Ten widgets
are tested for one day.

(a) What is the expected number of failures during the test?
(b) What is the probability that more than one will fail during the test?
(c) For how long would you run the test if you wanted the expected

number of failures to be five?
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7.I INTRODUCTION

In the preceding chapters failure rates were used to emphasize the strong

dependence of reliability on time. Empirically, these failure rates are found

to increase with system complexity and also with loading. In this chapter we

explore the concepts of loads and capacity and examine their relationship to

reliability. This examination allows us both to relate reliability to traditional

design approaches using safety factors, and to gain additional insight into the

relations between failure rates, infant mortality, random failures and aging.

Safety factors and margins are defined in the following way: Suppose we

define / as the load on a system, structure, or piece of equipment and c as

175
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the corresponding capacity. The safety factor is then defined as

, : 1 ( 7 . 1 )

Alternately, the safety margin may be used. It is defined by

m :  c -  l .  ( 7 . 2 )

Failure then occurs if the safety factor falls to a value less than one, or if the

safety margin becomes negative.
The concepts of load and capacity are employed most widely in structural

engineering and related fields, where the load is usually referred to as stress

and the capacity as strength. However, they have much wider applicability.

For example, if a piece of electric equipment is under consideration, we may

speak of electric load and. capacity. A telecommunications system load and

capacity may be measured in terms of telephone calls per unit time, and for

an energ'y conversion system thermal units for load and capacity may be used.

The point is that a wide variety of applications can be formulated in terms of

load and capaciq. For a given application, however, I and c must have the

same units.
In the traditional approach to design, the safety factor or margin is made

large enough to more than compensate for uncertainties in the values of both

the load and the capacity of the system under consideration. Thus, although

these uncertainties cause the load and the capaciq to be viewed as random

variables, the calculations are deterministic, using for the most part the best

estimates of load and capacity. The probabilistic analysis of loads and capacities

necessary for estimating reliability clarifies and rationalizes the deterrnination

and use of safety factors and margins. This analysis is particularly useful for

situations in which no fixed bound can be put on the loading, for example,

with earthquakes, floods and other natural phenomena, or for situations in

which flaws or other shortcomings may result in systems with unusually small

capacities. Similarly, when economics rather than safety is the primary criteria

for setting design margins, the trade-off of performance versus reliabiliq can

best be studied by examining the increase in the probability of failure as load

and capacity approach one another.
The expression for reliability in terms of the random variables I and c

comes from the notion that there is always some small probability of failure

that decreases as the safety factor is increased. We may define the failure

probability as

P :  P { l > c } . (7.3)

In this conrexr the reliability is defined as the nonfailure probability or

r : l -  F ,  Q . 4 )

which may also be expressed as

r :  P{ l  < c} . (7.5)
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In treating loads and capacities probabilistically, we must exercise a great
deal of care in expressing the types of loads and the behavior of the capacity.
If this is done, we may use the resulting formalism not only to provide a
probabilistic relation between safety factors and reliability, but also to gain a
better understanding of the relations between loading, capacities, and the time
dependence of failure rates as exhibited, for example, in the bathtub curve.

In Section 7.2 we develop reliability expressions for a single loading and
then, in section 7.3, relate the results to the probabilistic interpretation of
safety factors. In Section 7.4 we take up repetitive loading to demonstrate
how the time-dependence of failure rate curves stems from the interactions
of variable loading with capacity variability and deterioration. In Section 7.5
a failure rate model for the bathtub curve in synthesized in which variable
capacity, variable loading, and capacity deterioration, respectively, are related
to infant mortality, random failures and aging.

7.2 RELIABILITY WITH A SINGLE LOADING

In this section we derive the relations between load, capacity, and reliability
for systems that are loaded only once. The resulting reliability does not depend
on time, for the reliability is just the probability that the system survives the
application of the load. Nevertheless, before the expressions for the reliability
can be derived, the restrictions on the nature of the loads and capacity must
be clearly understood.

Load Application

In referring to the load on a system, we are in fact referring to the maximum
load from the beginning of application until the load is removed. Figure 7.1
indicates the time dependence of several loading patterns that may be treated
as single on loading /, provided that appropriate restrictions are met.

Figure 7.la represents a single loading of finite duration. Missiles during
launch, flashbulbs, and any number of other devices that are used only once
have such loadings. Such one-time-only loads are also a ubiquitous feature of
manufacturing processes, occurring for instance when torque is applied to a
bolt or pressure is applied to a rivet. Loading often is not applied in a smooth
manner, but rather as a series of shocks, as shown in Fig. 7.1ô. This behavior
would be typical of the vibrational loading on a structure during an earthquake
and of the impact loading on an aircraft during landing. In many situations,
the extreme value of many short-time loadings may be treated as a single
loading provided that there is a definite beginning and end to the disturbance
giving rise to it.

The duration of the load in Figs. 7.la and ô is short enough that no
weakening of the system capacity takes place. If no decrease in system capacity
is possible, the situations shown in Figs. 7.lc and d may also be viewed as
single loadings, even though they are not of finite duration. The loading
shown in Fig. 7.lc is typical of the dead loads from the weight of structures;
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FIGURE 7.1 Time-c1Jf."0.", loading patterns.

these increase during construction and then remain at a constant value. This

formulation of the loading is widely used in structural analysis when the load-

bearing capacity not only may remain constant, but may in some instances

increase somewhat with time because of the curing of concrete or the work-

hardening of metals.
Subject to the same restrictions, the patterns shown in Fig. 7.ld lrray be

viewed as a single loading. Provided the peaks are of the same magnitude,

the sysrem will either fail the first time the load is applied or will not fail at

all. Under such cyclic loading, however, the assumption that the system capac-

ity will not decrease with time should be suspect. Metal fatigue and other

wear effects are likely to weaken the capacity of the system gradually. Similarly,

if the values of peak magnitudes vary from cycle to cycle, we must consider

the time dependence of reliability explicitly, as in Section 7.4.

Thus far we have assumed that a system is subjected to only one load

and that reliability is determined by the capacity of the system as a whole to

resist this load. In reality, a system is invariably subjected to a variety of different

loads; if it does not have the capacity to sustain any one of these, it will fail.

An obvious example is a piece of machinery or other equipment, each ofwhose

components are subjected to different loads;failure of any one comPonentwill

make the system fail. A more monolithic structure, such as a dam, is subject

to static loads from its own weight, dynamic loads from earthquakes, flood

loadings, and so on. Nevertheless, the considerations that follow remain appli-

cab{e, provided that the loads are considered in terms of the probability of

a particular failure mode or of the loading of a particular component. If the
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failure modes can be assumed to be approximately independent of one an-

other, the reliability of the overall system can be calculated as the product of

the failure mode reliabilities, as discussed in Chapter 6.

Definitions

To derive an expression for the reliability, we must first define independent

PDFs for the load, l, and for the capacity, c. Let

f t ( t )  d t :  P { l < l  <  t +  d t }  ( 7 . 6 )

be the probability that the load is between / and I + dl. Similarly, let

f , ( t )  dc:  P{c {  c (  c *  d,c} (7.7)

be the probability that the capacity has a value between c and c * dc. Thus

/(/) and f"(c) are the necessary PDFs; we include the subscripts to avoid any

possible confusion between the nvo. The corresponding CDFs may also be

defined. They are

4(c) :  [ ' . f r (c ' )  d,c ' ,

nQ) :  [ ' , f ' r l ' )  dI ' .

We first consider a system with a known capacity c and a distribution of

possible loads, as shown in Fig. 7.2a. For fixed c, the reliability of the system

is just the probability that I ( c, which is the shaded area in the figure. Thus

r(c) :  Ï : tr t)  dt.

(7.8)

(7.e)

(7 .10)

The reliability, therefore, is just Fr(c), the CDF of the load evaluated at c.

Clearly, for a system of known capacity, the reliability is equal to one as c -+

oo, and to zero as c + 0.
Now suppose that the capacity also involves uncertaint/i it is described

by the PDFi(c). The expected value of the reliability is then obtained from

(a) (b)

FIGURE 7.2 Area interpretation of reliability: (a) variable load, fixed capacity; (Ô) vari-

able capacity, fixed load.

(.)
{
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averaging over the distribution of capacities:

Substituting in L,q. 2.10, -. ;:.1 

' 'to t"rc) d'c'

r* [ r '  ^. ' .  - '- l, :  J ,  LJ, ,n tn  
i l ) f , ( r )  dc.

The failure probabiliry may then be determined from Eq. 7.4 to be

p:7- J;  U;r,  u at]r"(c) d,c

Alternately, we may substitute the condition on the load PDF,

I , t',t) dt: ' - 
[: f'�Q) dt'

into Eq. 7.L2. Then, using the condition

[ î  t " ' c )  d ' c : 1 '

we obtain for the failure probability

( 7 . 1  1 )

(7.12)

(7.13)

(7.r4)

(7.15)

(7 .16)e: I;U[/. r, u ar)f.(c) d'c

As shown in Fig. 7.3, tb.e probability of failure is loosely associated with the

overlap of the PDFs for load and capacity in the sense that if there is no

overlap, the failure probability is zero and r: 7.

FIGURE 7.3 Graphical reliability interpretation with variable

load and capacity.

ftQ> f"(c)
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D(AMPLE 7.I

The bending moment on a match stick during striking is estimated to be distributed
exponentially. It is found that match sticks of a given strength break 20% of the time.
Therefore, the manufacturer increases the strength of the matches by 50%. I//hat
fraction of the strengthened matches are expected to break as they are struck?

Solution Assume that the strength (capacity) is known; then for the standard
matches we have

0.8 :  , :  I r t ; tn
Therefore, e  ̂ '  :  0.2 or Àc: -/n(0.2), where À is the unknown parameter of the
exponential loading distribution. For the strengthened matches

, '  :  [" '  f ,g\ dr: | . t 'u '  À,e ̂t  dr - y - 6t bÀc
J O  J r \ ' /  - - -  

J o  
'

F '  :  \  -  y '  : exp [ *  1 .5  X  l n (0 .2 ) ]  :  0 .215  :  0 .089 .

Thus about 9Vo of the strengthened matches are expected to break.

Another derivation of r and p is possible. Although the derivation may
be shown to yield results that are identical to Eqs. 7.LZ and7.13, the intermedi-
ate results are useful for different sets of circumstances. To illustrate, let us
consider a system with known load but uncertain capacity represented by the
distribution "n( c) . The reliability for this system with known load is then given
by the shaded area in Fig. 7.2b.

r(t) : Iî f"rc) d,c,

r(t) : r - 
/; f"Q) d,c.

For a system in which the load is also represented by a distribution, the
expected value of the reliability is obtained by averaging over the load distri-
bution,

f æ
, :  

Jo f ,Q)r ( I )  d l , (7 .1e)

or more explicitly

f ær :  J o Â U )

o, :  I ; Ie  
^ t  d t -  |  -  e  ̂ '

or equivalently,

(7.r7)

(7 .18)

(7.20)
[ / ;r, a a')ar

Similarly, we may consider the variation of the capacity first in deriving
an expression for the failure probability. For a system with a fixed load the
failure probability will be the unshaded area under the curve in Fig. 7.2b:
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p(t) : I'rr.rc) d,c.

Then, averaging over the distribution of loads, we have

(æ f  r '  I
P :  I  u  f ,Q)  |  / ; I (  c )  dc  I  d t '

L ^ I

It is easily shown that Eqs. 7.12 and 7.20 are the same.
7.I2 as the double integral

(7.2r)

where the shaded domain of integration appears in Fig. 7 .4. If we reverse the
order of integration, taking tlte c integration first, we have

' : ï;[I;r' c)r'(t) atf a"

': I:U: ,'c)r'(t) a'f at'

(7.22)

First write Eq.

(7.23)

(7.24)

Puttingl(/) outside the integral over d, we obtain F,q.7.20.
To recapitulate, Eqs. 7.12 and 7.20 rnay be shown to be identical, as may

Eqs. 7.16 and 7.22. However, the intermediate results for r( c), p(c), r(l), and
p(l) are useful when considering systems whose capacity varies little compared
to their load, or vice versa.

7.3 RELIABILITY AND SATETY FACTORS

In the preceding section reliability for a single loading is defined in terms of
the independent PDFs for load. and capacity. Similarly, it is possible to define

FIGURE 7.4 Domain of integration for reliability
calculation.
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safety factors in terms of these distributions. Two of the most widely accepted
definitions are as follows. In the central safety factor the values of load and
capacity in Eq. 7.1 are taken to be the mean values

-  f æ
t: J _* tÂ(t) dt,

cf.(c) dc.

Thus the safety factor is

u :  c /1 .

There is a second alternative if we express
most probable values l(:) and ca at the load
safety factor in Eq. 7.1 is then

(7.25)

(7.26)

(7.27)

the safety factor in terms of the

and capacity distributions. The

- - f*' -  J - *

u : cs/ lo. (7.28)

These definitions are naturally associated with loads and capacities repre-
sented in terms of normal or of lognormal distributions, respectively. Then
the reliability can be expressed in terms of the safety factor along with measures
of the uncertainty in load and capacity. Other distributions may also be used
in relating reliability to safety factors. Such is the case with the extreme-value
distribution. With such analysis the effects of design changes and quality
control can be evaluated. Design determines the mean, c, or most probable
value, cç1, of the capacity, whereas the degree of quality control in manufacture
or construction influences primarily the variance "f ,[(c) about the mean.
Similarly, the conditions under which operations take place determine the
load distribution /(1) as well as the mean value 7.

Normal Distributions

The normal distribution is widely used for relating safety factors to reliability,
particularly when small variations in materials and dimensional tolerances
and the inability to determine loading precisely make capacity and load uncer-
tain. The normal distribution is appropriate when variability in loads, capacity,
or both is caused by the sum of many effects, no one of which is dominant.
An appropriate example is the load and capacity of an elevator large enough
to carry several people. Since the load is the sum of the weights of the people,
the variability of the weight is likely to be very close to a normal distribution
for the reasons discussed in Chapter 3. The variability in the weight of any
one person is unlikely to have an overriding effect on the total load. Similarly,
if the elevator cable is made up of many independent strands of wire, its
capacity will be the sum of the strengths of the individual strands. Since the
variability in strength of any one strand will not have much effect on the cable
capacity, the normal distribution may be used to model the cable capacity.
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Suppose that the load and capacity are represented by normal distribu-

tions.

and

where the mean values of the load and capacity are denoted by /and e, and

the corresponding standard deviation s àre oland cr,. Substituting these expres-

sions into Eq. 7.L2, we obtain for the reliability

f,(t):#.-o[-try]

f"(,):#,.-o[-t+],

':f-#'"p[-try]
. {/_- à.*p [ -t\+D:f ,ù',

(7.2e)

(7.30)

(7.31)

(7.35)

rewrite the
we take

(7.36)

This expression* for the reliability may be reduced to a much simpler

form involving only a single normal integral. To accomplish this, however,

involves a significant amount of algebraic manipulation. We begin by trans-

forming variables to the dimensionless quantities

;: l"-îi:' l";'"2"
Equation 7.31 rnay then be rewritten as

- ( _ l
:: f- j  fto'--;-tt 'o'"*p l-à(*, t Jr)l ayl dx. (7.24)

2 n J - * l J  æ  r r  - \  ' )

This double integral may be viewed geometrically as an integral over the

shaded part of the x - y plane shown in Figure 7.5. The line demarking the

edge of the region of integration is determined by the upper limit of the y

integration in Eq. 7.34:

1 _
) : ; , ( o ' x * 7 - l ) '

By rotating the coordinates through the angle 0, we rnay

reliability as a single standardized normal function. To this end

x' : x cos I * y sin 0

* Note that we have extended the lower lirnits on the integrals to - oo in order to accommodate

the use of normal distributions. The effect on the result is negligible for Z >> c( and1 >> c,.



and

It rnay then

and

) '  :  -xsin 0 + )  cos 0.

be shown that

* ' + ) ' : x ' 2 * ) ' '

Loads, Capac'ity, and Rzliability 185

(7.37)

(7.38)

(7.3e)

(7.4r)

B i s a

(7.42)

dx dY: dx'  d i"

allowing us to write the reliability as

(7.40)

The upper limit on the f integration is just the distance B shown in Fig. 7.5.
With elementary trigonometr/, F may be shown to be a constant given by

,: 
*/:- {/:- 

expl -*(*' '  * r ' ' ]  at '] a. ' .

P : ,  , ' ' , -  
l u , , , u .

( o ;  f  a î ) " '

The quaniq P is referred to as the safety or reliability index. Since
constant, the order of integration may be reversed. Then, since

+ f-  s*L* '2 4*, :  o(*)  :  l ,
V2n r  - -

the remaining integral, in y' , may be written as a standardized normal CDF
to yield the reliability in terms of the safety index B:

r  :  o(B).  (7.43)

The results of this equation may be put in a more graphic form by
expressing them in terms of the safety factor, Eq. 7.27. A standard measure

FIGURE 7.5 Domain of integration for normal load and capacity.
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- 3  - 2  - 1  0  1 8 2  3
t a )

FIGURE 7.6 Standard normal distribution:

tive distribution function (CDF).

- 2 .0  - i . 0  0  1 .0  2 .o
(b)

(a) probability density function PDF', (12) cumula-

of the dispersion about the mean is the coefficient of variation, defined as

the standard deviation divided by the mean:

Thus we may write

and

P :  c / t L .

P r :  a r ' / Z

Pt :  ot/ l .

With these definitions we may express the safety index in
safety factor and the coefficients of variation:

(7.44)

(7.45)

(7.46)

terms of the central

(7 .47)

In Figure 7.6 the standardized normal distribution is plotted. The area
under the curve to the left of B is the reliability r; tlne area to the right is the
failure probabiliV F.InFig.7 .6b the CDF for the normal distribution is plotted.
Thus, given a value of P, we can calculate r and p. Conversely, if the reliability
is specified a-nd the coefficients of variation are known, we may determine
the value of the safefy factor. In Figure 7.7 tl;'e relation between safety fàctor
and probability of failure is indicated for some representative values of the
coeffi cients of variation.

E)GMPLE 7.2

Suppose that the coefficients of variation are p, : 0.I and p1 : 0.15. If we assume
normal distributions, what safety factor is required to obtain a failure probability of

no more than 0.005?

Solution P : 0.005; r:  0.995; r:  Q(P) :  0.995. Therefore, from Appendix C,

Ê : 2.575. We must solve Eq. 7.47 for u. We have

Ê'@]4u '*  p ,2)  :  ( r -  1) '  or  ( I  -  F 'p l )u2 -  2u + (1  -  Ê 'p i )  :0 .

^  u -  \
- -  r ^ ' l - Z - ^ ' n f z '

\ p , : u '  i  p î ) "
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FIGLIRE 7.7 Probability of fàilure for normal load and capacity (From Gary C. Hart, Uncer-

tainty Analysis, Loads, and Sr{eQ in Structural Engineering, O 1982, p. 107, with permission
from Prentice-Hall, Englewood Cliffs, NJ.)

Solving this quadratic equation in u, we have

2 ! 14 - 4(1 - B'pI) Q - Ê'p')l ' / '
u :

or

2(r * F'p?)

2 ! 2(1 - 0.8508 x 0.9337\1/2 1 -r 0.4534
U :

0.93372 x 0.9336

:  1 .56 ,

since the second solution, 0.5853, will not satis$' Eq. 7.47.

In using Eqs. 7.43 and 7.47 to estimate reliability, we assume that the

load and capacity are normally distributed and that the means anC variances

can be estimated. In practice, the paucity of data often does not allow us to

say with any certainty what the distributions of load and capacity are. In these

situations, however, the sample mean and variance can often be obtained.

Theycan then be used to calculate the rel iabi l i tyindex defined byEq. 7.47;

often the reliability can be estimated from F,q. 7.43. Such approaches are

referred to as second-moment methods, since only the zero and second mo-

ments of the load and capaciq distributions need. to be estimated.

Second-moment methods* have been widely employed, for they represent

the logical next step beyond the simple use of safety factors in that they also

account for the variance of the distributions. Such methods must be employed

with care, however, for when the distributions d.eviate greatly from normal

'r' C. A. Cornell, "Structural Saf'ety Specifications Based on Second-Moment Reliability," Symposium
of the Intentational Association of Bridge and Stru.ctural Engineen, London, 1969; see also A. H.-S.
Ang, and W. H. Tang, ProbabiLitl Conce.pts in Engineering Planning and Design, Vol. 2, Wiley, New
York,1984.

P" = 0.10
pr= 0.10 and

0.30



188 Introduction to Rzliability Engineering

distributions, the resulting formulas may be in serious error. This may be seen

from the different expressions for reliabilitywhen lognormal or extreme-value

distributions are employed.

Lo gnormal Distributions

The lognormal distribution is useful when the uncertainty about the load, or

capaciq, or both, is relatively large. Often it is expressed as having 90%

confidence that the load or the capacity lies within some factor, say two, of

the best estimates lç1 or ca. In Chapter 3 the properties of the lognormal

distribution were presented. As indicated there, the lognormal distribution

is most appropriate when the value of the variable is determined by the

product of several different factors. For load and capacity, we rewrite Eq. 3.63

for the PDFs as

n(t)  :#, , "p{-#[ ' "  ( ; ) ] ' ] '  o< t= @, (7 48)

and

r . ( , ) : à - , , . , . p {  
- * [ ' " ( . ' ) ] ' ] ,  0 (  c <  o o '  ( 7 ' 4 s )

If Eqs. 7.48 and7.49 are substituted into F,q.7.12, the resulting expression
for the reliability is

- f *  r  ^ . , * l - l ^ [ , "= 
Jo {zorrt*P I zr?1"'

. l r ,  I  f  It  
U '  {nr , fp  t -  2 r i

Note. however. that with the substitutions

(;)l')
['" (*)f'],ù,,(7.50)

(7 .51)) : * , t "  ( * )

and

(7.52)

we obtain

(7.53)

The forms of the reliability in Eq. 7.34 and in this equation are identical if

in the upper limit of the 1 integration we substitute {ù1 and crr. for c1 vrrd c,,

respectively, and replace 7 - 7 with ln (d/lù. Thus the reliability still has the

form of a standardized normal distribution given by Eq. 7.43. Now, however,

* :  
* , t "  ( ; ) ,

,: 
*/:- {F::'1rrrr'rlrn(r.,'zru" 

.*p l-à(x'+ )') I alj a..
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(7.54)
ln( cn/ 1,,\

Ê: 
ço.1 * , .1yr.

D(AMPLE 7.3

Suppose that both the load and the capacity on a device are known within a factor of

two with 90Vo confr.dence. V\rhat value of the safety factor, co/ ln, must be used if the

failure probability is to be no more tJnan 1.0%?

Solution For O(B) : r: 1, - p: 0.99 we find from Appendix C that B : 2.33.
From F,q. 3.73 for 90Vo confidence with a fàctor of n : 2 uncertainty, we have for

both load and capac i ry  . , :  (ù t :  a  :  ( l /  1 .645)  ln(n)  :  ( I / I .645)  ln(2)  :  0 .4214.

Solve Eq. 7.54 for cs/ lo:

l: 
.*o lB@7 + roî)t/21 : exp@{2at)

:  exp (2.33 x I .4I4 x A,4214) :  4.0I .

Combined Distributions

In general, it is difficult to evaluate analytically the expressions given for
reliability when the load and capacity are given by different distributions.
However, when the load or capacity is given by an extreme value distribution
and the other by a normal distribution, both analytical results and some insight
can be obtained.

Consider first a system whose capacity is approximated by the minimum
extreme-value distribution introduced in Chapter 3, but about whose loading
there is only a small amount of uncertainty. This situation is depicted in Fig.
7.8a. We assume that 7, the meanvalue of the load, is much smaller than the

ft(t)

f.(c)

f.(c)

f{t1

I , c  0
(a) (b)

FIGURE 7.8 Graphical representations of reliabiliry: (a) minimum extreme-value

distribution for capaciq', (à) maximum extreme-value distribution for loading.

l , c



190 Introduction to Reliability Engineering

mean, 7 :- 11, - @y, of the minimum extreme-value distribution that represents

the capacity: t<<e. For known loading the reliability is given by Eq. 7.18.

Thus using CDF from Eq. 3.101, we have

r ( t ) :  e x P [ - n \ - u ) / o 1 '

which for small enough values of / (i.e., I << t,l) becomes

\  /  . 5 5 )

(7.58)

(7.5e)

(7.56)

Now suppose that we want to take into account some natural variation in the

loading on the system. If this is represented by u distribution with small

variance of the load about the mean, Eq. 7.19 may be employed to express

the reliability as

r (c )  :  F t (c )  :  exP[  -6k-u) /@1,

or for large c,

r ( c ) - l -  t ( c - u ) / @ '

Thus, from Eq. 7.11, we have

r ( t ) - - r - e x p ( " )

r :L -  ï î r , r / )exp  (+) "

."0(?),

, : Ï:,t(,) [r 
- exp (T))r ' ,

(7.57)

Again, it must be assumed that the variance of the load is not large, o1 11

e - 7, so that the expansion, Eq. 7.56, is valid over the entire range of /where

l(/) is significantly greater than zero. We obtain for the reliability

(7.57)

where u :- 7 + @y >> I and 7 is Euler's constant.
In the converse situation the capacity has only a small degree of uncer-

tainty, whereas the loading is represented by a maximum extreme-value distri-

bution, again with the stipulation that 1>> I tnis situation is depicted in

Fig. 7.8ô. The reliability at known capacity is first obtained by substituting the

maximum extreme-value distribution from Eq. 3.99 into Eq. 7.10,

r : 1 _  e x p  
[ ]  

( î ) ' ]

provided that the variance in l( c)
resulting reliability is

t-
r : l - e x p l -

L

(7.60)

is small enough that Eq. 7.59 is valid. The

;(;)'] ."0("#)

where u = 7- @7 << 7 and 7 is Euler's constant.

(7 .61)
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7.4 REPETITWE LOADING

We have consid.ered time only implicitly, or not at all, in conjunction with

load-capacity interference theory. Load has been represented as the maximum

load over the life of the device or system. Therefore with longer lives the load

distribution in Fig. 7.3, would shift to the right, causing the reliability to

decrease. Likewise, aging effects have been taken into account only in the

conservatism in which the capacity distribution is chosen; it shoulcl take weak-

ening with age into account.
Time, however, is arguably the most importantvariable in many reliability

consid.erations. The bathtub curve representation of failure rate curve pictured

in Fig. 6.1 is ubiquitous in characterizing the reliability losses that cause infant

mortality, random failures and aging. In this and the following section we

d.emonstrate how load and capacity interact under repetitive loading and

result in these three failure mechanisms. Specifically, infant mortality is closely

associated with capacity variability, random failures with loading variability,

and aging with capacity deterioration. These associations provide a rational

for the bathtub shapes of failure rate curves and clari$t the relationship

between the three failure classes and the corresponding causes of quality loss

enumerated by Taguchi: product noise, outer noise, and inner noise.

Loading Variability

Consider a system subject to repetitive loading, and assume that the magnitude

of each load is determined by a random variable I, described by a probability

densityf(/). Suppose, for now, that we speci$r a system with a known capacity

c(t) at time t. The probability that a load occurring at time twill cause system

failure is then just the probability that I > c(t), or

p : 
Ïîu,ftl) 

d't. (7.62)

Repetitive loading may occur at either equal or random time intervals,

as pictured in Figs. 7.9a or 7.9b respectively. The model that follows is based

on random intervals, although when the mean time between loads becomes

small rhe two models yield nearly identical results. We model the random

rimes at which the loads occur by speci$'ing that during a vanishingly small

time increment, Ar, the probability of load occurrence is 7 Ar, where Ar is so

small that y Ar << 1. The probability of a load occurring at arry time is then

independent of the time at which the last loading occurred; the loading is

then said to be Poisson distributed in time with a frequency 7. The probability

of a load that is large enough to cause failure occurring between t and t t

Ar is thus fu Lt or, using Eq. 7.62,

, [*,,,, frQ) d,t Lt. (7.63)

The system, however, can fail only once. Thus it will fail between / and

t + Lt only if it has survived to time t and the failing load occurs during At.
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Time

(a) Periodic loading

FIGURE 7.9 Repetitive loads of random magnitudes.

random intervals.

Time

/b/ Loading at random intervals

(a) Periodic loading, (b) Loading at

But rR(t), the reliability, isjust the probability that the system has survived to

L Thus the failure probability during Ar is RQ)n Ar. Likewise the reliability

at t * Ar isjust the probability that the system survived to t and that no failure
load occurred during At. Since we take thre and to represents independent
events. we mav write

R( t  +  Ar ;  : (7.64)

Rearranging terms yields

R ( r + A r ) - ^ R ( r ) (7.65)
A,t

Taking the limit as At -+ 0 then yields the same form as Eq. 6.15,

I  d _ .-  R (  t \ ,
R( t )  d t

where the failure rate is given in terms of the load distribution as

À(r; : , [*,,,,rtQ) d,t. (7.67)

This equation clearly indicates that if the capacity of the system is time-
independent, so that c( t) - c6, then time also disappears from the failure
rate, yielding the constant failure rate model

À : y [ . f , t t ) d t ,  ( 7 . 6 8 )

and the common exponential distribution R(t) : exp(- Àt) results.

D(AMPLE 7.4

[ t  
-  ,  [*, , , , f i ( t)  d,ta,]  nt, l .

- - Y [*,,,, f'(t) 
dt R(t) '

À(r ) (7.66)

A microwave transmission tower is to be constructed at
of 15 lightning strikes per year are expected. The mean

a location where an average

value of the peak current is
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estimated to be 20,000 amperes, and the peak currents are modeled by an exponential

distribution. The MTTF is to be no less than 10 years.

(a) \Alhat value of the failure rate is acceptable?

(ù) For what peak amperage must the protection system be designed?

Solution (a) For a constant fàilure rate phenorlena we have

À  :  I , /MTTF  :  1 / I 0  : 0 .1  y r - '

(ô) From Eq. 3.88 we may write the exponential load distribution as F,(/) :

1 - u-ttr  where the mean load 7: 20,000 ar,dy:15/yr. Using the relat ionship

between l(l) and fl(l) we may write Eq. 7.68 as

À :  y  
[ " , , - f  tD  , 11 :  y  11  -  F , ( cu )  )  :  y  exp ( -  co / l ) .

Since MTTF : 7/À we have

MTTF  :  ! . * p ( r r / l )

or inverting,

(c , , , /7)  :  ln  (7MTTF) :  ln  (15 '  1o)  :  5 '6

crr : 20,000' 5.0 : 100,000 Amperes

Aging is present if the capacity decreases with time. We represent this

deterioration as

c ( t )  :  co  -  gQ) ,  ( 7 .69 )

where ca is the initial capacity, at t: 0, and g(f ) is a monotonically increasing

function of time, with g(0) : 0. Clearly, iÎ the capacity decreases as time

elapses, the failure rate will grow, since the lower limit on the integral in Eq.

7.67 then moves toward zero. The rate at which the failure rate increases,

however, will be sensitive to the loading distribution as well as to c(t).

Once the failure rate is known, the reliability can be obtained from Eq.

6.18.  Thus

(7.70)

where c(t) is given by Eq. 7.69.

EXAMPLE 7.5

Assume that the capacity of the microwave tower in Example 7.4 deteriorates at a

constant rate of lVo per year.

(a) \44:rat is the 10 year 7a decrease in capacity?

(ô) \{lrat is the 10 year 7o increase in failure rate?

R(rlco) : exp 
[-t; 

d,t 'y ]7r,r,(,) ol,



( c )

( d )

( b )
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What is the probability that a damaging lightning strike will take place in the first

10 years without deterioration, and

with deterioration?

Solut ion (a)  Let  c ( t ) :  co( l  -  a / ) ,where a :0 .07/yr .Af ter l0years thecapac i ty
decrease is 0.01 x l0 :  l0%.

Replacing c11by c(t) in Example 7.4 we have

À( t )  :  yexp [ - co ( l  -  oû ) /71  :  À (0 )exp (a t c r / I ) .

S ince at  :  0 .1and (  co/ l )  :  5 .0 ,  we have

À(10 )  :  À (0 )  eo l x ; ' o  :  1 .65  À (0 ) .

Thus the increase is 65%.

1 -  R(10)  -  1  -  e  ̂ n t  *  I  -  eo ' tx to  :  0 .632
f t  f t

l "  , t t t ' )  d t '  :  À ( 0 )  
J  

' n e a t ' c n / t  
d t '  :  À ( 0 )  ( a c o / l ) - t  ( d a t ( ,  /  -  I  )

J T

Variable Capacity

We next consider situations where not every unit of a system or device has
exactly the same initial capacity. In reality they would not, since variability in
manufacturing processes inevitably leads to some variabiliry in capacity. We
model this variability by letting c6 become a random variable which is described
by the probability density function f,(cù. We next consider the ensemble of
such units, each with its own capacity. The system reliability is then an ensemble
average oVef C6l

( c )

( d )

/ j ' ^ , r ' ,  
d t '  : 0 . I ( 0 . 0 1  x  5 . 0 ) - ' ( 4 0 r x s o  -  1 )  :  1 . 3

1  -  Æ ( 1 0 )  -  I  - . * o  ( -  / i ' ^ , , ' ,  
o , ' )  :  t  -  e  1 3  :  0 . 7 2 7

rR(r; : J* o^f,(co)R( tl'a).

Inserting Eq. 7.70 then yields

Â(r; : Ïî o,,f,rc6) exp 
[- l; 

d,t' y I-,,,,.f,rU ol

(7.71)

(7.72)

To focus on the effect of variable capacity on failure rates, we ignore
deterioration for the moment by setting c(t) : d6 and assume some fraction,
say pa, of the systems under consideration are flawed in a serious way. This
situation may be modeled by writing the PDF of capacities in terms of the
Dirac delta functions as

f,(co) : (1 - Po)ô(co 
- c,) * paôQo - cù. (7.73)
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The first term on the right-hand side corresponds to the probability that the

system will be a properly built system with target design capaciq of c,' By

using the Dirac delta function, we are assuming that the capacity variability

of tù properly built systems can be ignored. The second term corresponds

ro the probability that the system will be defective and have a reduced capacity

co I i,.Such a situation might arise, for example, if a critical component

were to be left out of a small fraction of the systems in assembly, or if, in

construction, members were not properly assembled with some probabiliV Po-
The reliabiliry is obtained by first substituting trq. 7.73 into 7.72 and using

the Dirac delta function property given in Eq. 3.56 to evaluate the integrals,

Â( r )  :  (7  -  
Fù  exp(  -L , t )  *  p4exp( -Àot ) ,  (7 .74)

where for brevity, we have defined the failure rates

tr,: T [*,"T,{r) o,

tra: T I-, rtQ o,

and

Since the failure rate must increase with decreased

use the definition of the time-dependent failure

obtain, after evaluating the derivative,

(7.75)

(7.76)

capaciq, tr,1 tr1. We now

rate given in Eq. 7.66 to

À ( t )  :  À "

l
|  (7  77)

)

- À") rl1*&,Ï ."0r-(À,

1* 
&,exp[ - (À,  

-  À, ) t ]

The decreasing failure rate associated with infant mortality may be seen

ro appear as a result of the presence of the units with substandard capacities.

For ciaritywe consider the extreme example of a system forwhich the probabil-

ity of defective construction is small, Fo 1< 1, but for which the defect greatly

increases the failure rate, Àd >> À". In this case Eq. 7.77 reduces to

À( r ) (7.78):  ̂ "(, * r^!n^r).
Thus the failure rate decreases from a value

the value of À" for the unflawed systems that

have failed.

EXAMPLE 7.6

A servomechanism is designed to have a constant failure rate and a design-life reliability

of 0.99, in the absence of defects. A common manufacturing defect, however, is known

to cause the failure rate to increase by a factor of 100. The purchaser requires the

designJife reliability to be at least 0.975.

of - À, * paÀa at zeto time to

remain af,ter all defective units
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What fraction of the delivered servomechanisms may contain the defèct if the
reliability criterion is to be met?

lf l0% of the servomechanisms contain the defect, how long must they be worn
in before delivery to the purchaser?

Solution (a) Without the defect, the failure rate À, = À(c") may be found in
terms of the design life Tby &(T) : e À'7'; then

f r 1 / r \
À ' - ' l r li ' :  rn 

L*r l  
: ' "  (oàn ) :  

o.oroob.

To determine p, the acceptable fraction of units with defects, solve Eq. 7.74;with
t :  T f o r  p a :

1 *  r1(T)  exp[+À"T]
P a : 1 - . * ; 4 r - 1 , ; 4 '

With À, = À(c, i)  :  100 À", Ë( T) :  0.975, and À"T : 0.01005,

I  -o .gzq{ ï ï :ooe4
Pa: y _ u-eexu.or{ro5

Recall the definition for reliability with wearin from Eq. 6.51 CombiningF,q. 7.7a
with this expression, we have, for a wearin period 7,;

R ( T l T , , ) :
( I  -  

P , r )  exp [ -À , (T+ 7 , , ) ]  +  Poexp[ -À , , (T+ T , , ) l
( I  -  p)  exp(-À,fr , )  *  Poexp(-Àaf,)

l a )

( b )

( b )

Solve for 7',,,:

. l -  _ 7 ,^ l  Po R(TI 4, , )  exp( -ÀoT)
t ' : f , ] l , tnLr-p, f f i

wi th  À(T lT , , , )  :  0 .975,  Fa :  0 .1 ,  À"7 :0 .01005,  and À7T:  1 .005,

T '  (  o ' l  o ' g 7 5 - o t o t t > o ' r r x r r \
r"':6g9 tn 

\l - ol ,- '" '"- '  - ug.-b )

: 0.0157or IlVo of the design l ife.

7.5 THE BATHTUB CURVE-RECONSIDERED

The preceding examples illustrate the constant failure rate that results from
loading variability, the increasing failure rates resulting from the combined
effects of loading variability and product deterioration, and the decreasing
failure rates from loading and initial capacity variability. We next look at the
three classes of failure individually and in combination to show how the
bathtub curve arises. Table 7.1 lists the eight combinations that may be consid-
ered. We next rvrite a general expression for the failure rate that includes all
three modes. Since the failure rate is defined in terms of the reliability by
Eq. 7.66, we may insert Eq. 7.72 for the reliability and perform the derivative
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TABLE 7.1 Failure Modes and Their Interactions

I .
I I .
I I I .

no

no

no

no

n o

yes

Infant Mortality

Random Failures

Aging

yes yes

yes yes

no yes

no yes

yes no

no no

no yes

yes no

yes yes

to yield

t li arr1, (cn) [*,(,) f,(t)d,texp[-r I ; d,, 17,,, f,(t) ,r4
À(r) (7.7e)

Iî o,,f,r,ol ."p[ -v 
f'oat'I*,,,, f lu at)

Equations 7.69, 7.72 and 7.79 constitute a reliability model in which infant

màrtality, random failures, and aging are represented explicitly in terms of

capacity variabili ty, lo ading variability, an d cap acity de gradation'
- 

The relationships are summarized in the first two columns of Table 7.2'

Any phenomenon may be eliminated from consideration as indicated in the

third column. The fourth column exhibits the particular load and capacity

distributions used in the numerical examples that follow. These are normal

distributions of load and capaciq;in these, we use u: L 5 for the safety factor,

with p, : 0.lb and p,: 0.10 for the load and capacity coefficients of variation.

We examine the failure modes and their interactions by considering individu-

ally each of the eight combinations enumerated in Table 7.1' For each case,

load and capacity ire plotted versus time in Fig. 7.10 for schematic realizations

of the stochastic loaàing process. The normal distribution plotted on the

vertical axis is used to denote cases with variable capacity; the vertical lines

denote loading magnitudes at random time intervals.

Single Failure Modes

Of the eight cases, the first is trivial since, as indicated in Fig. 7.10, the absence

of both variability and aging leads to a vanishing failure rate and a reliability

TABLE 7.2 Failure Mode Characterization

Failure
mode

Governing Mode

property absent

Mode*
present

I. Infant Mortality
(variable capacity)

II. Random Failures
(variable load)

III. Aging
(deteriorating capacity)

.f,(q) f , ( c ù : ô ( r i r - Z o )

f ,( t)  T,Q) :  6(t -  t)

f,(c,,) : ôl(c, - 7,,) / rr,f

I r ( t )  :  Ôl  ( t  -  7)  /  o , ,

g( t )  :  aco( t / t ) "

*  ô ( u )  =  ( 2 r . ) - ' t z  e x p ( - à z ' )

g(r ) s ( , )  :0
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FIGURE 7.10 Load and capacity realizations vs. time for failure mode combinations.
(I-infant mortality, Il-random, Ill-aging)

N o  M o d e Mode I

Mode I I I

Mode I I  & I I I Mode I  & I I I

Mode  I  &  I I Mode I , I I  & I I I
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equal to one. In cases two and three there is no capacity variability, and

therefore Eqs. 7.72 and 7.79 reduce to Eqs. 7.70 and 7.67. In case two only

mode III, aging, is present. Thus the loading is rePresente{ by the Dirac delta

funcrion, and we may further reduce the Eqs. 7.67 and 7.70 to

(7.80)

where t t - -  gt(co -  / ) .  Thus,

||:)

This system does not fail before time ty, but at the first loading thereafter,

causing the rapid exponential decay in the retiability. In case three, where

onty Àae II, random failure, due to load variability is present, we replace

c(t) by c6 in Eq. 7.70 to obtain a constant failure rate and the characteristic

exponential decay of the reliability.

In case four where only mode I, infant mortality, caused by variable

capacity,is present the situation is somewhat more complex. Setting c(t) equal

to^cs and.riirrg the Dirac delta function for loading in Eq$ 7'72 andT'79'

we obtain

R(r) : I - ( 1 - e Y') 
I'of,(cs) 

d,cs

and a corresponding failure rate of

^r,r:{1, ": ')

R(r) : 
{';,,_,,,

À( , )
y{r'Ïtof,kr) d,co

l - ( 1  - e t ' ) l ' o f , { ^ ) o r o

(7.81)

(7.82)

(7.83)

In this situation the fraction of the system population for which co < 7 fails

at the first loading, causing the reliability to drop sharply and then stabilize;

the failure rate decreases exponentially at a very rapid rate.

In each of the preceding three cases only one failure mode is present.

The modes are compared thiough the schematic diagrams of reliability and

failure rare given in Éig. 7 .lLaand 7.1I à. The failure rate curves, in particular,

1

0

@) G)

FIGURE 7.11 Effects of single failure modes: (a) reliability' (b) failure rate'
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are instructive since they show that the cases of pure infant mortality, random
failures and aging failures to some extent resemble the bathtub curve. The
differences, however, are striking. The infant mortality contribution drops
quickly to zero, since if the system does not fail at the first loading it does
not fail at all. Unlike bathtub curves, the failure rate from aging is zero until
tp atwhich time it jumps to a value of y, causing the reliability to drop sharply
to zero. Thus it is clear that simple superposition of the failure rates depicted
in Fig. 7.11 do not accurately represent the bathtub curve. To obtain realistic
results we must also examine the interactions between failure modes.

Combined Failure Modes

Next, we consider combinations of nvo failure modes. Equations 7.70 and
7.67 describe case five, which combines random failures and aging, modes II
and III. Aging is modeled by a power law

g(t) : 0.1cs (t/ tr)*, (7.84)

0 . 0 1 0

0.005

where we take Tto: 100. In Fig. 7.12 the failure rate is shown to be increasing
with time with a behavior which is closely correlated to exponent m in the
aging model.

In case six, infant mortality and aging modes I and III, occur together
in the absence of random failures. The reliability and failure rate are obtained
by replacing the load PDF in Eqs. 7.72 and 7.79 by a Dirac delta function.
The reduced exoressions are

R(r) :  I  -  ( l -  ev ' )  
[ ' r t , rc , )  d ,cs- �  I ' *^ ' '  { l -  evu-srr , , , -1 t t11,1cs)  d,c6 (7.8b)

0.0000.

FIGURE 7.12 Combined random
vs. time for several values of m.

l , ( t )

and aging failure rates (modes II & III)
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0 . 0 1 0

0 .005

0.000

7(t)

FIGURE 7.13 Combined infant mortality and aging failure rates (modes

I & III) vs. time.

for the reliability and

ëtstt ',,- l l7,rr; arr)

(7 .86)

0 . 0 i 0

0.005

0.000
o 2 0 4 0 6 0 8 0

v(r)
FIGURE 7.14 Combined infant mortality and random failure rates
(modes I & II) vs. time for several values of p,.

40

,n''l l, f,(q) d'cst /t**"'
À(r)  :

I - ( I - e v,) 
[', f,rc,) d.c() - 

['*^' {l - e vu-s't'o-irr11 1 c0) dc{)

for the failure rate. The failure rate is plotted in Fig. 7.13. This situation
resembles that encountered frequently in fatigue testing, where the loading
magnitude is carefully controlled. After that fraction of the population for
which the initial capacity is less than the load is removed at the first loading,
the failure rate isvanishingly small until the effects of aging become signifrcant.

In case seven infant mortality and random failures, modes I and II, are
present in the absence of aging. Results obtained by setting c(t) : c6 in Eqs.

è-

1 0 0



202 Introdu ction to Relia,bi lity Engineering

0 . 0 1 0

0 .005

0 .000

l '(t )

FIGURE 7.15 Failure rates vs. time fbr various combinations of fâilure
modes.

7.72 and 7.79 are shown in Fig. 7.14. The interaction of infant mortality
and randorn failure modes causes the characteristic decreasing failure rate
frequently observed in electronic equipment.

Finally, we consider the eighth case where all three failure modes are
present, using F,qs. 7.72 and 7.79 for reliability and failure rate. The bathtub
curve characteristics are shown in Fig. 7.15 where we have also included curves
forvarious combinations of nvo failure modes. These are obtained by removing
one failure mode, but keeping the remaining parameters fixecl. These results
illuminate the origins of the three failure modes: infant rnortalitywith capacity
variability, random failures with loading variability, and aging with capacity
deterioration. Moreover, while changes in load or capacity distribution often
have large effects on the quantitative behavior of the failure rate cures, the
qualitative behavior remains essentially the same. The model indicates, how-
ever, that the interactions between the three mocles are very important in
determining the failure rate cure. Thus only if the three failure modes arise
from independent failure mechanisms or in diffèrent components is it legiti-
mate simply to sum the failure rate contributions.
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Exercises

7.1 A design engineer knows that one-half of the lightning loads on a surge
protection system are greater than 500 V. Based on previous experience,
such loads are known to follow the PDF:

- f ( a ) : l { 1 ' ,  0 S u ( o o .

(a) Estimate 7 per volt.

(b) \Ahat is the mean load?

(c) For what voltage should the system be designed if the failure proba-
bil ity is not to exceed 5%?

7.2 Given the following distributions of capacity and load, determine the
failure probability:

f , ( c )  : 5 f  0  (  c (  I

- 0 otherwise

T , Q ) : 2  0 <  1 < 7 / 2

rtQ) : Be-P'.
The coupling is designed to have a capacity c : c.. However, because
of material flaws, the PDF for the capacity is more accurately expressed

- 0 otherwise

7.3 Suppose that the PDFs for load and capacities are

_ f r ( l ) : T € - ^ t ,  0 < / { @ ,

f o ,  o s r ( a .
I

f " Q ) : 1 t ' o '  a 4  c 4 2 a '

L 0 ,  2 a 1 c {  c o .

Determine the reliability; evaluate all integrals.

7.4 Th'e impact loading on a railroad coupling is expressed as an exponential
distribution:
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AS

f"(c) :
0 < c 4 c m t

c )  c ^ .

(a) Determine the reliability for a single loading, assuming that the

flaws can be neglected.

(b) Recalculare a using the capacity distribution with the flaws included.

(c) Show that the result of Ôreduces to that of aas a --+ oo.

(d) Show that for d : 0, the reliability is

' -  I  -  *  r  |  -  .B ' , f  .
15 c,,

7.5 It is estimated that the capacity of a newly designed structure is Z :

10,000 kips, o, : 6000 kips, normally distributed. The anticipated load

on the structure will be 7 : 5000 kips, with an uncertainty of ar : 1500

kips, also normally distributed. Find the unreliability of the structure.

7.6 A structural code requires that the reliability index of a cable must have

a value of at least Ê : 5.0. If the load and capacity may be considered

to be normally distributed with coefficients of variation of p, : 0.2 and

p, : g.l respectively, what safety factor must be used?

7.7 Steel cable strands have a normally distributed strength with a mean of

5000 lb and a standard deviation of 150 lb. The strands are incorporated

into a crane cable that is prooÊtested at 50,000 lb. It is specified that

no more than 2% of the cables may fail the proof test. How many strands

should be incorporated into the cable, assuming that the cable strength

is the sum of the strand strengths?

7.8 Substitute the normal distributions for load and capacity, Eqs. 7.29 and

7.30, into the reliability expression, Eq. 7.20. Show that the resulting

integral reduces to Eqs. 7.47 and 7.43.

7.9 The twist strength of a standard bolt is 23 N ' m with a standard deviation

of 1.3 N . m. The wrenches used to tighten such bolts have an uncertainty

of c : 2.0 N . m in their torsion settings. If no more than 1 bolt in 1000

may fail from excessive tightening, what should the setting be on the

wrenches? (Assume normal distributions.)

7.10 Suppose that a car hits potholes spaced at random distances at a rate

of 20/hour. The loading on the wheel bolts caused by these potholes is

exponentially distributed.

f ' ( l )  : 0 . 6  e x p ( - 0 . 6 / ) ,  0  =  l <  æ

What will the failure rate be if the bolt capacity is designed to be exactly

eight times the mean value of the pothole loading?

I o'"'

l;:'(ac"') 

- 7'
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7.lL Suppose that both load and capacity are known to a factor of na,'o with

90Vo confrdence. Assuming lognormal distributions, determine the safety

factor cç1/ ls necessary to obtain a reliability of 0.995.

7.12 Show in detail that Eq. 7.61 follows from Eqs. 7.30 and 7.60.

7.13 The loading on industrial fasteners of fixed capacity is known to follow

an exponential distribution. Thirty percent of the fasteners fail. If the

fasteners are redesigned to double their capacity, what fraction will be

expected to fail?

7.14 Consider a pressure vessel for which the capacity is defined as p, the

maximum internal pressure that the vessel can withstand without burst-

ing. This pressure is given by F : r0c^/2& where rç is the unflawed

thickness, a* is the stress at which failure occurs, and .R is the radius.

Suppose that the vessel thickness is r(>re), but the distribution crack

depths are the same as those given in Exercise 3.9.

(a) Show that the PDF for capacity is

fP(p) =

TC-,
o < p =  

2 R ,

TO,
P> 2R 'lfh"-'(He)

(b) Normalize to ro,/ZR: l, then plotfr( p) for 7 : r,0.5r, and 0.1r.

(c) Physically interpret the results of your plots.

?.15 In Exercise 7.14, suppose that the vessel is prooËtested at a pressure of

F : ro^/4R. What is the probability of failure if

(a) y -- 0.5r?

(b) T :  0. l r?

?.16 A system under a constant load, I has a known capacity that varies with

t ime as c( t )  :  co( l  -  0.02 l ) .  The safetyfactor at t :0 is 2.

(a) Sketch R(r)

(b) What is the MTTF?

(c) \Àrhat is the variance of the time to failure?

7.17 Suppose that steel wire has a mean tensile strength of 1200 lb. A cable

is to be constructed with a capacity of 10,000 lb. How many wires are

required for a reliability of 0.999

(a) if the wires have a 2Vo coefficient of variation?

(b) If the wires have a 5% coefficient of variation?
(Note: Assume that the strengths are normally distributed and that the

cable strength is the sum of the wire strengths.)
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7.18 Consider a chain consisting of Nlinks that is subjected to M loads. The
capacity of a single link is described by the PDF f"(ù.The PDF for any
one of the loads is described by rtQ). Derive an expression in terrns
of l(c) and f1Q) for the probability that the chain will fail from the
M loadings.

7.19 Suppose that the CDF for loading on a cable is

F ( l ) :  l  -  e x p

where / is in pounds. To what capacity should the cable be designed if
the probability of failure is to be no more than 0.5%?

7.20 Suppose, that the design criteria for a structure is that the probability
of an earthquake severe enough to do structural d.amage must be no
more than I.0% over the  }-year design life of the building.

(a) What is the probability of one or more earthquakes of this magnitude
or greater occurring during any one year?

(b) What is the probability of the structure being subjected to more
than one damaging earthquake over its design life?

7.21 Assume that the column in Exercise 3.21 is to be built with a safety factor
of 1.6. If the strength of the column is normally distributed with a 20%
coefficient of variation, what is the probabilify of failure?

7.22 Prove that Eqs. 7.72 and 7.79 reduce to Eqs. 7.82 and fr83 under the
assumptions of constant loading and no capacity deterioration.

7.23 Th-.e impact load on a landing gear is known to follow an extreme-value
distribution with a mean value of 2500 and a variance of 25 X 104. The
capacity is approximated by a normal distribution with a mean value of
15,000 and a coefficient of variation of 0.05. Find the probability of
failure per landing.

7.24 Prove that Eqs. 7.72 and 7.79 reduce to Eqs. 7.85 and 7.86 under the
assumption of constant loading.

7.25 A dam is built with a capaciq to withstand a flood with a return period
(i.e. mean time between floods) of 100 years. What is the probabiliq that
the capacity of the dam will be exceeded during its 40-year design life?

7.26 Suppose that the capaciq of a system is given by

r l r " l
- [ , (c)  :  -+-exp I  -  #1,  -  e( / ) ] '  l ," V2ro. t  zc; )

where

c ( t )  :  c ç , ( l  -  a t ) .

[-(#)']
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If the system is placed under a constant load /,

(a) Find f(t), the PDF for time to failure.

(b) Put/(/) into a standard normal form and find o,and the MTTF.

7.27 A manufacturer of telephone switchboards was using switching circuits
from a single supplier. The circuits were known to have a failure rate
of 0.06/year. In its new board, however, 40% of the switching circuits
came from a new supplier. Reliability testing indicates that the switch-
boards have a composite failure rate that is initially 80% higher than it
was with circuits from the single supplier. The failure rate, however,
appears to be decreasing with time.

(a) Estimate the failure rate of the circuits from the new supplier.

(b) \r\rhat will the failure rate per circuit be for long periods of time?

(c) How long should the switchboards be worn in if the average failure
rate of circuits should be no more than O.7/year?

Note: See Example 7.6

7.28 Suppose that a system has a time-independent failure rate that is a linear
function of the system capacity c,

À ( c )  :  À o [ 1  +  b ( c * -  c ) ] ,  b >  0 ,

where c. is the design capacity of the system. Suppose that the presence
of flaws causes the PDF or capacity of the system to be given bV f"(c) in
Exercise 7.4.

(a) Find the system failure rate.

(b) Show that it decreases with time.

7.29 The most probable strength of a steel beam is given by 24N-0 05 kips,
where l/is the number of cycles. This value is known to within 25% with
90Vo confidence.

(a) How many cycles will elapse before the beam loses 20Vo of its
strength?

(b) Suppose that the cyclic load on the beam is l0 kips. How many
cycles can be applied before the probability of failure reaches 70%?

I{ote: Assume a lognormal distribution.
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8.I INTRODUCTION

Reliability tests employ a number of the statistical tools introduced in Chapter
5. In contrast to Chapter 5, where emphasis was placed on the more fundamen-
tal nature of the statistical estimators, here we examine more closely how the
gathering of data and its analysis is used for reliabiliqz prediction and verifica-
tion through the various stages of design, manufacturing, and operation. In
reality, the statistical methods that may be employed are often severely re-
stricted by the costs of performing tests with significant sample sizes and by
restrictions on the time available to complete the tests.

Reliability testing is constrained by cost, since often the achievement of
a statistical sample which is large enough to obtain reasonable confidence
intervals may be prohibitively expensive, particularly if each one of the prod-
ucts tested to failure is expensive. Accordingly, as much information as possible
must be gleaned from small statistical samples, or in some cases from even a
single failure. The use of failure mode analysis to isolate and eliminate the
mechanism leading to failure may result in design enhancement long before
sufficient data is gathered to perform formal statistical studies.

Testing is also constrained by the time available before a decision must
be made in order to proceed to the next phase of the product development
cycle. Frequently, one cannot wait the life of the product for it to fail. On
specified dates, designs must be frozen, manufacturing commenced and the
product delivered.. Even where larger sample sizes are available for testing,
the severe constraints on testing time lead to the prevalence of censoring and
acceleration. In censoring, a reliability test is terminated before all of the
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units have failed. In acceleration, the stress cycle frequency or stress intensity
is increased to obtain the needed failure data over a shorter time period.

These cost and time restrictions force careful consideration of the purpose
for which the data is being obtained, the timing as to when the results must
be available, and the required precision. These considerations frequently lead
to the employment of different methods of data analysis at different points
in the product cycle. One must carefully consider what reliability characteris-
tics are important for determining the adequacy of the product. For example,
the time-to-failure may be measured in at least three ways:

1. operating time

2. number of on-off cycles

3. calendar time.

If the first two are of primary interest, the test time can be shortened by
applying compressed time accelerations, whereas if the last is of concern then
intensified stress testing must be used. These techniques are discussed in
detail in Section 8.5.

During the conceptual and detailed design stages, before the first proto-
type is built, reliability data plays a crucial role. Reliability objectives and the
determination of associated component reliability requirements enter the
earliest conceptual design and system definition. The parts count method,
treated in Chapter 6, and similar techniques may be used to estimate reliability
from the known failure rate characteristics of standard components. Compari-
sons to similar existing systems and a good deal of judgment also must be
used during the course of the detailed design phase.

Tests may be performed by suppliers early in the design phase on critical
components even before system prototypes are built. Thus aircraft, automo-
tive, and other engines undergo extensive reliability testing before incorpora-
tion into a vehicle. On a smaller scale, one might decide which of a number
of electric motor suppliers to utilize in the design of a small appliance by
running reliability tests on the motors. Depending on the design requirement
and the impact of failure, such tests may range from quite simple binomial
tests, in which one or more of the motors is run continuously for the antici-
pated life of the machine, to more exhaustive statistical analysis of life test-
ing procedures.

Completion of the first product protorypes allows operating data to be
gained, which in turn may be used to enhance reliability. At this stage the
test-fix-test-fix cycle is commonly applied to improve design reliability before
more formal measures of reliability are applied. As more prototypes become
available, environmental stress testing may also be employed in conjunction
with failure mode analysis to refine the design for enhanced reliability. These
reliability enhancement procedures are disfrrsr\d i" Section 8.2.

As the design is finalized and larger /roducù sample sizes become avail-
able, more extensive use of the life testing.frocedures discussed in Sections 8.3
through 8.6 maybe required for desigrl,/erification. During the manufacturing
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phase, qualification and acceptance testing become important to ensure that
the delivered product meets the reliability standards to which it was designed.
Through aggressive quality improvement, defects in the manufacturing pro-
cess must be eliminated to insure that manufacturing variability does not give
rise to unacceptable numbers of infant-mortalityfailures. Finally, the collection
of reliabiliq data throughout the operational life of a system is an important
task, not only for the correction of defects that may become apparent only with
extensive field sewice, but also for the setting and optimization of maintenance
schedules, parts replacement, and warranty policies.

Data is likely to be collected under widely differing circumstances ranging
from carefully controlled laboratory experiments to data resulting from field
failures. Both have their uses. Laboratory data are likely to provide more
information per sample unit, both in the precise time to failure and in the
mechanism by which the failures occur. Conversely, the sample size for field
data is likely to be much larger, allowing more precise statistical estimates to
be made. Equally important, laboratory testing may not adequately represent
the environmental condition of the field, even though attempts are made to
do so. The exposures to dirt, temperature, humidity, and other environmental
loading encountered in practice may be difficult to predict and simulate in
the laboratory. Similarly, the care in operation and quality of maintenance
provided by consumers and field crews is unlikely to match that performed
by laboratory personnel.

8.2 RELIABILITY ENFIANCEMENT PROCEDIJRES

Reliability studies during design and development are extremely valuable, for
they are available at a time when design modifications or other corrections
can be made at much less expense than later in the product life cycle. With
the building of the first prototypes hands-on operational experience is gained.
And as the limitations and shortcomings of the analytical models used for
design optimization are revealed, reliability is enhanced through experimen-
tally-based efforts to eliminate failure modes. The number of prototype models
is not likely to be large enough to apply standard statistical techniques to
evaluate the reliability, failure rate, or related quantities as a function of time.
Even if a sarnple of sufficient size could be obtained, life testing would not
in general be appropriate before the design is finalized.If one ran life tests
on the initial design, the results would likely underestimate the reliability of
the improved model that finally emerged from the prototype testing phase.

The na,ro techniques discussed in this section are often employed as an
integral part of the design process, with the failures being analyzed and the
design improved during the course of the testing procedure. In contrast, the
life testing methods discussed in Sections 8.3 and 8.4 may be used to improve
the next model of the product, change the recommended operation proce-

dures, revise the warrantee life, or for any number of other purposes. They
are not appropriate, however, while changes are being made to the design.
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FIGURE 8.1 Duane's dara on a loslos scale. [From L. H. Crow,
"On Tracking Reliabiliry Growth," Proceedings 1975 Reliability and,
Maintainnbility Symposium, 438-443 ( l97b).1

Reliability Growth Testing

Newly constructed prototypes tend to fail frequently. Then, as the causes
of the failures are diagnosed and actions taken to correct the d,esign deficien-
cies, the failures become less frequent. This behavior is pervasive over avariety
of products, and has given rise to the concept of reliability growth. Suppose
we define the following

?: total operation time accumulated on the prototype
n(T) : number of failures from the beginning of operation through

time Z.

Duane* observed that if n(T) / T is plotred versus T on log-log paper, rhe
result tends to be a straight line, as indicated in Fig. 8.1, no matter what
type of equipment is under consideration. From such empirical relationships,
referred to as a Duane plots, we may make rough estimates of the growth of
the time between failures and therefore also extrapolate a measure of how
much reliability is likely to be gained from further cycles of test and fix.

Since Duane plots are straight lines, we may write

lnln(T)/rl - -o(.ln(T) -t b, ( 8 . 1 )

(8.2)

or solving for n(7'),

n(T) -  KTr-"

where K : eb. Note that if a : 0 there is no improvement in reliability, for
the number of failures expected is proportional to the testing time. For a
greater than zero the expected failures become further and further apart as

*J. J. Duane, "Learning Curve Approach to Reliability Modeling," IEEE. Trans. Aerospace 2
5ô3 (1964) .
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the cumulative test time Tincreases. An upper theoretical limit is a : l, since

with this value, Eq. S.2 indicates that the number of failures is independent

of the length of the test.
Suppose we define the rate at which failures occur asjust the time deriva-

tive of the number of failures, n(7:) with respect to the total testing time:

^(r) : frnT). (8.3)

(8.4)

Note that Â is not the same as the failure rate À discussed at length earlier,
since now each time a failure occurs, a design modification is made. Understat-
ing this difference, we may combine Eqs. 8.2 and 8.3 to obtain

^ ( r ) : ( 1  - c r ) K T - o ,

indicating the decreasing behavior of Â(T) with time.

D(AMPLE 8.I

A first prototype for a novel laser powered sausage slicer is built. Failures occur at the

fol lowing numbers of minutes: 1.1, 3.9, 8.2, 17.8, 79.7, 113.1, 208.4 and 239.1. After

each failure the design is refined to avert further failures from the same mechanism.

Determine the reliability grown coefficient a for the slicer.

Solution The necessary calculations are shown on the spread sheet, Table 8.1. A

least-squares fit made of column D versus column C. We obtain a :

SLOPE(D2:D9,C2:C9) : -0.654. Thus, from Eq. 8.1: a : 0.654. The straight-line fit

is quite good since we obtain a coefficient of determination that is close to one: rz :

RSQ(D2:D9,C2:C9) :  0.988.

For the test-fix cycle to be effective in reliability enhancement, each failure
must be analyzed and the mechanism identified so that corrective design
modifications may be implemented. In product development, these may take
the form of improved parts selection, component parameter modifications
for increased robustness, or altered system configurations. The procedure is
limited by the small sample size-often one-and by the fact that the prototype

TABLE 8.1 Spreadsheet for Reliability
Growth Estimate in Example 8.1

I

2
J

4
5
6
F7

8
9

n
1 . 0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

T
1 . 1
3.9
8.2

17.8
79.7

1 1 3 . 1
208.4
239.r

ln(T)  ln(n /T)
0.0953 -0.0953

1.3610 -0 .6678

2.1041 -1.0055

2.8792 -1.4929

4.3783 -2.7688

4.7283 -2.9365

5.3395 -3.3935

5.4769 -3.397+
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may be operatecl under laboratory conditions. As failures become increasingly
far apart, a point of diminishing returns is reached in which those few that
do occur are no longer associated with identifiable design defects. Two strate-
gies may be employed for further reliability enhancement. The first consists of
operating the prototypes outside the laboratory under realistic field conditions
where the stresses on the system will be more varied. The second consists of
artificially increasing the stresses on laboratory prototypes to levels beyond
those expected in the field. This second procedure falls under the more
general heading of environmental stress testing.

In addition to the development of hardware, Duane plots are readily
applied to computer software. As software is run and bugs are discovered and
removed, their occurrence should become less frequent, indicating reliability
growth. This contrasts sharply to the life-testing methods discussed in the
following sections; they must be applied to a population of items of fixed
design and therefore are not directly applicable to debugging processes for
either hardware prototypes or software.

Reliability growth estimates are applicable to the development and debug-
ging of industrial processes as well as to products. Suppose a new production
line is being brought into operation. At first, it is likely that shutdowns will
be relatively frequent due to production of out-oÊspecification products, ma-
chinery breakdowns and other causes. As experience is gained and the pro-
cesses are brought under control, unscheduled shutdowns should become
less and less frequent. The progressive improvement can be monitored quanti-
tatively with a Duane plot in terms of hours of operation.

Environmental Stress Testing

Environmental stress testing is based on the premise that increasing the stress
levels of ternperature, vibration, humidity, or other variables beyond those
encountered under normal operational conditions will cause the same failure
modes to appear, but at a more rapid rate. The combination of increased
stress levels with failure modes analysis often provides a powerful tool for
design enhancement. Typically, the procedure is initiated by identi$'ing the
key environmental factors that stress the product. Several of the prototype
units are then tested for a specified period of time at the stress limits for
normal operation. As a next step, voltage, vibration, temperature, or other
identified factors are increased in steps beyond the specification limits until
failures occur. Each failure is analyzed, and action is taken to correct it. At
some level, small increases in stress will cause a dramatic increase in the
number of failures. This indicates that fundamental design limits of the system
have been exceeded, and further increases in stress are not indicative of the
robustness of the design.

Stress tests also may be applied to products taken off the production line
during early parts of a run. At this point, however, the changîes are typically
made to the fabrication or assembly process and with the component suppliers
rather than with product design. In contrast to the stress testing discussed thus
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far, whose purpose it is to improve the product design or manufacturing

process, environmental stress screening is a form of proof or acceptance test.

To perform such screening all units are operated at elevated stress levels for

some specified period of time, and the failed units are removed. This is

comparable to accelerating the burn-in procedure discussed in Chapter 6, for

it tends to eliminate substandard units subject to infant mortality failures

over a shorter period of time than simply burning them in under nominal

conditions. The objective in environmental stress screening is to reach the

flat portion of the bathtub curve in a minimum time and at minimum expense

before a product is shipped.
In constructing programs for either environmental stress testing or

screening, the selection of the stress levels and the choice of exposure times

is a challenging task. Whereas theoretical models, such as those discussed

in section 8.4 are helpful, the empirical knowledge gained from previous
experience or industrial standards most often plays a larger role. Thermal

cycling beyond the normal temperature limits is a frequent testing form. The

test planner must decide on both a cycling rate and the number of cycles

before proceeding to the next cycle magnitude. If too few cycles are used,

the failures may not be precipitated; if too many are used, there is a diminishing

return on the expenditure of time and equipment use. Often an important

factor is that of using the same test for successive products to insure that

reliability is being evaluated with a common standard. Figure 8.2 illustrates

[ -
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FIGURE 8.2 Typical thermal profiles used in environmental stress test-

ing. (From Parker, T.P. and Harrison, G.L., Quality Improuement Using

Enaironmental Stress Testing, pg. 17, AT&T TechnicalJournal, 71, #4,

Aug. 1992. Reprinted by permissions.)
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TABLE 8.2 Failure Times

0
I
2
J

4

0.00
0.62
0.87
l . l 3
r . 25

5 1.50
6  1 .62
7 t .76
B 1.BB
I 2.03

one such thermal cycling prescription. Note that power on or off must be
specified along with the temperature stress profile.

8.3 NONPARAMETRICMETHODS

We begin our treatment of life-testing with the use of nonpararnetric methods.
Recall from Chapter 5.2 that these are methods in which the data are plotted
directly, without an attempt to fit them to a particular distribution. Such
analysis is valuable in allowing reliability behavior to be visualized and under-
stood. It may also serve as a first step in making a decision whether to pursue
parametric analysis, and in providing a visual indication of which class of
distributions is most likely to be appropriare.

In either nonparametric or parametric analysis two classes of data may
be encountered: ungrouped and grouped. Ungrouped data consists of a series
of specific times at which the individual equipment failures occurred. Table
8.2 is an example of ungrouped data. Grouped data consist of the number
of items failed within each of a number of time periods, with no information
available on the specific times within the intervals at which failures took place.
Table 8.3 is typical of grouped data. Both tables are examples of complere
data; all the units are failed before the test is terminated.

Ungrouped data is more likely to be the result of laboratory tests in which
the sample size is not large, but where instrumentation or personnel are
available to record the exact times to failure. Larger sample sizes are often
available for laboratory tests of less expensive equipment, such as electronic
components. Then, however, it may not be economical to provide instrumenta-

TABLE 8.3 Grouped Failure Data

Time interval Number of failures

0 < t < 5
5 < t < 1 0

1 0 < t < 1 5
1 5 < t < 2 0
2 0 < t < 2 5
2 5 < t < 3 0

2r
t 0

j

9

2
I
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tion for on-line recording of failure times. In such situations, the test is stopped

at equal time increments, the components tested, and the number of failures

recorded. The result is grouped data consisting of the number of failures

during each time interval. Larger sample sizes are also likely to be obtained

from field studies. But such data is often grouped in the form of monthly

service reports or other consolidated data bases. Whether grouped or un-

grouped, field data may require a fair amount of preliminary analysis to

determine the appropriate times to failure. For example if the monthly service

reports of failure for items that have been sold over several years are to be

utilized, the time of sale must also be recorded to determine the time in use.

Likewise, it may be necessary to include design or manufacturing modifica-

tions, unreported failures, and other complicating factors into the analysis to

reduce the data to a usable form.

Ungrouped Data

Ungrouped data consists of  a ser ies of  fa i lure t imes t t  tz,  -  - . ,  t i , . . . ,  l1u' for

the l/units in the test. In statistical nomenclature the I are referred to as the

rank statistics of the test. In Chapter 5 we discuss the utilization of such data

to approximate the CDF in Eq. 5.12 as

F ( t o \ : i / ( N + 1 ) .

Since the reliability and the CDF are related by .R : 1 - F, we

the estimate

4 . .  N * l - t
R \ t i ) :  

^ / +  I

R(t\ : s-nat

which may be inverted to obtain

(8.5)

may make

(8.6)

In addition to the reliability, we would also like to examine the behavior

of the failure rate as a function of time. The use of Eqs. 6.10 and 6.14 to

accomplish this is problematical since the required numerical differentiation

amplifies the random behavior of the data. Instead we define the integral of

the failure rate as

H(t1 : [ 'oÀtr ')  
dt ' ,

which is usually referred to as the cumulative hazard function since in some

reliability literature À(t) is called the hazard function instead of the failure

rate. Equation 6.18 may then be used to write the reliability as

(8.7)

(8 .8 )

(B.e)H(t) :  - ln r*(r).

These equations reduce to ,F( t) + À/ in the case of a constant failure rate.

In ahazzrd plot, ,FI(t) is graphed as a function of time. This provides some

insight into the nature of the failure rate: a linear graph indicates a constant
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TABLE 8.4 Ungrouped Data Computations

R(t i )  H(t i )

0
I

2

4
5
6
n

B
9

0.00
0.62
0.87
1 . 1 3
7 .25
1.50
1 .62
t . 76
i .88
2.03

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0 .10

0.0000
0.1054
0.2237
0.3567
0.5108
0.6931
0.9163
7.2040
1.6094
2.3026

failure rate, one whose curye is concave upward indicates a failure rate that
is increasing with time, whereas a concave downward curve indicates a failure
rate decreasing with time. To present,Fl(/) in a form suitable for plotting, we
simply insert Eq. 8.6 into the right hand side of Eq. 8.9. Simpli$'ing the
algebra, we obtain

H(t , )  :  ln( l /  + 1) -  ln( l /  + 7 -  i ) ( 8 . 1 0 )

The use of these ungrouped data estimators for .R(/) and H(t) are best under-
stood with an example.

E)GMPLE 8.2

From the data in Table 8.2 construct graphs for the reliability and the cumulative
hazard function as a function of time.

Solution The necessary calculations are carried out in Table 8.4. The results are
plotted in Fig. 8.3. The concave upward behavior of H(t) provides evidence of an
increasing failure rate and therefore of wear or aging effects.

r . 2

1 . 0

0 . 8

0 . 6

0 .4

0 . 2

0 . 0  L
0

t

h)
FIGURE 8.3 Nonparametric estimates from ungrouped life data (a) reliability, (b) cu-
mulative hazar d function

ft)
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The estimate of the MTTF or variance of the failure distribution for

ungrouped data is straightforward. We simply adopt the unbiased point estima-

tors discussed in Chapter 5. The mean is given by Eq. 5.6,

1  / v

n  - a \ i  rr  *u,=r 
' ' '

and for the variance, Eq. 5.8, becomes

( 8 . 1 1 )

(8 .12)

(8 .13)

u t : r \ Ë (t ,  -  t") '

i : L , 2 , . . . , M ,

Equation 5.10 can likewise serve as a basis for calculating the skewness and

the kurtosis of the time-to-failure distribution.

Grouped Data

Suppose that we want to estimate the reliability, failure rate, or cumulative

hazard function of a failure distribution from data such as those given in

Table 8.3. We begin with the reliability. The test is begun with l/ items. The

number of surviving items is tabulated at the end of each of the M time

intervals into which the data are grouped: t t ,  t2, . . . ,  t i , . . .  txa.  The number

of surviving items at these times is found to be th, rlz rli, . .. . Since the

reliability Æ(r) is defined as the probability that a system will operate success-

fully for time /, we estimate the reliability at time /; to be

^ 7t,;
ft(/,) : F,

which is a straightforward generalization of 8q.5.11. Since the number of

failures is generally significantly larger for grouped than for ungrouped data,

it usually is not meaningful to derive more precise estimates. Knowing the

values of the reliability at the /;, we may combine Eqs. 8.9 and B.l3 to obtain

an empirical plot of the hazard function:

nG) : ln N - ln n; (8.14)

These estimation procedures are illustrated in the following example.

D(AMPLE 8.3

From the data in Table 8.3 estimate the reliability and the cumulativehazard function.

Is the failure rate increasing or decreasing?

Solution The necessary calculations, from Eqs. 8.12, 8.13 and 8.14 are indicated

in Table 8.5. The resulting values for the quantities are plotted in Fig. 8.4. For R(l)

and I/(/). Since Fig 8.4ôis nearly linear, the failure rate increases only slightly-if at

all-with increasing time.
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TABLE 8.5 Grouped Data Computattons

r t r R(t i )  H(t i )

0
I
2
3
I
T

5
6

0 5 0
5 2 9

t 0  1 9
1 5  7 2
2 0 3
25 I
3 0 0

1 .00
0.58
0.38
0.24
0.06
0.02
0.00

0.0000
v .5++ I

0 .9676

7.4271
2.8134
3.9120

In addition to obtaining plots of the results for grouped data, we may

estimate the mean, variance, or other properties of the failure distribution.

We simply approximate f(t) by a histogram. In the interval t,-1 < t < t; arrd

set/(/)  equal to

' - f l ' - t - 7 1 ;, N a , )

where the width of the interval is

A ' :  ( t i -  t ; t ) .

The integral of Eq. 3.15 is then estimated from

M

p: > |s,L,,
L - l

where l i: L (t,-, -f l ;). Likewise, the variance, given by Eq. 3.16, is estimated as

II

ù, :21 l f ,  L,  -  r* ,

8.4 CENSORED TESTING

Next we consider censored reliability tests. Censoring is said to occur if the

data are incomplete, either because the test is not run to completion or

(8 .15)

(8 .16)

(8 .17)

( 8 . 1 8 )

1 , 2

1 . 0

N , R

u . b

u, r+

0 . 2

0 . 0

t . 2

1 r l

0 . 8

u . o

0 , 4

0 . 2

U . U

É.

0 1 0 2 0 3 0 4 0
ï

(a)

i 0  2 0

FIGURE 8.4 Nonperametric estimates from grouped life data (a) reliability, (b) cumulative

hazard function

I
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because specimens are removed during the test. Many reliability tests must

either be stopped before all the specimens have failed, or intermediate results

must be tabulated. The data are then said to be singly censored, or censored

on the right, since most data are plotted with time on the horizontal axis.

Data are saicl to be multiply censored if units are removed at various times

during a life test. Such removals are usually required either because a mecha-

nism that is not under study caused failure or because the unit is for some

other reason no longer available for testing.

Singly-Censored Data

With single-censored grouped data we have available the number of failures

for only some of the intervals, say for the first i (<M. For ungrouped clata

there are two types of single censoring. In type I the test is terminated after

some fixed length of time; in type II the test is terminated after some fixed

number of failures have taken place. This distinction becomes importantwhen

sampling for a particular distribution is considered. For the nonparametric

methods used in this section, it is adequate to treat all singly-censored un-

grouped data as failure-censored; we assume that of l/units that begin a test,

we are able to obtain the failure times for only the first ?, (<19 failures.

Censoring from the right of either grouped or ungrouped data simply

removes that part of the curves in Figs. 8.3 or 8.4 to the right of the time at

which the test is terminated. The graphical results still are very useful, for

often the early part of the reliability curve is the most important for setting

a warrantee period, for determining adequate safety, and for other purposes.

Moreover, if early failures are under investigation, the first failures are of

primary interest. Even when wearout is of concern, most engineering analysis

ian be completed without waiting until the very last test unit has failed.

Censoring frorn the right may be deliberately incorporated into a test

plan in conjunction with speci$ring how many units are to be tested. The test

engineer may require that a relatively large number of units be tested in order

to obtain enough early failures in order to estimate better the failure rate

curve for some specified period of time, say the warrantee period or the design

life. If rhis is rhe case, many of the units will not fail until well after the time

period of interest, and at least a few are likely to survive for very long periods.

Thus terminating the test at the end of the period of interest is quite natural.

The stand.ard formulas for the sample mean and variance, of course, can

no longer be applied to singly-censored data. Likewise the methods discussed

in Chapter 5.4 for estimating distribution parameters and their confidence

intervals are no longer valid. Probability plotting methods, however, are appli-

cable to censored data, and these are often particularly valuable in performing

parametric analysis. If one of the standard PDFs, say the Weibull distribution,

Lan be fitted to the data and the distribution's parameters estimated, the

reliability can be extrapolated beyond the end of the test interval. Extreme

care must be taken in employing such extrapolations, however, for if different
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failure modes appear after longer periods of time, the extrapolations may
lead tcl serious errors.

Multiply-Censored Data

Multiply-censored data occurs in situations where some units are removed
from the test before failure or because failure result from a mechanism not
relevant to the test. Suppose, for example, that records are being kept on a
fleet of trucks to deterrnine the time-to-failure of the transmission. Trucks
destroyed by severe accidents would be withdrawn from the test, assuming
that a transmission failure was not the cause. Moreover, from time to time
some of the trucks might be sold or for other reasons removed from the test
population before failure occurs. When trucks are removed for such reasons,
it is easy to pretend that the removed units were not part of the original
sample. This would not bias the results, provided the censored units were
representative of the total population, but it would amount to throwing away
valuable data with a concomitant loss in precision of the lifè-testing results.
It is preferable to include the effects of the removed but unfailed units in
determining the reliability.

Multiple censoring may be called for even in situations in which all the
test units are run to failure, for, in a complex piece of machin ery, analysis may
indicate two or more different failure modes. Thus, it may prove particularly
advantageous to remove units that have not failed from the mode under study
in order to describe a particular failure mode through the use of a specific
distribution of times to failure. This requires, of course, that each piece of
machinery be examined and a determination made of the failure mode.

In what follows, we examine the nonparametric analysis of multiply-cen-
sored data. These techniques have been developed the most extensively in
the biomedical community, but they are also applicable to technological sys-
tems. Once the censoring is carried out and the reliability estimate is available,
the substitution FQ) : 1 - lt(/;) allows the probability plotting methods of
Chapter 5 to be employed for parametric analysis.

Ungrouped Data Ungrouped censored data take the form shown in Table
8.6. They consist of a series of t imes, h, tz t i, . . ., fu,.. Each of these times
represents the removal of a unit from the test. The removal may be due to
failure, or it may be due to censoring (i.e., removal for any other reason).
The convention is to indicate the times associated with censoring removals
by placing a plus sign (*) after the number.

TABLE 8.6 Failure Times

27
85+

39 40+
93 102

54
135+

69
r44
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To estimate reliability, we begin by deriving a recursive relation for R(l;)
in terms of ,R(r,-t). Without censoring, it follows from Eq. 8.6 that

By taking the ratro

we obtain

(B.re)

(8.20)

(8 .21)

This expression may be interpreted in light of the definition of a conditional
probability given by Eq. 2.4. T}:'e probability that a unit survives to /; [i.e.,
R(r,)l is just the product of the probability that it survives to t;-1[i.e., rR(r;-1)]
multiplied by the conditional probability [i.e., (l/+ L - i) / (l{ + 2 - i)] that
it will not fail between /;-1 and /;, given that it is operating at t;-1. Thus, for
each /; atwhich a failure takes place, we reduce the reliability by using Eq. 8.21.

In the event that a censoring action takes place at t;, t}:,e reliability should
not change. Therefore, we take

R(r,) : .iQ(r,-,). (8 .22)

Equations 8.21 and 8.22 can be combined as an estimate of the conditional
probability that a system that is operational at t;-1will not fail until t ) ti.

.R(r,l r,-,; : failure at t1

censor at ti

(8.23)

If both a failure and a censor take place at the same time, this formula may
be applied unambiguously if the censor is assumed to follow immediately after
the failure.

By analogy to Eq. 2.4, which defines conditional probability, we maywrite

R(t , )  :  R(4 l r , - r ) ,R( , ' - r ) . (8.24)

Hence the reliability at any t; can be determined by applying this relation-
ship recursively

R(t,) : .R(r, I h-t) R(ti-tl r,-r)R( t,-rl to-u) . . . R(rr | 0), (8.25)

with rR(O) : 1.
In practice, this estimate is used to calculate the values of the reliability

only at the values of f; at which failures occur. The time dependence of the
reliability between these points may then be interpolated, for instance, by
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TABLE 8.7 Spreadsheet for Multiply Censored
Ungrouped Data Analysis in
Example 8.4

I
2
3
4
5
6
7
8
9

1 0
1 l

I

I
2
J

4
5
6
n

8
I

1 0

tr

27
39
40+
54
69
85+
93

102
135+
t44

R(tilti-l)
0.90909
0.90000
1.00000
0.87500
0.85714
1.00000
0.80000
0.75000
1.00000
0.50000

R(ti)
0.90909
0.81818

0.71591
0.61364

0.49091
0.36818

0.18409

straight-line segments. Once the reliability has been calculated, Eq. 8.9 may
be used to estimate the hazard function at the failure times.

Methods for treating multiply-censored data that are based on the use
of the product of conditional reliabilities given in Eq. 8.25 are generally
referred to as product limit methods. The fcrregoing procedure using Eq. 8.5
as a point of departure is due originally to Herd andJohnson. The Kaplan-
Meier procedure, which is widely used in the biomedical community, is quite
analogous; it begins with Eq. 5.11: F(1,) : L/Il and yields the same results
with the expectation that the factor in Eq.8.23 is replaced by (lf - ù/ (l/+
1 - z). As .À/ becomes larger, the differences between the two procedures
become very small.*

D(AMPLE 8.4

Ten motors underwent life testing. Three of these motors were removed from the test
and the remaining ones failed. The times in hours are given in Table 8.6. Use the
Herd-Johnson method to plot the motor reliability versus time.

Solution The necessary calculations are indicated in Table 8.7. In columns A and
B are the values of i  and l ' .  In column C R(t, l t ,- ,)  is calculated from Eq. 8.23 and in
D the values of r1(/;) resulting from Eq. 8.24 are shown. The reliability is plotted in
Fig. 8.5 for the values of /; corresponding to failures.

Grouped Data The procedures for treating multiply-censored grouped data
parallel those previously described for ungrouped data. Suppose that the
number of failures and the number of non-failed items removed from the
test  is  recorded for a number of  intervals def ined by to ( :0) ,  h,  tz,  tz. . . t ; .
We again use the recursive relationships given by Eqs. 8.24and 8.25 to estimate
the reliability, but now the t; represent the time intervals over which the data

x W. Nelson, Appked Life Data Analysis, Chapt. 4, Wiley, New York, 1982.
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FIGURE8.SReliabi l i tyestirnatefrorrrcensoredl i fedata.

has been grouped. We must derive a new expression for R(t,l li-r) which is

applicable to grouped data.

Suppose ihat there are n;-1 items under test at the beginning of the ith

intervai for which ti-t I t 1 ti, and d,tfailures occur during that interval. The

conditional reliability may then be estimated from

1 . 0

1 5 0100

If t.here were no censoring we would simply have

' t l i :  t l i -y  -  dr ,  (B '27)

with rzs : jV and Eq. 8.26 reduces to Eq. 8.13. Suppose, however, that during

t;1.,e i,h interval c; unfailed units are removed from the test. We then have

rL; :  nl i , j  -  di -  ci .  (8.28)

If ci is a significant fraction of n^-r Eg.8.26 will tend to overestimate the

reliability rin." for most of the interval there will be fewer than n;-1 units

available for testing. If we assume that tIrc ci unfailed units are removed at

random points throughout the interval, then a rough correction can be made

to Eq. 8.26 by writing

n(t , l  t , - , )  - -  |  -  d '
7L; t

n',lt i-)-- -J*

(8.26)

(8.2e)

In applying Eqs. 8.28 and 8.29 in conjunction with Eq. 8.25 to estimate

reliability, the values of Â(t,lto-r) and R(/;) normally are only calculated at

the end of those time intervals in which failure have occurred, for the value of

the reliability woulcl not change at intermediate times. The following example

demonstrates the procedure.

D(AMPLE 8.5

Table 8.8 shows life data for 206 turbine disks at 100 hour intervals. Make a nonparamet-

ric estimate of the reliability versus time'
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TABLE 8.8 Failure Data for 206 Turbine Disksx

Interval Failures Removals Interval Failures Removals

0-200
200-300
300-400
400-500
500-700
700-800
800-900
900-1000

1000-1200
1200-1300
1300-1400
1400-1500
1500-1600
1600-1700
1700-2000
2000-2100

0
?

I
0
I
I

0
I

* Data from W. Nelson, Applied LtJè Data An.lysis, Wiley, New york, 19g2, p. 1b0.

Solution Since the censoring takes place randomly, we set up a spread sheet
shown shown in Table 8.9. Columns A, B, and C are the values of i, t, and, n;for those
intervals in which failures take place. Columns F and G are calculated from Eqs. 8.28
and 8.29 respectively, and column H is calculated from Eq. g.24.

Frequently field service records are tabulated over time intervals of equal
length A, months, for instance. However only the time interval of prr..hur.
and the time interval during which failure occurs are recorded. Suppose at
the end of some number of time intervals following the initiation of sales we
want to use all of the available data to estimate the reliability. The recursive
relations Eqs. 8.24 and 8.25 are still applicable, but care must be taken since
inclusion of items of different ages in the reliability esrimate is equivalent to
multiple censoring from the right.

We retain the use of Eq. 8.28 to determine the number of items under
test at the beginning of each interval. However, we now use Eq. 8.26 for the
reliability since the censoring amounts to removal at the end ôf the i,h time
interval those operational items that are currently of age i. L at the time the
analysis is made. We must also make a correction to the time scale since the

TABLE 8.9 spreadsheet for Multiply censored Dara Analysis in
Example 8.5

0
I
I
J

0
I
0
I

4
9

l 1
1 0
32
l 0
t 1
I

I B
5

l 3
t 4
t4
t 4
5
2

1 i
2 9
3 3
4 4
c 5

6 8
7 1 0
8 1 3
9 t 4

r 0  1 6
1 l  1 7
1 2  2 l

ti
200
300
400
500
800

1000
1300
1400
1600
1700
2r00

ci fl;

4 202
2 199

ll  rB7
l0  174
r0  131
9  1 1 0
5 8 5

13 7r
t4  42
14 27
2 6

di
0
I
I
J

I
1

I

2

r l i -  r

206
202
199
187
742
120
92
ô5

5 l

42
9

R(tilti-l) R(ri)
r.0000 1.0000
0.9950 0.9950
0.9948 0.9899
0.9835 0.9736
0.9927 0.9665
0.9913 0.9581
0.9777 0.9367
0.9873 0.9247
0.9800 0.9063
0.9714 0.8804
0.8750 0.7703
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items are sold throughout each time interval. If we assume that sales are

approximately uniform during each time interval (since we have no basis for

u^Ào.. specific assumption) we estimate that the average age of the surviving

items is A,/2 at the.nd of the first interval, 3L/Z at the end of the second,

arrd in general t i: ( i - L/2)4. The procedure is made clearerwith an example:

EXAMPLE 8.6

A new pager goes on sale beginningJanuary 1. Monthly records are kept of the number

sold, tÀe number units returned and the month of sale for those returned. The first

four months sales areJan.-1430, Feb.- 1657, March-1725, April-2198. For those sold

inJanuary, the returns during each month areJ-31,F-71, M-56, A-53' For those

,soù in February the monthly returns are F-38, M-69, A-65, in March M-34, A-76,

and in April A-43. Estimate the product reliability'

Solution We mustfirst establish a time scale: In column B of Table 8.10 are the

average ages in months at the end of each recording interval. In columns C-F are

th. mtnthly failures for those sold inJanuary through April respectively, and column

G contains the total number of failures during the first, second, third, and fourth

months of operation. In columns H-K Eq. 8.28 is used to calculate the numbers in

operarion ot ih. beginning of each monthly interval i for those sold inJanuary through

ipril respectively. Sumrning columns H-K in column L yields i n,-1 total number of

units available at the beginning of each time inter-val. In columns M and N, the values

of R(r,l t;-1) and i?(tu) arè calculated from Eqs. 8.26 and 8.24. The reliability is plotted

in Fig. 8.6.

TABLE 8.10 Spreadsheet for Data Analysis in Example 8'6

tr

Failures

Jar. Feb. March April

0.5
1 .5
2.5
3.5

31
77
56
5 J

34
t o

t46
276
721

5 C

38
69
o5

43.)
4
5
6

I

2

/
a

I J
#Test units

M

R(tilt i- l)

N

R(t i ).1u.. Feb. March April

J

A
a

5
6

t430
1399
r32B
r272

l b 5  /

1619
1550

t725
169i

7010
4709
2878
1272

0.9792 0.9792
0.9541 0.9342
0.9580 0.8950
0.9583 0.8577

2198
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0 1 2 3
months

FïGURE 8.6 Reliability estimate for
grouped censored life data.

8.5 ACCELERATED LIFE TESTING

Inadequate time to complete life testing is an ubiquitous problem in making
reliability estimates. The censoring from the right discussed in the preceding
section is a solution only if data from a sufficiently short time span is needed,
or if that data can be confidently extrapolated to longer times. Fortunately,
a number of acceleration methods may be used to counter the difficulties
in performing life testing with time deadlines. Although none are without
shortcomings, these procedures nevertheless contribute substantially to the
timeliness with which reliability data are obtained. Accelerated tests can be
divided roughly into two categories; compressed-time tests and advanced-
stress tests.

Compressed-Time Testing

Unless the product is one that is expected to operate continuously, such as
a wrist watch or an electric utility transformer, one can condense the compo-
nent's lifetime by running it continuously to failure. Flence, many engines,
motors, and other mechanical and electrical devices can be tested for durability
in a small fraction of the calendar design life. Likewise, on-off cycles for many
products can be accumulated over a condensed period of time compared to
the calendar design life. Reliability tests are frequently performed in which
appliance doors are opened and closed, consumer electronics is turned on
and off, or pumps or motors are started and stopped to reach a design life
target over a relatively short period of time. These are referred to as com-
pressed-time tests, for the product is used more steadily or frequently in the test
than in normal use, but the loads and environmental stresses are maintained at
the level expected in normal use.

Precaution must be exercised in amassing data from compressed-time
tests. In field use the appliance'door may only be cycled (opened and closed)
several times per day. But a compressed-time test can easily be performed in
which the open-close cycle is performed a few times per minute. If the cycle
is accelerated too much, however, the conditions of operation may change,
increasing stress levels and thus artificially increasing failure rates. If the latch
is worked several times per second, for example, the heat of friction may not
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have time to dissipate. This, in turn, would cause the latch to overheat; increas-

ing the failure rate and perhaps activating failure mechanisms that would not

plague ordinary operation. Conversely, tests in which engines, motors, or

other systems, which normally operate for intermittent periods of time, are

operared continually until failure occurs will not pick up the cyclical failure

modes caused by starting and stopping. To detect these a separate cycling

test is required, or the continuous operation must be interrupted by intervals

long enough for ambient temperatures to be achieved. Compressed-time tests

under the field conditions that a product will face may be more difficult to

achieve. Nevertheless, some acceleration is possible. The field life of automo-

biles may be compressed by leasing them as taxicabs, that of a home kitchen

appliances by testing them in restaurants. Differences, of course, will remain,

but the data rnay be adequate for the design verification or other use for

which i t  is needed.

EXAMPLE 8.7

Life testing was undertaken to examine the effect of operating time and number of

on-off cycles on incandescent bulb life. Six volt flashlight bulbs were operated at 12.6

volts in order to increase the failure rates. The wall-clock failure times, in minutes,

for 26 bulbs operated continually and 28 bulbs operated on a 30 sec. on-30 sec. off

cycle are given in Table 8.11. Use probability plotting to fit the two sets of data to

Weibull disrributions, and determine the efTect of on-off cycling on the life of the bulb'

Solution Recall from Chapter 5 that Weibull probability plots are made by plotting

_y: ln[ ln( l /(1 - F))]  versus ln(l) .  The l ' ( /)  is approximated at each fai lure by trq'

5.12. The necessary calculations are perfbrmed in Table 8.12. In Figure 8.7, columns

E and I are plotted versus columns G and C, respectively, and least-squares fits are

TABLE 8.ll Wall Clock Failure Times

in Minutes

Steady State Cyclic

72 r25
82 726
87 727
97 r27

103 128
11  I  139
113 140
r17 148
117 754
118  159
t21 177
12r 199
724 207

17 258
161 262
177 266
186 271
186 272
196 280
208 284
9 f q  , q , )

224 300
224 317
232 332
247 342
243 355
243 376
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TABLE 8.12 Spreadsheet for Weibull Analysis of Failure Data in Example 8.9

STEADYSTATE: CYCLIC:

t

72
82
87
97

103
l l l
1 1 3
tt7
r17
1 1 8
l 2 l
r21
t24

1
2 i
3 1
4 2
I ) J

6 4
7 5
8 6
9 7

1 0 8
l l I
12  10
1 3  l l
1 4  t 2
15  l 3
16  t 4
t7  15
lB  16
l9  17
20 18
21  19
22 20
23 21
94 99

25 23
26 24
27 25
28 26
29 27
30 28

125
126
r27
127
l28
139
140
l48
t54
159
t77
199
207

x : ln(t)
4.2767
4.4067
4.4659
4.5747
4.6347
4.7095
4.7274
4.7622
4.7622
4.7707
4.7958
4.7958
4.8203
4.8283
4.8363
4.8442
4.8442
4.8520
4.9345
4.9416
4.9972
5.0370
5.0689
5.1761
5.2933
5.3327

F : i / 2 7  y
0.0370 -3.2770

0.074r -2.5645

0 .u  11  -2 .1389

0.1481 -  1 .8304
0.1852 - 1.5857
0.2222 - 1.3811
0.2593 - 1.2036
0.2963 * 1.0458
0.3333 -0.9027

0.3704 -0.7708

0.4074 -0.6477

0,4444 -0.5314

0.4815 -0.4204

0.5185 -0 .3135

0.5556 -0.2096

0.5926 *0.7077

0.6296 -0.0068

0.6667 0.0940
0.7037 0.1959
0.7407 0.3001
0.7778 0.4082
0.8148 0.5226
0.8519 0.6469
0.BBB9 0.7872
0.9259 0.9565
0.9630 r.7927

x : l n ( t )  F : i / 2 9  y
2.8332 0.0345 *3.3498

5.0814 0.0690 -2.6386

5.1761 0.1034 -2.2146

5.2257 0.137e -1.e077

5.2257 0.7724 -1.6647

5.2781 0.2069 - 1.4619
5.3375 0.2414 -r.2864

5.3891 0.2759 - l . l308
5.4116 0.3103 -0.9900

5.4116 0.3448 -0.8607

5.4467 0.3793 -0.7404

5.4848 0.4138 -0.6272

5.4931 0.4483 -0.5197

5.4931 0.4828 -0.4167

5.5530 0.5172 -0.317r

5.5683 0.5577 -0.2202

5.5835 0.5862 -0.1251

5.6021 0.6207 *0.0311

5.6058 0.6552 0.0627
5.6348 0.6897 0. r 57r
5.6490 0.7241 0.2530
5.6768 0.7586 0.3516
5.7038 0.7931 0.4546
5.7889 0.8276 0.5641
5.8051 0.8621 0.6836
5.8348 0.8966 0.8192
5.8727 0.9310 0.9836
5.9296 0.9655 7.2141

t

7 7
1 6 1
177
186
186
196
208
219
224
224
232
241
243
243
258
262
266
271
272
280
284
292
300
3r7
332
342
355
376

made. The first cyclic failure at 17 min. is an outlier, probably due to infant mortality,
and would appear far to the left of the graph. Thus it is not included in the least-
square fit. In terms of the slope a and the y intercept b, the Weibull shape and scale
parameters are determined from Eqs. 5.33 and 5.34 to be

Steady St.:  r îr :  4.41, â: exp( +21.8/4.41) :  140.2 min. (clock t ime)

Cycl ic: tk: 4.51, ô: exp( +25.3/4.51) :273.I min. (clock t ime)

The shape factors are nearly identical, while the scale parameter for the cyclic case is
approximately double that for steady-state operation. If we convert clock time to
operating time and plot the results, the scale parameter would be 140 and (I/2)
273.1 : 737. Thus the two sets of data give indistinguishable results when cast in
terms of operating time. Therefore the effects of the on-off cycling on bulb lifetime
are negligible.
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' 0  
5  b

Ln( t )

FIGURE 8.7 Weibull probability plot fbr light bulb accelerated life tests.

Advanced-Stress Testing

Systems that are normally in continuous operation or in which failures are

caused by deterioration occurring, even though a unit is inactive, present

some of the most difficult problems in accelerated testing. Failure mechanisms

cannot be accelerated using the foregoing time compression techniques. Ad-

vanced-stress testing, however,rnay be employed to accelerate failures, since as

increased loads or harsher environments are applied to a device, an increased

failure rate may be observed. If a decrease in reliability can be quantitatively

related to an increase in stress level, the life tests can be performed at high

stress levels, and the reliability at normal levels inferred.
Both random failures and aging effects may be the subject of advanced

stress tests. In the electronics industry, components are tested at elevated

temperatures to increase the incidence of random failure. In the nuclear

industry, pressure vessel steels are exposed to extreme levels of neutron irradia-

tion to increase the rate of embrittlement. Similarly, placing equipment under

a high-stress level for a short period of time in a proof test may be considered

accelerated testing to reveal the early failures from defective manufacture.

The most elementary form of advances-stress test is the nonparametric

estimate of the MTTF. Suppose that the MTTF is obtained at the number of

different elevated-stress levels. The MTTF is then plotted versus some function

of the stress level. Knowledge of either the stress effects or trial and error

may be used to choose the function that will result in a linear graph. A curve

is fitted to the data, and the MTTF is estimated at the stress level that the

device is expected to experience during normal operation. This process is

illustrated in the following example:

LL

I

l
\ - a

c
J

c
J

Cyc  l i c
Y = - 2 5 . 3 3 4 + 4 . 5 O 5 7 x

R ^ 2  =  0 . 9 8 7
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E)(AMPLE 8.8

Accelerated life tests are run on four sets of 12 flashlight bulbs and the failure times
in minutes are tabulated in Table 8.13. Estimate the MTTF at each voltage and
extrapolate the results to the normal operating voltage of 6.0 volts.

Solution Using the spread sheet formula for the mean we have:

9.4 v: A\IERAGE (43:A14) : 4,7 44 rnin.

12.6v:AVERAGE(B3:814) :  126. min

74.3 v:A\IERAGE (C3:C14) : 29.0 min.

16.0 v: AVERAGE(D3:D14) :  10.3 min.

In Fig. 8.8 ln(MTTF) is plotted versus volts, and the results fall nearly on a straight
line as indicated by the .99 coefficient of determination. The least-squares fit indicates.

Hence,

At 6 volts:

l n ( M T T F )  :  - 1 . 1 4 v  +  1 9 . 3

MTTF :  exp (19 .3  -  l . l 4v )  : 241x  106exp ( -1 .14v )  m in .

: 167  x  103exp ( -1 .14v )  days

M T T F  : 1 6 7  X  1 0 3 e x p ( - 1 . 1 4  X  6 )  :  1 7 9  d a y s : 6 m o n t h s

The foregoing nonparametric process, while straightforward, has several
drawbacks relative to the parametric methods to which we next turn. First, it
requires that a complete set of life data be available at each stress level in

TABLE 8.13 Light Bulb Failure Times in
Minutes

I
c)

3

+

5

6
,
8

I

l 0

l l

r2
I .-)

t 4

9.4v

63
3542
3782
4772
4412
4647
5610
5670
5902
6159
6202
6764

12.6v

ô t

l l l

1t7

1 1 8

r2r
r2r
724
125
128
140
148
777

14.3v

9
1 3

23
25
28
30
32
34
3 t

3 t

39
4 l

16.v

F7

9

I

I

9

I

l 0

l l

7 2
12
t 3
t4
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L9 .282  -  L . I42 rx

R ^ 2  =  O . 9 9 2

VOLTS

FIGURE 8.8 MTTF extrapolation liom accelerated life tests.

order to use the sample mean to calculate the MTTF. Parametric methods

can also utilize data that is censored as well as accelerated. Second, without

attempting to fit the data to a distribution, one has no indication whether

the shape, as well as the time scale of the distribution, is changing. Since

changes in distribution shape are usually indications that a new failure mecha-

nism is being activated by the higher-stress levels, there is a greater danger

that the nonparametric estimate will be inappropriately extrapolated.

Parametric analysis may be applied to advanced-stress data as follows. As

stress is increased above that encountered at normal operating levels, failures

should occur at earlier times and therefore the CDF for failure should rise

more rapidly. Let F"(r) be the failure CDF under accelerated-stress conditions

and F(f) be that obtained under ordinary operating conditions. Then, we

would expect that at any time, I-,(t) > f(/). True acceleration is said to take

place if F,(t) and F(t) are the same distribution and differ only by a scale

factor in time. We then have

F"( t )  :  F (x t ) ,

where rc ) I is referred to as the acceleration factor.

(8.30)

The Weibull and lognormal distributions are particularly well suited for

the analysis of advanced-stress tests, for in each case there is a scale parameter

that is inversely proportional to the acceleration factor and a shape parameter

that should be unaffected by acceleration. Thus, if the shape parameter re-

mains relatively constant, some assurance is provided that no new failure

mode has appeared.

The CDF for the Weibull distribution is given by Eq. 3.74. Thus at an

advanced stress it will be given by

c b

=
u
F

z.
I

1 a1 6I 4T21 0

F ' " ( t )  -  1 -  e -Q /o ' ) * , ( 8 . 3 1 )
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where to satis$r Eq. 8.30 the scale parameter must be given by

0 '  : 0 / x . (8.32)

A special case of the Weibull distribution, of course, is the exponential distribu-
tion, where m: 1, is also used for accelerated testing. Likewise, the CDF for
the lognormal distribution is given by Eq. 3.65. At corresponding advanced
stress the distribution will be

F " ( t ) :  *  
[ * ' "  

( ; ) ] , (8.33)

where to satis$r Eq. 8.30 we must have

t'o : to/ x. (8.34)

The procedure for applying advanced-stress testing to determine the life
of a device requires a good deal of care. One must be satisfied that the shape
parameter is not changing, befbre making a statistical estimate of the scale
parameter. This is often difficult, for at any one stress level the number of
failures is not likely to be large enough to determine shape parameter within
a narrow confidence interval, and moreover the estimates of these parameters
will vary randomly from one stress level to the next. Thus, one must rely on
other means to establish the shape parameter. Historical evidence from larger
data bases may be used, or more advanced maximum likelihood methods may
be used to combine the data under the assumption that there is a common
shape parameter. Finally, additional data may be acquired at one or more of
the stress levels to establish the parameter within a narrower bound. Some
of these considerations are best illustrated by carrying through the analysis
on a set of laboratory data. For this purpose we return to the light bulb data
used in Examples 8.7 and 8.8:

D(AMPLE 8.9

Make Weibull plots of the accelerated-life test data in Table 8.13. Estimate the shape
parameter and determine the acceleration factor as a function of voltage.

Solution For each of the four sets of data we make up a spread sheet analogous
to Table 8.12. This is shown as Table 8.14. The first two columns contain the rank i,
and the cor respondingvalues of  y :  ln [n(1/ (1  -  l - ) ) ]  w i th  F:  i /  (N+ 1) .  Columns
C through F contain the failure times, copied from Table 8.13, and the corresponding
values of x: ln(r) are calculated in columns G throughJ. The xJ curve for each
voltage is shown in Fig 8.9. With the exception of one early failure at 63 min. in the
9.4v data, the data sets appear to be reasonably represented by the Weibull distribution.
Moreover the graphical representations appear to be of similar slope. To explore this
further, we make least-squares fits of each of these data sets (deleting the one outlier)
and obtain the slopes and the coefficients of determination:

9.4v a:  SLOPE(B'4:r-74,G4:Gl4) :  4.86

12.6 v a :  SLOPE(B3:814,H3:H14) :  2.70

r2 : RSQ(84:B14,G4:GI4) : .891

r2 : RSQ(B3:B14,H3:H14) :  .900
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TABLE 8.14 Spreadsheet for Weibull Analysis of Failure Data in Example 8.9

I

2

3

I

5

û
7

8

v

l 0

l l

t2

t 3

t.1

l 5

l 6

t 7

t 8

t 9

I

I

2

3
À
5

6

7

8

9

t 0

n
l . )

9.4v

y t
*2.5252 63
- 1.7894 3512
-1.3380 3782
-1.0004 4172
-0.7226 4472
*0.4796 4647
-0.2572 5610
-0.0455 5670

0.1644 5902

0.3828 6159

0.6269 6202

0.94t9 6764

- 0.5035

4.4

12.6v 14.3v

t t

8 7 9

1 1 1  1 3

1 1 7  2 3

I l u  2 5

r 2 I  2 8

1 2 1  3 0

r24 32

125 34

r28 37

140 37

148 39

177 17

1 6 . v

t

7

v

v

v

v

I

l 0

l l

t 2

1 2

1 3

t 4

xbar-

b -

theta:

ln (theur) -

9.4v

4.113

8.172

8.238

8.336

8.392

8.144

u.632

8.6.13

8.t iS3

8.726

8.733

8 . 8 1 9

l2.tiv

4.466

1 . 7 l 0

4.762

4 . 7 7 1

4"796

4.796

4.820

4.828

4.852

4.942

4.997

t ) -  I  / o

14.3v

2.197

z .5 t l 5

3.135

3 . 2 1 9

3.332

3..10 i

3.466

3.526

3 . 6 1 1

3 . 6 1 I

3.664

3.714

l 6 . v

x

1.946

2.797

2 . t 9 7

2 . 1 9 7

2. [ t7

2 . 1 9 7

2.303

2.398

2.-+85

2..185

2.56ir

2.639

. , L ^ - - fJ.529 i1.11263 3.2868 2.3172
-38.0  -2 t .7  -15 .0  -10 .7

5 ,672.6  139.9  30 .0  l l . ' 1

8.r i43 4.91t 3.401 2.432

These coefficients of determination reinforce the view that the data is reasonably fit

by Weibull distributions. The varying values of the slopes reveals no systematic trend,

and may well be due to large fluctuations caused by the small sample sizes. Thus the

average over the four slopes, a: m: 4.09, may be a reasonable approximation to a

14 .3v  a :  SLOPE(83 :814 , I 3 : I 14 )  :  5 .60

16.0 v a : SLOPE(83:B14J3JI4) :  3.79

rz : RSQ(83:B14,I3:I14) :  .862

r2 : RSQ(83:B1 J3J1a) :  .963

9.4u aF

1 2 . 6 u  +
I4.3u <t-
1 6 . 0 u  +

u
I

c
J

c)
_ L

1 0
Ln( t )

FIGURE 8.9 Weibull probability plots for light bulb accelerated life tests.
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shape parameter for all of the data. We have an additional piece of evidence, however.
The two larger data sets, N : 24, taken for steady state and cyclic operation at 72.6
v, shown in Fig. 8.7, yield values of 4.47 and 4.51. As a result we chose m : 4.4 as a
reasonable estimate.

With the common shape factor, and therefore fixed slope, we may use Eq. 5.25
to make a least-squares lit for b, the I intercept, at each voltage: b : ) 

- ax. Tl;'e
necessary calculations for ô are carried out in Table 8.14. For each voltage the Weibull
scale parameter 6 is then evaluated from Eq. 5.34.To estimate the acceleration factor
as a function of voltage we first attempt a linear fit of the values given in Table 8.14
versus voltage. We obtain rt  :  

\SQ(G18J18,G1J1) 
:  0.77,which is a poor f i t .  We

next attempt a fit with y : ln ( 0) and obtain a coefficient of cletermination that is
substantially closer to one: 12 : RSQ(G19J19,G1J1) : 0.98. Therefore we make a
least-square f i t  of ln(6) versus voltage and f ind a : SLOPE(G19J19,G1J1) :  -0.96

and INTERCEPT(G19J19,G1J1) :  17.4. Thus we may write ln (6') :  -0.96v + 77.4
or ê' :36.0 l06exp(-0.962). From Eq. 8.32 we f ind the accelerat ion factor to be

rc  :  0 /  9 '  :  exp[0.96(u -  6) ]

Other distributions, such as the normal and extreme value, frày also be
used in advanced-stress testing. In these cases, however, the analysis is more
complex since both distribution parameters change if Eq. 8.30 remains valid.
For example in the normal distribution, we have lL' : p,/ rc and c' : c/ x.
Thus lines drawn on probability plots at different stress levels will no longer
be parallel with the time scalirrg. The normal distribution is more useful in
modeling phenomena in which stress levels have additive instead of multiplica-
tive effects on the times to failure. For pr, is a displacement rather than a scale
parameter, and thus in such situations only p, and not o will be effected. A
similar behavior is observed if the extreme value distribution is employed.

Acceleration Models

As in compressed-time testing, the extrapolations involved in advanced-
stress testing may be problematical in situations where it is feasible to run
accelerated tests at only one or two stress levels. Then it is impossible to
define an empirical relationship between stress and reliability from which the
extrapolation to normal operating conditions can be made. In such situations
the existence of a well-understood acceleration model can replace the empiri-
cal extrapcllation. For example, the rate at which a wide variety of chemical
reactions take place, whether they be corrosion of metals, breakdown of
lubricants, or diffusion of semiconductor materials, obeys the Arrhenius
equation.

rafu _e LH/k'r', (8.35)

where ÀË1 is the activation energ'y, Â is the Boltzmann constant, and T is

the absolute temperature. Thus, for systems in which chemical reactions are

responsible for failure, an increase in tenperature increases the failure rate

in a prescribed manner.
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Since the times to failure will increase as the rate decreases, we may

equate the scale parameter for the Weibull distribution to the inverse of

the rate

0 
- Ae^H/h't (8 .36)

where A is a proportionality constant. The Arrhenius equation may also be

used, for lognormal fitting simply by substituting the scale parameter t0 for 0

in the following equations. Suppose that T6 is the nominal temperature at

which the device is designed to operate. The acceleration factor, defined in

Eq. 8.30 may then be determined simply by taking the ratio 0n/ 0, of scale

parameters at the nominal and elevated temperatures, Tç1and 7.1.

(8.37),<( fr) :exp {rowu,t+-+]}

LH:^(+-à) ""(â)

Before this expression may be used for accelerated testing, however, the

acriviry energy AFI must be determined. This can be accomplished by taking

the ratio between gr and 02 at two elevated temperatures and solving Eq. 8'36

for L,H:

(8.38)

Thus tests must first be run at two reference temperatures Tr and T2 to

determine the Weibull parameters 91 and 02. Then, once Al1has been deter-

mined, the acceleration factor can be calculated as a function of temperature.

Other time-scaling laws are also available. Empirical relations are often

applied to voltage, humidity and other environmental factors. Accelerated

tésting is useful, but it must be carried out with great care to ensure that

results are not erroneous. We must be certain that the phenomena for which

the acceleration factor rc has been calculated are the failure mechanisms.

Experience gained with similar products and a careful comparison of the

failure mechanisms occurring in accelerated and real-time tests will help

determine whether we are testing the correct phenomena.

8.6 CONSTANT FAILURE RATE ESTIMATES

In this section we examine in more detail the testing procedures for determin-

ing the MTTF when the data are exponentially distributed. This is justified

both because the exponential distribution (i.e., the constant failure rate

model) is the most widely applied in reliability engineering, and because it

provides insight into the problems of parameter estimation that are indicative

of those encountered with other distributions.
We must, of course, determine whether the constant failure rate model

is applicable to the test at hand. At least four approaches to this problem may
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be taken. The exponential distribution may be assumed, based on experience

with equipment of similar design. It may be identified by using one of the

standard statistical goodness-oÊfit criteria or by probability plotting, and exam-

ining the results visually for the required straightJine behavior. Finally, itrr.ay

be argued from the failure mode whether the failures are random, as opposed

to early or aging failures. If defective products or aging effects are identified

as causing some of the failures, the data must be censored appropriately.

The exponential distribution has only a single parameter to be estimated,

the failure rate À. Rather than estimate the failure rate directly, most sampling

schemes are cast in terms of the MTTF, denoted by MTTF = I'L : 7/ À'. For

uncensored data the value of p"may be estimated from Eq.8.11. Moreover,

when { the number of test specimens, is sufficiently large, the central limit

theorem, which was discussed in Chapter 5, may be used to estimate a confi-

d.ence interval. In particular, the 69Vo conlFidence interval is given by p ! o/

V-lf, *h" re c2 is the variance of the distribution. Since for the exponential

distribution r : lL, we may estimate tlrre 69% confidence interval from p +

Êr/û'{.

Censoring on the Right

It is clear from the foregoing expressions that for a precise estimate a large

sampling size is required. Using many test specimens is expensive, but, more

importan t, a very long time is required to complete the test. As N becomes

large, the last failure is likely to occur only after several MTTFs have elapsed.

Moreover, the analysis of the failures that occur after long periods of time is

problematic for two reasons. First, a design life is normally less than the MTTF,

and it is often not possible to hold up final design, production, or operation

while tests are carried out over many design lives. Equally important, many

of the last failures are likely to be caused by aging effects. Thus they must be

removed from the data by censoring if a true picture of the random failures

is to be gained.
Typ. I and type II censoring from the right are attractive alternatives to

uncensored sampling. By limiting the period of the test while increasing the

number of units tested, we can eliminate most of the aging failures, and

estimate more precisely the time-independent failure rate. Within this frame-

work four different test plans may be used. With the assumption that the test

is begun with N test units, these plans may be distinguished as follows. If the

test is terminated at some specified time, say t., then type I censoring is said

to take place. If the test is terminated immediately after a particular number

of failures, say n, thert type II censoring is said to take place. With either type

I or type II censoring, we may run the test in either of nvo ways. In the

nonreplacement method each unit is removed frorn the test at the time of

failure. In the replacement method each unit is immediately repaired or

replaced following failure so that there are always Nunits operating until the

test is terminated.
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The choice between type I and type II censoring involves the following

trade-off. Typ. I censoring is more convenient because the duration of the

test /* can be specified when the test is planned. The time /, of the nth failure,

at which a test with type II censoring is terminated, however, cannot be

predicted with precision at the time the test is planned, for t,, is a random

variable. Conversely, the precision of the measurement of the MTTF for the

exponential clistribution is a function of the number of failures rather than

of the test time. Therefore, it is often considered advisable to wait until some

specified number of failures have occurred before concluding the test.

A number of factors also come into play in determining whether nonre-

placement or replacement tests are to be used. In laboratory tests the cost of

the test units compared with the cost of the apparatus required to perform

the test may be the most significant factor. Consider two extreme examples.

First, if jet engines are being tested, nonreplacement is the likely choice.

When a specified, number of engines are available, more will fail within a

given length of time if they are all started at the same time than if some of

them are held in reserve to replace those that fail. The same is true of any

other expensive piece of equipment that is to be tested as a whole.

Conversely, suppose that we are testing fuel injectors for large internal-

combustion engines. The supply of fuel injectors may be much larger than

the number of engines upon which to test them. Therefore, it would make

sense to keep all the engines running for the entire length of the test by

immediately replacing each fuel injector following failure, provided that the

replacement can be carried out swiftly and at minimum cost. Minimizing cost

is an important provision, for generally the personnel costs are larger with

replacement tests; in nonreplacement tests personnel or instrumentation is

required only to record the failure times. In replacement tests personnel and

equipment must be available for carrying out the repairs or replacements

within a short period of time.
The situation is likety to be quite different when the data are to be

accumulated from actual field experience with breakdowns. Here, in the

normal course of events, equipment is likely to be repaired or replaced over

a time span that is short compared to the MTTF. Conversely, records may

indicate only the number of breakdowrls, not when they occurred. The num-

ber of breakdowns might be inferred, for example, from spare parts orders

or from numbers of service calls. In these circumstances replacement testing

describes the situation. Moreover, unlike nonreplacement testing, the MTTF

estimation does not require that the times of failures be recorded.

One last class of test remains to be mentioned. Sometimes referred to

as percentage survival, it is a simple count of the fraction (or percentage) of

failed units. From the properties of the exponential distribution, we infer the

MTTF. This test procedure requires no surveillance, for failed equipment

does not need to be replaced or times of failure recorded. Not surprisingly,

the estimate obtained is less precise. The method is normally not recom-

mended, unless failures are not apparent at the time they take place and
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can only be determined by destructive testing or other invasive techniques
following the conclusion of the test.

MTTF Estimates

With the exception of the percentage survival technique, the same estimator
may be shown to be valid for all the test procedures described:*

^ T
F :  n '

7: total operational time of all test units, (8.39)

n : number of failures.

For each class of test, however, the total operating time Tis calculated differ-
ently.

Consider first nonreplacement testing with type I censoring (i.e., the test
is terminated at  some predetermined t ime /-) . I f  t r ,  t2, . . . ,  tn are the t imes
of the n failures, the total operational tirne T for the l/ units tested is

f  :  > r,  * (rV - n)t*,
i=t

since l,tr - n units operate for the full time r-.

D(AMPLE 8.IO

(8.40)

A 30-day nonreplacement test is carried out on 20 rate g'yroscopes. During this period
of time 9 units fail: examination of the failed units indicates that none of the failures
is due to defective manufacture or to wear mechanisms. The failure times (in days)
a re  27 .4 ,13 .5 ,  10 .5 ,  20 .0 ,23 .6 ,29 . I , 27 .7 ,5 .1 ,  and  14 .4 .  Es t ima te  t he  MTTF .

Sohttion From Eq. 8.40 with N: 20 and n : 9,

I

r : ) t i + ( 2 0 - 9 ) x 3 0

:  177.3  +  11  x  30 :  501.3

^  T  501.3
* : ; :  ï :  

5 5 . 7  d a Y s .

For type II censoring the test is stopped at t,, the time of the rzth failure.
Thus, if there is no replacement of test units, the total operating time is

* I. Bazovsky, Rcliability Tlrcory and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1961.
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calculated from

( N -  n ) t , , (8.41)

since the unfailed (l/ - n) units are taken out of service at the time of the

nth failure. Note that in the event that some of the units, say k of them, are

removed from the test because they fail from another mechanism, such as

aging, then T is still calculated by Eq. 8.40 or Eq. 8.41. Now, however, the

estimare is obtained by dividing only by the number n - k of random failures:

7 : f  t , +

^ T
lL: 

-----;
n -  n

(8.42)

D(AMPLE 8.1I

The engineer in charge of the test in the preceding problem decides to continue to

tesr until 10 of the 20 rate gyroscopes have failed. The tenth failure occurs at 41.2

days, at which time the test is terminated. Estimate the MTTF.

Solution From Eq. 8.41 with N: 20 and n : 10,

l 0

r : 2  h +  ( 2 0  -  1 0 ) 4 1 . 2

7: (171.3 + 41.2) + l0 x 4L.2: 624.5

î , :T:W: 62.4 days.

In replacement testing all l/ units are operated for the entire length of

the test. Thus, for type I censoring, we have T: Nt*, where ,. is the specified

test time. Hence

(8.43)

For type II censoring, we have T : Ntn, where /, is the time at which the nth

unit fails. Thus 7- : Nt, or

(8"44)

D(AMPLE 8.12

A chemical plant has 24 process control circuits. During 5000 hr of plant oPeration

the circuits experience 14 failures. After each failure the unit is immediately replaced.

What is the MTTF for the control circuits?

-Ày'r*
î L : - n

^ Ntn
p : -

n



RzliabilityTesting 241

Solution From Eq. 8.43

?: À*It* : 24 X 5000 : 120,000

" '  -  ! -  120'ooo :  8571 hr.r " : ; , :  1 4

EXAMPLE 8.13

Six units of a new high-precision pressure monitor are placed on an industrial furnace.

After each fâilure the monitor is immediately replaced. However, the eighth failure

occurs after only 840 hours of sewice. It is decided that the high-temperature environ-

ment is too severe for the instruments to function reliably, and the furnace is shut

down to replace the pressure monitors with a more reliable, and expensive, design.

Assuming that the failures are random, estimate the MTTF of the monitors.

Sofution From Eq. 8.44

T: Ntu: 6 X 840 : 5040 hr

T 5040
ÊL:  - :  - : -  :  t rJU ht ' .

r r 8

As alluded. to earlier, the MTTF may also be estimated from the percentage

surv-ival merhod. We begin by first estimating the reliability at the end of the

rest, time te as Æ( tr) : 1 - nfil. With an exponential distribution however,

the reliability is given by

R( ru) : exp (- *,/ tt). (8.45)

Thus, combinins these equations, we estimate MTTF from

P:ffi' (s'46)

EXAMPLE 8.14

A National Guard unit is supplied with 20,000 rounds of ammunition for a new model

rifle. After 5 years, 18,200 rounds remain unused. From these 200 rounds are chosen

randomly and test-fired. Twelve of them mis{ire. Assuming that the misfires are random

failures of the ammunition caused by storage conditions, estimate the MTTF.

Solution In Eq. 8.46 take n : 12, N : 200' and /e : 5 years' We have

6
w : 6 : S l Y e a r s '

Confidence Intervals

We next consider the precision of the MTTF estimates made with Eq. 8.39.

The confidence limits for both replacement and nonreplacement tests may
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be expressed in terms of p and the number of failures by using tlrre y2 distribu-
tion. The results are given conveniently by the curves shown in Fig. 8.10. We
consider type II censoring first.

Let (Jo12,,,and Lo72,, be the upper and lower limits for the 100 X (1 - a)
percent confidence interval for type II censoring. The two-sided confidence
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interval states that if the test is stopped after tl:re ntln failure, there is a 1 - a

probabilicy that the true value of n lies between Lo/2,, and LIoy2,,,:

P { L , , r , ,  <  p  (  U o n , , } : 1  -  a . (8 .47)

It turns out that the ratios L*p,,/ f* and (J,n,,/ Êr are independent of the

operating time 7. Therefore, they can be plotted as functions of a and n, the

number of failures. The plot is shown in Fig. 8.10" Thus, if p has been estimated

from one of the forrns of Eq. 8.39, the confidence interval can be read from

Fig. 8.10. This is best i l lustrated by examples'

D(AMPLE 8.15

\Arhat is the 907o confrdence interval for the

taking the failure at 4I.2 days into account?
rate g'yroscopes tested in Example 8.11

Solution For a 90Vo confidence interval we have 100(1 - a) : 90, or cu : 0.1

and a/2 : 0.05. For n: 10 fai lures we f ind from Fig. 8.10 that

&+*: 0.65, g+ll - 1.82.
IL I'L

Therefore, using tt 
-: 62.4 days from Example 8.11:

I 'o.o5.v):0.65 x 62.4: 41 daYs,

t/u.uo.,o ^, 1.82 X 62.4: 114 daYs,

4I < p < 114 days with 90Vo confidence.

With slight modifications the results of Fig. 8.10 may also be applied to

type I censoring, where the test is ended at some time /*. Using the properties

of the a2 distribution, it may be shown that the upper confidence limit and
p remain the same. The lower confidence limit, in general, decreases. It may

be related to the results in Fig. 8.10 by

Ll t r , ,  
:  

f l  La/2,(n+r)

t L  n * \  p  
' (8.48)

where Z* is the value for type I censoring, and I is the plotted value for type II

censoring. Again, the confidence limits are applicable to both nonreplacement

and rcplacement testing.

EXAMPLE 8.16

During the first year of operation a

the MTBF and the 957o confrdence
demineralizer suffers seven shutdowns. Estimate

interval.
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Solution From Eq. 8.39

T 12 months 1  .
Ê :  MTBF :  - r :  

T :  
1 .71 monrhs.

For a 95% confrdence interval a :  0.05 and a/2: 0.025. From Fig. 8.10,

, Ltozu,, 
: n L,r.,t2u.,*, 

:ZLr.uru.t -7 r0.b7 : 0.b0
t L  n * l  p  8  l L  8

[ , 0 .02 r ,7 :0 .50  X  1 .71  : 0 .86mon th ,

Un.n r.z :  2.5 X 1.71 : 4.27 months.

Thus

0.86 months { p < 4.27 months

wit]ir 95Vo confrdence.

In some situations, particularly in setting specifications, we are not inter-
ested in the MTBF, but only in assuring that it be greater than some specified
value. If the MTBF must be greater than the specified value at a confidence
level of a/2, we estimale Lop,n/û, or Lbz,"/tt from Fig. B.l0 and determines
the value of p with an appropriate form of Eq. 8.39.

D(AMPLE 8.17

A computer specification calls for an MTBF of at least 100 hr with 90% confrdence.
If a prototype fails for the first time at210 hr, can these test data be used to demonstrate

that the specification has been met?

Solution Ê' : 7-/n: 210/1 : 210 hr. For thje g0% one-sided confidence interval

a /2  :  0 .1 .  From Fig .  8 .10,

Lr.r.r /  & - 0.44,

lo . r . r  :  0 .44x 210 :93 hr .

The test is inadequate, since the lower confidence limit is smaller than the specified
value of 100 hr.

A word is in order concerning the percentage survival test discussed
earlier. It is a form of binomial sampling, with the ratio n/I,{being the estimate
of the failure probability of failure. Consequently, the method discussed in
Chapter 2 can be used to estimate the confidence interval of the failure
probability, and from this the confidence interval on the MTTF can be esti-
mated. The uncertainty is greater than that obtained from testing in which
the actual failure times are recorded.
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D(AMPLE 8.18

Estimate dne g0% confidence interval for the National Guard ammunition problem,

Example 8.14.

solution Since, in 5 years , 12 of 200 rounds fail, the 5-year failure probability

rnay be calculated from Eq. 2.66 to be

P : K : # : o ' 0 6 : 1 - n .

Since this test is a form of binomial sampling, we can look up the 90Vn confidence

interval on p from Appendix B. We obtain fot n: 12,0.01 < p < 0.31. For a constant

failure rate we have

P :  |  -  e t / r '  o r  P -  
- t / l n ( I  -  

P ) .

Therefore, with t : 25 Years,

-25 -25

l n ( 1  -  o 3 t )  
\ r '  - t n 1 t  -  o . o t l

6Tyears 1 p12487years.

w\th 90Vo confidence.
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Exercises

8.1 Suppose that 
"bugs" are detected and corrected in developmental soft-

ware a t  \ .4 ,  8 .9 ,  24.3 ,68.1,  I17.2 ,  and 229 '3  hrs '

(a) Estimate the reliability growth coefficient, a'

(b) calculate the coefficient of determination for a.
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8.2 The wearout t imes of 10 emergency flares in minutes are 17.0,2a.6,
21.3, 21.4,22.7, 25.6,26.5, 27.0,27.7, and 29.7. Use the nonparamerric
method to make plots of the reliability and cumulative hazard function.

8.3 Determine the MTTF of the data in Example 5.7.

8.4 For the data in Example 5.7, make a nonparametric graph of the reliabil-
ity and cumulative hazard function.

8.5 The L10 life is defined at the time at which l\Vo of a product has failed.

(a) Estimate Lle for the failure data in Example 5.2.
(b) Estimate the MTTF for that data.

8"6 For the flashlight bulb data in Example 5.2 make nonparametric plots
of the reliability and cumulative hazard function.

8.7 A new robot system undergoes test-fix-test-fix development testing. The
number of failures during each 100-hr interval in the first 700 hr of
operat ion are recorded. They are 14,7,6,  4,3,  l ,  and 1.

(a) Plot the cumulative MTBF = T /n on log-log paper and approximare
the data by a straight line.

(b) Estimate a from the slope of the line.

8.8 Data for the failure times of 318 radio transmitter receivers are given in
the followine table.*

Time interval,
hr Failures

Time interval,
hr Failures

0-50
50-100

100-150
150-200
200-250
250-300

4 l
44
50
4B
2B
29

300-350
350-400
400-450
450-500
500-550
550-600

1 B
l 6
1 5
1 l

n

l l

At 600 hr, 5l of the receiver-transmitters remained in operation. Use
the nonparametric method described in the text to plot the reliability
and cumulative hazard function versus time.

8.9 Fifteen components undergo a 100 hour life-test. Failures occur a 31.4,
45.9,50.2,58.4, 70.7,73.2,86.6 and 96.3 hours. From previous experience
the data is expected to obey a lognormal distribution. Make a probabiliry
plot and estimate the lognormal parameters; then estimate the MTTF.

* From W. Mendenhall and R.J. Hader, "Estimation of Parameters of Mixed Exponential Distribu-
tion Failure Times from Censored Life Test Data," Biometrika,65, 449-464 (1958).
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8.10 The following uncensored grouped data were collected on the failure

time of feedwater pumps' in units of 1000 hr:

Interval

Number
of failures

0 < t < 6
6 < r < 1 2

1 2 < r < 1 8
1 8 < r < 2 4
2 4 < r < 3 0
3 0 < r < 3 6

Make a nonparametric plot of the reliability and of the cumulativehazatd

function versus time.

g.l1 The test started in Exercise 8.9 is run to completion. The remaining

samples fail at 100.6, ll7.g, 124.8, I48.7,159.5, 205.2, and 232'5 hours'

Redo the analysis and compare the lognormal parameters and the MTTF

to the values obtained in Exercise 8'9

g.l2 The following numbers of bends to failure were recorded for 20 paper

c l i p s :  L l , 2 9 , \ 5 , 2 0 , 1 9 ,  1 L , 1 2 , 9 ,  9 ,  8 ,  1 3 , 2 0 ,  L I , 2 2 , 2 0 , 9 , 2 5 '  1 9 '  l I '

and 10.

(a) Make a nonparametric plot of R(t), the reliability.

(b) Attempt to fityour data to Weibull, lognormaland/or normal distri-

butions and determine the parameters'

I (.) Briefly discuss Your results.

8.13 Repeat Exercise 8.9 but fit the data to a two-parameter weibull distri-

bution.

8.14 Consider the following multiply censored data* for the field windings

for 16 generators. The times to failure and removal times (in months)

are  31  .7 ,  3g .2 ,  57 .5 ,  65 .0+,  65 .8 ,  70 .0 ,  75 .0+,  75 .0+,  87 .5+,  88 .3+,

g4 .2+,  101.7+,105.8 ,  109.2+,110.0 ,  and 130.0* .  Make anonparamet r ic

plot of the reliabilitY.

8.15 Suppose thar a device undergoing accelerated testing can be described

fyïWeinuil distribution with a shape factor of m: 2.0. Under acceler-

ated test cond.itions, with an acceleration factor of rc : 5'0,507o of the

devices are found to fail during the first month. Under normal operating

conditions, estimate how long the device will last before the failure proba-

bility reaches I0%. (This is referred to as the L16 life of the device).

* From Nelson, Applied Life Data Analysis, Wiley, New York' 1982

5

19
6l
27
20
t 7
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8.16 The clata that follows is obtained for the time to failure of 128 appli-
ance motors

(a) Make a histogram of the PDF.

(b) Plot the reliability.

(c) Plot the cumulative hazard function.

hours # failures hours # failures

0-10 4 50-60 31
10-20 B 60-70 22
20-30 ll 70-80 10
30-40 16 80-90 2
40-50 23 90-100 I

8.17 Estimate the mean and variance of the data in Exercise 8.16

8.18 Make a Weibull plot and a normal plot of the grouped data in Exercise
8.16. Determine which is the better fit and estimate the parameters for
that distribution.

8.19 Make a two-parameter Weibull plot of the multiply-censored winding
data from Exercise 8.14 and estimate m and 0.

8.20 A wear test is run on 20 specimens and the following failure times in
h o u r s  a r e  o b t a i n e d : 8 1 , 9 1 , 9 5 + , 9 7 , 1 0 0 + ,  1 0 6 ,  1 0 9 ,  1 1 0 + ,  1 7 2 , 1 1 4 + ,
I l7+,720, 126,728, 130, 132+,139, 144, 154, and 163. Using the
product-limit technique to account for the censoring:

(a) Make a nonparametric plot of the reliability.

(b) Fit the data to a normal distribution and estimate the parameters.

8.21 Of a group of 180 transformers, 20 of them fail within the first 4000 hr
of operation. The times to failure in hours are as follows:*

10 1046 2096 3200
3t4 t570 2110 3360
730 1870 2177 3444
740 2020 2306 3508
990 2040 2690 3770

(a) Make a normal probability plot.

(b) Estimate p" and o for the transformers.

(c) Estimate how many transformers will fail between 4000 and 8000 hr.

8.22 Plot the data from the Exercise 8.21 on exponential paper to estimate
whether the failure rate increases or decreases with time.

*  Data  f rom Ne lson.  op  c i t .
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8.23 Twenty units of a catalytic converter are tested to failure without censor-
ing. The times-to-failure (in days) are the following:

2.6
7 .1
LB

12.3

3.2
8.4

1 1 . 3
16.0

3 .4
8 .8

l  l . 8

2r.9

3.9 5 .6
8.9 9 .5

11.9 12.7
22.4 24.2

Make an exponential probability plot, and determine whether the failure
rate is increasing or decreasing with time.

8.24 Aproducer of consumer products offers a three year double-your-money
back guarantee over a limited marketing area and collects the failure
data tabulated below.

(a) Make a nonparametric plot of À(r).

(b) Fit the data to a Weibull distribution and estimate the parameters.

(c) Fit the data to a lognormal distribution and estimate the parameters.

(d) Does the Weibull or the lognormal distribution yield the better fit?

Quarter sold: W 92 S 92

Number sold: 842 972

Number failed:

s 9 2  F 9 2  W 9 3  S 9 3  S 9 3  F 9 3  W 9 4  S 9 4  S 9 4  F 9 4
1061 1293 939 1014 1036 1185 979 1125 i205 1300

w92
s92
s92
F92
\[93
s93
s93
F93
w94
s94
s94
F94

l 8

42 22
33 42 2l
32 39 45 26
32 37 43 54
27 35 38 5l
34 3l 42 50
42 35 37 46
27 32 35 46
26 26 29 40
21 3l  36 43
25 27 31 4t

1 9
38 22
39 43 20
34 39 43 23
37 39 40 50
32 36 38 48
33 37 41 42
29 33 35 45

i 9

44 26
41 44 28

35 46 49 q ^

8.25 Make a Weibull plot of Exercise 8.23 and estimate the parameters nL
and 0.

8.26 The following multiply-censored times-to-failure (in hours) have been
obtained from a battery powered motor used in inexpensive consumer
products; 22, 37, 41, 43, 56, 57 +, 58, 6l , 62+, 63+, 64, 64,65+, 69, 69,
69+,  70 ,76+,78 ,87 ,88+,  89 ,94 ,100,  and 119.  Us ing  the  produc t - l im i t
technique to account for the censoring:

(a) Make a nonparametric plot of the reliability and cumulative haz-
ard function.

(b) Fit the data to a Weibull distribution and estimate the parameters.
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8.27 Suppose that instead of Eq. 5.12, we use Eq. 5.13 as a starting point for
nonparametric analysis. Derive the expressions for R(r,) and nU), that
should be used in place of Eqs. 8.6 and 8.10

8.28 Microcircuits undergo accelerated life testing. The analysis is to be car-
ried out using nonparametric methods for ungrouped data.

(a) The first test series on six prototype microcircuits results in the
fol lowing t imes to fa i lure ( in hours):  1.6,  2.6,5.7,9.3,  18.2,  and

39.6. Plot a graph of the estimated reliability.

(b) The second test series of six prototype microcircuits results in the
fo l low ing  t imes to  fa i lu re  ( in  hours ) :2 .5 ,2 .8 ,3 .5 ,5 .7 ,70 .3 ,  and

23.5. Combine these datawith the data from aand plot the reliability
estimate on the same graph used for ct.

8.29 At rated voltage a microcircuit has been estimated to have an MTTF of

20,000 hr. An accelerated life test is to be carried out to veri$t this
nurnber. It is known that the microcircuit life is inversely proportional
to the cube of the voltage. At least 707o of the test circuits must fail

before the test is terminated if we are to have confidence in the result.
If the test must be completed in 30 days, at what percentage of the rated
voltage should the circuits be tested?

8.30 A life test with type II censoring is perf<rrmed on 50 servomechanisms
that are thought to have a constant failure rate. The test is terminated
after the twentieth failure. The times to failure (in rnonths) are as fcrllows:

0 . 1 0
0.63
2.25
?r . lb

0.29
0.68
2.64
3.51

0.49
1 . 1 6
2.99
3.53

0.51 0.55
r .40 2.24
3.01 3.06
3.99 4.05

The failed servomechanisms are not replaced.

(a) Make an exponential probability plot and estimate whether the

failure rate is constant.

(b) Make a point estimate of the MTTF from the appropriate form of

Eq. 8.39.
(c) Using the MTTF from b, draw a straight line through the data plotted

for a.

(d) What is the 90Vo confidence interval on the MTTF?

(e) Draw the straight lines on your plot in a corresponding to the
confidence limits on the MTTF.

8.31 Suppose that in Exercise 8.30 the l ife test had to be stoppe d at 3 months
because of a production deadline. Based on a 3-month test, estimate the
MTTF and the corresponding 907o confidence interval.
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8.32 Sets of electronic components are tested at 100"F and 120"F and the
MTTFs are found to be 80 hr and 35 hr, respectively. Assuming that the

Arrhenius equation is applicable, estimate the MTTF at 70'F.

8.33 A nonreplacement reliability test is carried out on 20 high-speed pumps
to estimate the value of the failure rate. In order to eliminate wear
failures, it is decided to terminate the test after half of the pumps have

failed. The times of the first l0 failures (in hours) are 33.7,36.9, 46.8,

56 .6 ,  62 .1 ,63 .6 ,  78 .4 ,79 .0 ,  101.5 ,  and 110.2 .

(a) Estimate the MTTF.

(b) Determine the 90Vo confidence interval for the MTTF.

8.34 A nonreplacement test with type I censoring is run for 50 hours on 30
microprocessors. Five failures occur at 12, 19, 28, 39, and 47 hours.
Estimate the value of the constant failure rate.

8.35 A replacement test is run for 30 days using 18 test setups. During the
test there are 16 failures. Assuming an exponential distribution, estimate
the MTTF.



CFIAPTE .R 9

Redundancy

"9/ 
;1 Jontn'/ Aoun a/ ,[eas/ lu.,o enqinn, onJ 1*o

3. 3{onoun,

9.I INTRODUCTION

It is a fundamental tenet of reliability engineering that as the complexity of
a system increases, the reliabiliry will decrease, unless compensatory measures
are taken. Since a frequently used measure of complexity is the number of
components in a system, the decrease in reliability may then be expressed in
terms of the product rule derived in Chapter 6. To recapitulate, if the compo-
nent failures are mutually independent, the reliability of a system with .^/
nonredundant components is

R : , R 1 , R r . . . R , . . . R N (e .1 )

where -rR, is the reliability of the nth component. The dramatic deterioration
of system reliability that takes place with increasing numbers of components
is illustrated graphically by considering systems with components of identical
reliabilities. In Fig. 9.1, system reliabilityversus component reliability is plotted,
each curve representing a system with a different number of components. It
is seen, for example, that as the number of components is increased from 10
to 50, the component reliability must be increased from 0.978 to 0.996 to
maintain a system reliability of 0.80.

An alternative to the requirements for increased component reliability
is to provide redundancy in part or all of a system. In what follows, we examine
a number of different redundant configurations and calculate the effect on
s)/stem reliability and failure rates. We also discuss specifically several of the
trade-offs between different redundant configurations as well as the increased
problem of common-mode failures in highly redundant systems.

The graphical presentation of systems provided by reliability block dia-
grams adds clarity to the discussion of redundarrcy.In these diagrams, which

252
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100

Component reliability %

FIGURE 9.1 System reliability as a function of number and reliability of components.
(From Norman H. Roberts, Mathematical Methods of fuliability Engineering, p. l12,
McGraw-Hill, New York, 1964. Reprinted by permission.)

have their origin in electric circuitry, a signal enters from the left, passes
through the system, and exits on the right. Each component is represented
as a block in the system; when enough blocks fail so that all the paths by
which the signal may pass from left (input) to right (output) are cut, the
system is said to fail. The reliability block diagram of a nonredundant system
is the series configuration shown in Fig. 9.2a; the failure of either block (unit)
clearly causes system failure. The simplest redundant configurations are the
parallel systems shown in Fig. 9.2b and c. In the active parallel system shown
in 9.2b both blocks (units) must fail to cut the signal path and thus cause
system failure. In the standby parallel system shown in Fig. 9.2c the arrow
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(o )  Ser ies  (ô )  Ac t ive  para l le l  (c )  S tandby para l le l

FIGURE 9.2 Reliability block diagrams: (a) series, (b) active parallel, (c) standby parallel.

switches from the upper block (the primary unit) to the lower block (the

standby unit) upon failure of the primary unit. Thus, both units must fail
for the system to fail. More general redundant configurations may also be
represented as reliability block diagrams. Figures 9.9. and 9.11 are examples
of redundant configurations considered in the following sections.

9,2 Active and Standby Redundancy

We begin our examination of redundant systems with a detailed look at the
two-unit parallel configurations pictured in Fig. 9.2. They differ in that both
units in active parallel are employed and therefore subject to failure from the
onset of operation, whereas in a standby parallel the second unit is not brought
into operation until the first fails, and therefore cannot fail until a later time.
In this section we derive the reliabilities for the idealized configurations, and
then in Section 9.3 we discuss some of the limitations encountered in practice.
Similar consiclerations also arise in treating multiple redundancy with three
or more parallel units and in the more complex redundant configurations
considered the subsequent sections.

Active Parallel

The reliability R,,(t) of a two-unit active parallel system is the probability that
either unit I or unit 2 will not fail until a time greater than /. Designating
random variables t1 and t2 to represent the failure times we have

R,(t)  :  P{tr  > t  U tz> t} .

Thus Eq. 2.10 yields

(e.2)

t\. (e.3)R"( t ) :  P { t r  >  r }  +  P{ t ,  >  t }  -  P { t r>  ta tz>

Next we make an important assumption. Assume that the failures are indepen-
dent events and thus replace the last term in Eq. 9.3 by P{t, > t}P{t, > t}.
Denoting the reliabilities of the units as

Â, ( t )  :  P{ t ,>  l } , (e.4)
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we may then write

R , ( t )  :  R r ( t )  +  R z ( r )  -  R r ( t ) Æ 2 ( t ) . (e.5)

Standby Parallel

The derivarion of the standby parallel reliability R,(t) is somewhat more

lengthy since the failure time t2 or the standby unit is dependent on the failure

timè t, of the primary unit. Only the second unit must survive to time / for

the system to survive, but with the condition that it cannot fail until after the

first unit fails. Hence we may write

R,(r) -- P{tr> tlt, > t'}.

There are two possibilities. Either the first unit doesn't fail, t1 ) t, or the first

unit fails, but the standby unit does not, t1 < t a tz ) t.Since these two

possibilities are mutually exclusive, according to Eq. 2.12 we may just add

the probabilities,

R, ( r )  :  P{ t r  >  t }  +  P{ t t  <  ta t2  > , } . (s.7)

The first term is just R,(t), the reliabil i ty of the primary unit. ' Ihe second

term requires more careful attention. Suppose that the PDF for the primary

unit is fr(ù .Then the probabil ity of unit I fail ing between t' and t ' + dt' \s

fr\') dr'. Since the standby unit is put into operation at t', the probability

that it will survive to time / is R2( t - t'). Thus the system reliability, given

that the first failure takes place between t' and t' + dt' is Rz( t - t')rtU') dt' .

To obtain the second term in Eq. 9.7 we integrate primary failure time l'

between zero and t:

P{t, < t a t2} t} : 
/, 

^r, t - t ') fr(t ') dt'

The standby system reliability then becomes

Â,(r)  :  Rr ( t )  + J 'u^rQ 
- t ' )  r tU')  dt '  ,  (9.9)

or using Eq. o.10 to express the PDF in terms of reliability we obtain

f t ,(r) :  Rr( ù - 
I ' rRr(t- 

, ' )  
ol !  

Rt(t ' )  dt '

Constant Failure Rate Models

General expressions for active or standby systems reliability can be obtained

by inserting Eq. 6.18 for the reliability with time-dependent failure rates into

Eqs. 9.5 or 9.10. Comparisons are simplest, however, if we employ a constant

failure rate model. Assume that the units are identical, each with a failure

(e.6)

(e.8)

(e .10)
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rate À. Equat ion 6.25,,R: exp(-Àt) ,mvy then be inserted to obtain

for active parallel, and

R " ( t ) : 2 e ^ t - t 2 À t

Â,(r)  :  (1 + I t )e ^t

for standby parallel.
The system failure rate can be determined for each of t.hese cases

Eq. 6.15. For the active system we have

I d --  .  /  |  -  e-^ '  \^ , ( l ) :  -  
R ,aR , , :  n  

\ r  -  g5o - "7 '

while for the standby system

(e .11 )

(e .12)

using

(e .13)

(e .14)À,(r): -*,#rÂ,:À(#ï)
Figure 9.3 shows both the reliability and the failure rate for the two

parallel systems, along with the results {br a system consisting of a single unit.
The results for the failure rates are instructive. For even though the units'
failure rates are constants, the failure rates of the redundant systems as a
whole are functions of time. Characteristic of systems with redundancy, they
have zero failure rates at t:0. The failure rates then increase to an asymptotic
value of À, the value for a single unit. At intermediate times the failure rate
for the standby system is smaller than for the active parallel system. This is
reflected in a larger reliabilig for the standby system.

Two additional measures are useful in assessing the increased reliability
that results from redundant configurations. These are the mean-time-to-failure
or MTTF and the rare event estimate for reliability at times which are small
compared to the MTTF of single units. The values of the MTTF for active
and standby parallel systems of two identical units are obtained by substituting
Eqs. 9.11 and 9.12 into Eq. 6.22. We have

MTTF. : g MTTF (e .15)

),t

a )

FIGURE 9.3 Properties of two-unit parallel systems:

l.c

( b )

(a) reliabil ity, (b) failure rate.

p a r a l l e l

A c t i v e  p a r a l l e lA c t i v e  p a r a l l e l

Sta nd by
p a r a l l e l
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and

M T T F , : 2 M T T F ,  ( 9 . 1 6 )

where MTTF -- 1/I for each of the two units. Thus, there is a greater gain
in MTTF for the standby than for the active system.

Frequently, the reliability is of most interest for times that are small
compared to the MTTF, since it is within the small-time domain where the
design life of most products fall. If the single unit reliability, .R: exp(-Àr),
is expanded in a power series of Àr, we have

r R ( r ; :  | -  ^ t + r / z ( À , t ) 2 - Y a ( t r t ) u +  " '  ( 9 . 1 7 )

The rare event approximation has the form of one minus the leading term
in Àr. Thus

(e.r8)

for a single unit. Employing the same exponential expansion for the redundant
configurations we obtain

R , ( t ) : l - ( À t ) ' ,  À r < 1 , (e.1e)

from Eq. 9.11 and

R , ( t ) - l - L / z ( À , t ) 2 ,  À r < 1 .  ( 9 . 2 0 )

from Eq. 9.12. Flence, for short times the failure probability, I - R" for a
standby system is only one-half of that for an active parallel system.

D(AMPLE 9.I

The MTTF of a system with a constant failure rate has been determined. An engineer
is to set the design life so that the end-oÊlife reliability is 0.9.

(a) Determine the design life in terms of the MTTF.

(ô) If two of the systems are placed in active parallel, to what value may the design
life be increased without causing a decrease in the end-oÊlife reliability?

Solution Let the failure rate be À = I/MTTF.

R _ e-^7'.  Therefore, T : (1/  ̂ )  ln( l /  R).

r: rn (;) " MrrF: ," (ub) MrrF: o rob MrrF

From Eq. 9.11, R: 2e ̂ ' t '  -  e 2^7'.  Let x,:  e  ̂ ' I ' .  Therefore, x2 - 2x * R: 0. Solve
the quadratic equation:

+ 2 + V 4 - 4 R * r - V l  - n .

( a )

x :

The "*" solut ion_is el iminated, since xcannot be greater than one. Since x:
e  ̂ ' t  -  1 - Yi- a then with À : I /MTTF.

( b )
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r:rn t---+l ,."ttr.
L ( r  -  v l  -  R ) l

Thus the redundant system may have nearly

x MTTF : 0.380 MTTF.

four times the design life of the single
system, even though it may be seen from Eq. 9.15 that the MTTF of the redundant

system is only 50% longer.

9.3 REDUNDANCY LIMITATIONS

The results for active and standby reliability presented thus far are highly

idealized. In practice, a number of factors can significantly reduce the reliabil-

ity of redundant systems. In reality, these factors and their mitigation often

are dominant in determining the level of reliability which can be achieved.

For active parallel systems, common mode failures and load sharing phenom-

ena tend to be of most concern. For standby systems, switching failures and

failure of the standby unit before switching are important considerations.

Common-Mode Failures

Common-mode failures are caused by phenomena that create dependencies
between two or more redundant components which cause them to fail simulta-

neously. Such failures have the potential for negating much of the benefit

gained with redundant configurations. Common-mode failures may be caused

by common electric connections, shared environmental stresses such as dust

or vibration, common maintenance problems, or a host of other factors. In

commercial aviation, for example, a great deal of redundancy is employed,

allowing high levels of safety to be achieved. Thus when problems do occur

frequently they may be attributed to common-mode failures: the dust rising

from a volcanic eruption in Alaska that caused simultaneous malfunctioning
of all of a commercial airliner's engines, or the pieces of a fractured jet engine
turbine blade that cut all of the redundant hydraulic control lines and caused
the crash of a DCl0.

Viewed in terms of the reliability block diagrams in Fig. 9.2, common-
mode failure mechanisms have the same effect as putting in an additional
component in series with the parallel configuration. For identical units with

reliability /?, the active parallel reliability given by Eq. 9.5 becomes

R',, : Qn - R') R' , (e .21)

where Â' is the contribution to decreased reliabiliry from common mode
failures. The effects are illuminated if we recast this equation in terms of the
failure probability p : I - J?, P' : I - R' and p', - 1 - Ri corresponding
to each of the reliabiliry's. Equation 9.21 may be written as

F,:  F'  + l t '  -  p 'p ' (e.22)
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Suppose we have an aircraft engine with a failure probability per flight of

P : l}-a and a common mode failure probability a thousand times smaller:

P' : 10-s. For a two engine aircraft in the absence of common-mode failures

the failure probability would be P' : 10*12, but from F,q.9.22 we see that

p ' , :  10-s  +  10-12 -  10-2r

Thus the system failure probability, p'" ̂ , 10-e is totally dominated by common
mode failure, although it is still far more reliable than if a single engine had

been used.
A great deal of the engineering of redundant systems is expended on

identi$uing possible common mode mechanisms and eliminating them. Never-

theless, some possibilities may be irnpossible to eliminate entirely, and there-
fore reliability modeling must take them into account. Most commonly, such

phenomena are modeled through the following constant failure rate model.*

Suppose that À is the total failure rate of a single unit. We divide À into

(s.24)
tnro contributions

where À7 is the rare of independ.l".l"l Ïo o. is the common-mode failure
rate. These partial failure rates may be used to express common-mode failure

rates in active parallel systems as follows. Define the factor B as the ratio

(e.23)

(e.25)

(e.26)

(e.27)

(e.28)

(e.2e)

failures

(e.30)

F : À.,-/ À.

Each of the units then has an failure mode reliability of

R1 :  g  ^ r t

which accounts only for independent failures. Therefore the system reliability
for independent failure is determined by using À7in Eq.9.11. We multiply
this system reliability by exp(-tr,t) to account for common-mode failures.
Thus, for the two units in parallel.

R, ( t )  :  ( f  e - ^ r t  -  e -z^ t t )  e - ^ , t ,

or  us ing  À, :  FÀ and À7:  (1  -  B)  À  we maywr i te

R.(t) : 12 - s-(1-[3)Àtf n-^'.

The loss of reliability with the increase in the B factor is clearly seen by looking
at the rare event approximation at small Àr, for we now have a term which is
linear in Àr:

R " ( t )  :  I  -  F I t  -  ( 1  -  2 P  +  P ' / 2 ) ( À l ) 2  + ' ' ' ,

as opposed to 1 - (Àr)2 as in Eq. 9.19. The effect of common-mode
can also be seen in the reduction in the mean-time-to-failure:

I r l
M T T F " : 1 2 - - ; l U r r r ' .

|  2 -  l s l

x K. L. Flemming and P. H. Raabe, "A Comparison of Three Methods fbr the Quantitative
Analysis of Common Cause Failures," General Atomic Repott, GA-AI4568, 1978.
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D(AMPLE 9.2

( a )

( b )

Suppose that a unit has a design-life reliability of 0.95.

Estimate the reliability if two of these units are put in active parallel and there

are no common-mode failures.

Estimate the maximum fraction B of common failures that is acceptable if the

parallel units in a are to retain a system reliability of at least 0.99.

Solution From Eq. 9.18 take Àf : 0.05.

(a)  ,R - -  I  -  (^T) ' ,  rR:  0 .9975.

(à) From Eq. 9.29,

r{: r - ^R - o.ol - p^r + (t - zs. +) (Àr)''  \  z /

Thus, with À.1 - 0.05, we have

0.00125P2 +  0 .045P -  0 .0075:0 .

Therefore,

p :
-0.045 t (2.0625 X 10-3)'/2

0.0025

For B to be positive, we must take the positive root. Therefore, Ê ' O.tO6.

Load Sharing

Load sharing is a second cause of reliability degradation in active parallel

systems. For redundant engines, motors, pumps, structures and many other

devices and systems, the failure of one unit will increase the stress level on

the other and therefore increase its failure rate. A simple example is nvo

flashlight batteries placed in parallel to provide a fixed voltage. Assume the

circuit is designed so that if either fails the other will supply adequate voltage.

Nevertheless, the current through the remaining battery will be higher, and

this will cause greater heating in the internal resistance. The net result is that

the remaining battery will operate at a higher temperature and thus tend to

deteriorate faster.
Fortunately, in a redundant system with sufficient capacity, the increased

failure rate should not lead to unacceptable failure probabilities. If the first

failure is detected, the system may be required to operate for only a short

period of time before repairs are made. Thus if one engine fails in a multi-

engine aircraft, it is only necessary that the flight continue to the nearest

airfield without incurring a significant probability of a second engine failure.
From this standpoint, the degradation is less serious than the potential for

common-mode failures.
In Chapter ll, Markov methods are used to develop the following model

for shared load redundancy with time-independent failure rates. Suppose that
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À* > À is the increased failure rate of the remaining unit after the first has
failed. Then, in the absence of common-mode failures,

R,( t )  -  2e-^* '  +  e*z^ t  -  2e-  (^+À8) / (e .31)

This may be seen to reduce to Eq.9.11 in the l imit ing case that À* :  À. A

conservative design procedure, which always gives an underestimate of the

reliability, is to replace À by À* in Eq. 9.31, thereby assuming that each unit

is carrying the entire load of the system.

If À* becomes too large, all of the benefit of the redundancy rrray be lost,

and in fact the system may be less reliable than a single unit with failure rate

À. For example, i t  may be shown that i f  À* > 1.56 À, the MTTF wil l  be less

than for a single unit. In the limit as À* --+ oo Eq. 9.31 reduces to the reliability

for the two units placed in series. This may be understood as follows. If either

unit failing gives rise to the second unit failing alrnost instantaneously then

indeed the system failure rate will be twice that of a single unit. For in doubling

the number of units, one increases the possibility of a first failure.

EXAMPLE 9.3

In an active parallel system each unit has a failure rate of 0.002 hr'.

(a) \t\4:rat is the MTTF" if there is no load sharing?

(ô) \tfhat is the MTTF" if the failure rate increases by 20% as a result of increased load?

(c) What is the MTTF. if one simply (and conservatively) increased both unit failure

rates by 20Vo?

Solution

( a )  M T T F . : : 750 hr
2 x 0.002]  r t r .  :  

* , :

(ô) MTTF ,,: Ï: 
R,,(t) dr- 

Iî rr, r*r a n-2)' ' �  - ro-tt '+t.)t l dt

l v l T T F , , : i * * -

Thus with

we have

À* :  1.2 X 0.002 :  0.0024 hr- '

À + À *

2 t
\{TTF : -l j- - -"  0 . 0 0 2 4  2 x 0 . 0 0 2

3: - :
9 ) *

(c )  MTTF"
2 x 0.0024

:  625 hr

0.0044
: 629 hrs
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Switching and Standby Failures

Common-mode failures are less likely for standby than for active parallel

configurations because the secondary system may be quite different from the

primary. For example, the causes of the failure of electric power are likely to

be quite different than those that may cause the diesel backup generator to

fail. Nevertheless, care must also be exercised in the design and operation of

systems with standby redundancy. Some smaller possibility of common-mode

failure incapacitating both primary and secondary units may remain. In addi-

tion, two new failure modes, unique to standby configurations, must be ad-

dressed: switching failures and secondary unit failure while in the standby

mode. The following illustration may be helpful in understanding these

modes.
Suppose power is supplied by a diesel generator. A second identical

generator is used for backup. If there is some probability, p,that a switch can

not be made to the second generator upon failure of the primary unit, as

derived in Chapter ll, the reliability of the system is obtain by multiplying

the second term in Eq. 9.12 by ( l  -  
D:

R,( t )  :  [1  + ( l  -  p)À, t ]e-^ ' (e.32)

One cause of switching failures is the failure of the control mechanism in

sensing the primary unit failure and turning on the secondary unit. Time is

also an important consideration, for in certain situations some delay can be

tolerated before the backup unit takes over. For example, if a pump supplying
coolant to a reservoir fails, it may only be necessary for the backup system to

come on before the reservoir drains. On a shorter time scale, if a process
control computer fails there may be a period of seconds or less before the

backup is required. If some time delay is tolerable, repeated attempts to switch
the system may be made, or parts replaced.

Failure of the secondary unit to function may result not only from switch-
ing failures. The secondary system may also have failed in the standby mode

before the primary system failure. Such failures are most prone to happen in

situations where the secondary unit is called upon very infrequently and
therefore may have been allowed to deteriorate while in the standby mode.
In Chapter 11 an expression for reliability in which both failure modes are

present is developed. The result is equivalent to affixing the multiplicitive
factor (À*r)- t (1 -  e-^- ' )  to the second term in Eq.9.32

R, ( t )  :  
[ t

where À* is the failure rate of the secondary unit while in standby.

E)(AMPLE 9.4

An engineer designs a standby system with two identical units to have an idealized

MTTF. of 1000 days. To be conservative, she then assumes a switching failure probability

of 70% and the failure rate of the unit in standby of 10Va of the unit in operation.

+ (r - e) # (r 
- e-t*'�rf u^', (e.33)
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Assuming constant failure rates, estimate the reduced MTTF. of the system with switch-

ing and standby failures included.

Solution For the idealized MTTF, we have MTTF. : l/ tr or

7 : l/7000 days : 0.002 duy-'

For the reduced MTTF. we have

MTTF.  :  [ *  p ,1 t1  d , t :
J O

or

À
( I - b \ * ( 7 - e - o

MTTF. : -  p ) ( l  +  À ,  /  ̂ ) - , 1 .

'lf n^'\ o'r; {[' .'
I t t * r t^ -

Thus with p:  0.1 and À*/À: 0.1 we

M T T F , : = * p + ( t
o.(x)z -

have:

-  0 .1 )  (1  +  0 .1 ) - ' l  :909  days

Cold, Warm, and Hot Standby

The trade-off between switching failures and failure in standby must be consid-
ered in the design of standby redundancy; it is the primary consideration in

determining whether cold, warm, or hot standby is to be used. In cold standby
the secondary unit is shut down until needed. This typically reduces the value
of À* to a minimum. However, it tends to result in the largest values of p.

Thus in our example of the diesel generator, it is most likely not to have
failed if it has not been operating. However, coming from cold startup to a
fully loaded operation on short notice may cause sufficient transient stress to
result in a significant demand failure probability. In warm standby the transient
stresses are reduced by having the secondary unit continuously in operation,
but in an idling or unloaded state. In this case p may be expected to be
smaller, at the expense of a moderately increased value of À*. Even smaller
values of p are achieved by having the secondary unit in hot standby, that is,
continuously operating at a full load. In this case-for identical units-the
failure rate will equal that of the primary system, À* : À, causing Eq. 9.33 to
reduce to

R , ( r )  :  ( 2 -  P ) e ^ '  -  ( 1  -  P ) u ' ^ ' (e.34)

We see from this equation that if the switching failure can be made very small,
which is the object of hot standby, the equation is equivalent to an active
parallel system. Thus the reliability is markedly less than for an idealized
standby system. In many instances of warm or hot standby, however, secondary
unit failures in standby can be detected and repaired fairly rapidly. The
modeling of such repairable systems is taken up in Chapters 10 and 11.

Redundant computer control systems present a somewhat different situa-
tion than that encountered with motors, engines, pumps, or other energ'y or
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mass delivery systems. In order to start from cold standby not only must the

computer be powered, but the current data must be loaded to memory. Hot

standby is particularly advantages in these cases where switching the output

from the primary to the secondary computer is a relatively simple matter.

There is, however, one difficulty. A means must be established for detecting

which computer is wrong. This is straightforward if the computer stops func-

tioning altogether. However, if the failure mode is a type that caused the

computer to give incorrect but plausible output, then a means for knowing

where the incorrect information is being produced is a necessity. For these

situations the 2/3 votins systems discussed in the following section are

widely used.

9.4 MULTIPLY REDUNDAI{T SYSTEMS

The reliability of a system can be further enhanced by placing increased

numbers of components in parallel. Such redundancy can take either active

or standby form. In L/ I,{ and m/ N redundancy, respectively, one or m of t}:'e

l/units must function for the system to function. Consider l/I',i redundancy

first for active and then for standby parallel. In either of these configurations

the probability of system malfunction becomes increasingly small, and as a

result increased attention must be given to the complications discussed in

Section 9.3.

l/NActive Redundancy

Suppose thatwe have Ncomponents in parallel; if any one of them functions,

the system will function successfully. Thus, in order for the system to fail, all

the components must fail. This may be written as follows. Let X denote the

event of the ith component failure and Xthe system failure. Thus, for a system

of l/ parallel components, we have

X : X t n & n . . . O À r ,

and the system reliability is

(e.35)

Ro: I -  P{Xt n & n r-t Xrs). (9.36)

If the failures are mutually independent, we may use the definition of indepen-

dence to write

Ro : 1 - P{X'}P{&} . . . P{X'}.

The P{X} are the component failure probabilities; therefore, they are related

to the reliabilities by

(e.37)

(e.38)

(e.3e)

P{X ' ) :  I  -  R i '

Consequently, we have for I / I''i active redundancy

R o : l - n ( 1  - Â , ) .
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For identical components this may be simplified. Suppose that all the ft have

the same value, Pu : R. Equation 9.39 then reduces to

R o : 1  -  ( 1  -  Â ) t (e.40)

The degree of improvement in system retiability brought about by multiple

redundancy is indicated in Fig. 9.4, where system reliability is plotted versus

component reliability for different numbers of parallel components. Two

other characterizations of the increased reliability are given by the rare event

approximat ion and the MTTF. The expansion of  Eq.9. lByields 1 -  R- Àt

for small Àt and results in the reduction of Eq. 9.40 to

R"( t )  :  |  -  (Àt )n;  Àr  << 1. (e.41)

We may use the binomial expansion, introduced in Chapter 2, to express

the reliability in a form that is more convenient for evaluating the MTTF.

The binomial coefficients allow us to write in general

( p +  q ) ' : cIp*-"q", (e.42)

N = Number of parallel
components

Component reliabilitv

FIGURE 9.4 Reliability improvement by -l/ parallel components. (From

K. C. Kapur and L. R. Lamberson, Reliability in Engineering Design Cop)'

right @ 7977, by John Wiley and Sons. Reprinted by permission.)
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where the Cf- coefficients are given by Eq. 2.43. Taking P : I and q : - II

we obtain

( t  -  R l rv : cf (  -  7) 'R" (e.43)

Therefore, since Cât : l, we may write Eq. 9'40 as

Ro:  I  t_  l ) " - tCIR". (e.44)

We next assume a constant failure rate for each component and replace rR

with e ^'. Applying Flq.6.22, to express the MTTF in terms of R'(t), we obtain

n = 0

(e.45)

While the forgoing relationships indicate that in principle, reliabilities

very close to one are obtainable, common-mode failures become an increas-

ingly overriding factor when l/ is taken to be three or more. If the B factor

mèthod is applied, for example, the loss of retiability may be dominated not

by the (Àr)trof Eq. 9.41 but by a B À"t term as in Eq. 9.29. Likewise, the load

sharing phenomena becomes increasingly serious as additional units fail. A

four engine aircraft, flying on one engine may be expected to be under higher

stress than a two engine aircraft flying on one.

D(AMPLE 9.5

A temperature sensor is to have a design-life reliability of no less than 0.98. Since a

single ..rrro. is known to have a reliability of only 0.90, the design engineer decides

to put two of rhem in parallel. From Eq. 9.5 the reliability should then be 0.99, meeting

thé criterion. Upon reliability testing, however, the reliability is estimated to be only

0.97. The engineer first deduces that the degradation is due to common-mode failures

and then considers two options: (1) putting a third sensor in parallel, and (2) reducing

the probability of common-mode failures.

(a) Assuming that the sensors have constant failure rates, find the value of B that

characterizes the common-mode failures'

(ô) Will adding a third sensor in parallel meet the reliability criterion if nothing is

done about common-mode failures?

(r) By how much must Ê be reduced if the two sensors in parallel are to meet

the criterion?

Solution If the design-life reliability of a sensor is Rr - e-r't' : 0'9, then ÀT :

ln(1 / ,Rr)  :  ln (1 /0 .9)  :  0 .10536.

(a) Let Rz: 0.97 be the system reliability for two sensors in parallel. Then B is found

in terms of R2 from Eq. 9.28 to be

1 r_1,, (' _ qfz).
F  :  I + - ^ r l n ( 2  -  R z è t )  :  I  +  

O . t O f g 6  \  U . e  /

:  0 .2315.

M r r F , :  
È  

( - l )  , , - , Q
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(à) The reliability for three sensors in parallel is given by Eq. 9.40 with ly': 3. Using

Àr : (1 - B)À and À, : P^, we may expand the bracketed term to obtain

R,  :  [3  -  3e ( t -B)^ t '  4  u  2( t -B) t ' t ' l t  t ' t .

From a we have (1 - P) À.7 : (1 - 0.2315) X 0.10536 : 0.08097, and thus

s (t 
- ti\t't' : 0.92222. Thus the reliability is

Â: :  [3 - 3 x 0.92222 + (0.92222)' ]  x 0.9 : 0.975

Therefore, the criterion is not met by putting a third sensor in parallel.

(c) To meet the criterion with two sensors in parallel, we must reduce B enough scr

that the equation in part a is satisfied with Ë: : 0.98- Thus

t r  :  t .  - ** ' "  ( t  -  
H)  

:  o. r  r .65.

Therefore, B must be reduced by at least

I  
0 . 1  1 6 5-  
ï ,2315:5UYo'

I /N Standby Redundancy

We may derive expressions for I /l/ standby reliability by noting that the

derivation of the recursive equation, Eq. 9.10, is valid even if 1tr (/) represents

a standby system. Thus we may derive the reliability of'a standby system of l/

identical units in terms of a system of ^/ - I units. Suppose we denote the

reliability of the n unit system as R,,, and thus of tlte n - I system as R,-t,

where the reliability of a single unit is J?r : R. We may now rewrite Eq. 9.10 as

(e.46)

Thus.R2, in the constant failure rate approximation given by Eq. 9.12,may

be shown to result from inserting R : Âr - s Àt into the right hand side of

this expression. Likewise if Eq. 9.12 is inserted into the right hand side of

this expression we obtain

l?r(r)  :  [1 + I t  + +(Àr) , f  t  ^ ' � .  (9.47)

This expression can be inserted into the right of Eq. 9.46 to obtain ,Ra and

so on. In general, for N units in standby redundancy we obtain

Â,(r) (trt)'e-n' (e.48)

Equation 6.22 tlnen yields a standby MTTF of

MTT'F. : N/ À.

R, ( r )  :  f t , - r ( r )  -  f '  OQ- �  t ' )  4  n , - , ( t ' )  d t '
J o  d t '

.\'- 1 r
_ s  I) -

Z-'/  ^^l
p = g  l l !

(e.4e)
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To calculate the rare event approximation we first note that the exponential

expansion can be written as two sums:

(e.50)

Solving for the first sum, and inserting the result into Eq. 9.48, we obtain

after simplification

R,(r )  -  1  - (Àt)"e:o ' (e .51)

Thus taking the lowest order terms, we find for small Àl that

,R,(r) -r-frt^rl '

We see that the 1/l/ standby configuration comes closer to one in the rare

event approximation than does Eq. 9.4f for the active parallel system. Of

course switching failures and failures in the standby state must be included

to make more realistic comparisons.

m/N Active Redundancy

In the 1/l/ systems considered thus far, if any one of the two or more units

functions, the system operates successfully. We now turn to the rnfi'l system

in which ra is the minimum number that must function for successful system

operation. The nxfil is popular for relief valves, pumps, motors, and other

equipment that must have a specified capacity to meet design criteria. In such

systems it is often possible to increase reliability without a commensurate cost

increase, for components of ofÊthe-shelf sizes may meet capacity requirements

while at the same time allowing for some degree of redundancy. In instrumen-

tation and control systems mfir{ configurations are popular for two reasons.

The spurious fail-safe operation of a single unit is prevented from causing

undesirable consequences. Likewise, voting can be applied to the output of

redundant instruments or computers.
An m/N system may be represented in a reliability block diagram, as

shown for a 2/3 system in Figure 9.5. Now, however, the block representing

FIGURE 9.5 Reliability block

d iag ramf<r ra3sys tem.

^':2*(À t ) , .  
à ;  

(À r ) , ,

i 1
7=* nl

(e.52)
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each component must be repeated in the diagram. Thus the system reliability
cannot be calculated as in earlier 1/l/cases because the three parallel chains
contain some of the same components and therefore cannot be independent
of one another.

For identical components, the reliability of an mfirl system may be deter-
mined by again returning to the binomial distribution. Suppose that p is the
probability of failure over some period of time for one unit. That is,

(e.53)

where R is the compone.,, ..riiuil ;: the binomial distribution the
probability that z units will fail is just

P { n : n } : C I P ' ( I  - P ) n - " .

Tlne m/N system will function if there are no more than l/ -

N - z

P{t t=  N-  * }
n = 0

is the reliability. Combining Eqs. 9.53 and 9.55 then yields

rY- ni

t ) _ ) C # ( 1  _ R ) , 4 , v _ , .t ' r , -  
1 r ,

Alternatelv. since

(e.54)

nz failures. Thus

(e.55)

(e.56)

(e.57)

reliabil-

(e.58)

is the probability
ity as

P { t t >  N -  m } :
rt=N- rz* I

that the system will fail, we may also write the system

R o :  l  -

n =rV- m* I

Equations 9.56 and 9.58 are identical in value. Depending on the ratio of m
to l/, one may be more convenient than the other to evaluate. For example,
in al/1,{ system Eq. 9.58 is simpler to evaluate, since the sum on the right-
hand side has only one term, n : N, yielding Eq. 9.40.

In dealing with redundant configurations, whether of the 1/l{ or m,nt{
variety, we can simplify the calculations substantially with little loss of accuracy
if the component failure probabilities are small (i.e., when the component's
reliability approaches one). In these situations a reasonable approximation
includes only the leading term in the summation of Eq. 9.58. To illustrate,
suppose that,R isvery close to one; we may replace it by one in the rRN-' term
to f ield 

^
R o - l _ �

we note, however, that the terms;î.t(1 - Â)'series decrease very rapidly
in magnitude as the exponent is increased. Consequently, we need include
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only the term with the lowest power of I - -R. Thus the reliability is approxi-
mately

Ro: I  -  Ci l - ,*r( l  -  R)rv- '+t .

If the rare event approximation, I - .R : Àt, is employed, then

(e.60)

(e .61)Ro- I  -  Ci l - ,*r(À/;rv- '* t

EXAMPLE 9.6

A pressure vessel is equipped with six relief valves. Pressure transients can be controlled
successfully by any three of these valves. If the probability that any one of these valves
will fail to operate on demand is 0.04, what is the probability on demand that the
relief valve system will fail to control a pressure transient? Assume that the failures
are independent.

Solution In this situation, the foregoing equations are valid if unreliabiliLy, Ro:
7 - Ro, is defined as demand failure probability. Using the rare-event approximation,
we have from Eq. 9.60, with N: 6 and m: 3,0.04 : 1 - R:

R,,o cl(0.04)1 : 
fr to.onl a: t5 x 256 x 10-n

, Ê , - 0 . 3 8 X 1 0 - 4 .

9.5 REDUNDANCY ALLOCATION

High reliability can be achieved in a variety of ways; the choice will depend
on the nature of the equipment, its cost, and its mission. If we were to provide
an emergency power supply for a hospital, an air traffic control system, or a
nuclear power plant, for example, the most cost-effective solution might well
be to use commercially available diesel generators as the components in a
redundant configuration. On the other hand, the use of redundancy may not
be the optimal solution in systems in which the minimum size and weight are
overriding considerations: for example, in satellites or other space applica-
tions, in well-logging equipment, and in pacemakers and similar biomedical
applications. In such applications space or weight limitations may dictate an
increase in component reliability rather than redundancy. Then more empha-
sis must be placed on robust design, manufacturing quality control, and on
controlling the operating environment.

Once a decision is made to include redundancy, a number of design
trade-offs must be examined to determine how redundancy is to be deployed.
If the entire system is not to be duplicated, then which components should be
duplicated? Consider, for example, the simple two-component system shown in
Fig. 9.6a. If the reliability Ro -- RtR, is not large enough, which component
should be made redundant? Depending on the choice, the system Fig. 9.6à
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(a)

FIGURE 9.6 Redundancy allocation.

R b - Â . : . R r R ? ( Â 2 - f t , ) .

(e.62)

(e.63)

(e.64)

Not surprisingly, this expression indicates that the greatest reliability is
achieved in the redundant configuration if we duplicate the component that
is least reliable; if R2 > -R1, then system R6 is preferable, and conversely. This
rule of thumb can be generalized to systems with any number of nonredundant
components; the largest gains are to be achieved by making the least reliable
components redundant. In reality, the relative costs of the components also
must be considered. Since component costs are normally available, the greatest
impediment to making an informed choice is lack of reliability data for the
components involved. Trade-offs in the allocation of redundancy often involve
additional considerations. Two examples are those between high- and low-
level redundancy, and those between fail-safe and fail-to-danger consequences.

D(AMPLE 9.7

Suppose that in the system shown in Fig. 9.6 the two components have the same cost,
and rR1 : 0.7, Rz : 0.95. If it is permissible to add two components to the system,
would it be preferable to replace component 1 by three components in parallel or to
replace components 1 and 2 each by simple parallel systems?

Solution If component 1 is replaced by three components in parallel, then from
Eq. 9.40

. , t " :  [ 1  -  ( 1  -  R , ) u ] Â r : 0 . 9 7 3  X  0 . 9 5  : 0 . 9 2 4 3 5 .

If each of the two components is replaced by a simple parallel system,

À a :  [ 1  -  ( 1  -  R ' ) ' ] [ 1  -  ( 1  -  R r ) t ]  : 0 . 9 1  x  0 . 9 9 7 5  : 0 . 9 0 7 7 .

In this problem the reliability Rr is so low that even the reliability of a simple parallel
system, ZRt - RT, is smaller than that of ,R2. Thus replacing component 1 by three
parallel components yields the higher reliability.

(b)

or c will result. It immediatelv follows that/

R6:  (2R,  -  RT)Rr ,

R. : Rr eR, - Rl).

Or taking the differences of the results, we have
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High- and Low-Level Redundancy

One of the most fundamental determinants of component configuration
concerns the level at which redundancy is to be provided. Consider, for
example, the system consisting of three subsystems, as shown in Fig. 9.7. In
highJevel redundancy, the entire system is duplicated, as indicated in Fig. 9.7 a,
whereas in low-level redundancy the duplication takes place at the subsystem or
component level indicated in Fig. 9.7b. Indeed, the concept of the level at

which redundancy is applied can be further generalized to lower and lower
levels. If each of the blocks in the diagram is a subsystem, each consisting of
components, we might place the redundancy at a still lower component level.
For example, computer redundancy might be provided at the highest level
by having redundant computers, at an intermediate level by having redundant
circuit boards within a single computer, or at the lowest level by having
redundant chips on the circuit boards.

Suppose that we determine the reliability of each of the systems in Fig.
9.7 with the component failures assumed to be mutually independent. The
reliability of the system without redundancy is then

l% : R.R6R,. (e.65)

The reliability of the fivo redundant configurations may be determined by
considering them as composites of series and parallel configurations.

For the high-level redundancy shown in Fig. 9.7a, we simply take the
parallel combination of the two series systems. Since the reliability of each
series subsystem is given by Eq. 9.65, the high-level redundant reliability is
given by

or equivalently,

Conversely, to calculate the reliability of the lowJevel redundant system, we
first consider the parallel combinations of component types a, b, artd d sepa-
rately. Thus the two components of qpe a in parallel yield

R, r :  2R" -  RZ, (e.68)

High- ieve i redundancy

FIGURE 9.7 High- and lowlevel redundancy.

Rg,:  zRo -  R6,

Rur,: zRnRbR, - RZRïRT.

(e.66)

(e.67)

Low-level  redundancy



Redundann 273

and similarlv.

Rn: zRb -  RT, Rc:  2R,  -  R7 . (e.6e)

The low-level redundant system then consists of a series combination of the
three redundant subsystems. Hence

and

After some algebra we have

Ru, : R1R1R6,

or, inserting Eqs. 9.68 and 9.69 into this expression, we have

Ru.: (2R" - RZ) eRh - Ril eR, - R?).

Both the high- and the lowlevel redundant systems have the same num-
ber of components. They do not result, however, in the same reliability. This
may be demonstrated by calculating the quantity R,,,, - .Rs1. For simplicity we
examine systems in which all the components have the same reliability, R. Then

R n r :  z R z  -  R b

Rn:  (2R -  R2)3

Rr,  -  Rnr, :  6f t3(1 -  R) '

Consequently, R,.,- ) Rrt.
Regardless of how many components the original system has in series,

and regardless of whether two or more components are put in parallel, low-
level redundancyyields higher reliability, but only if avery important condition
is met. The failures must be truly independent in both configurations. In
reality, common-mode failures are more likely to occur with low-level than
with highlevel redundancy. In highJevel redundancy similar components are
likely to be more isolated physically and therefore less susceptible to common
local stresses. For example, a faulty connector may cause a circuit board to
overheat and then the two redundant chips on that board to fail. But if the
redundant chips are on different circuit boards in a high-level redundant
system, this common-mode failure mechanism will not exist. Physical isolation,
in general, may eliminate many causes of common-mode failures, such as
local flooding and overheating.

Some insight into common-mode failures may be gained as follows. Con-
sider the same high- and low-level redundant systems for which the results are
given by Eqs. 9.72 and9.73, and let the component reliabiliry be represented by
R: e ̂ '. Suppose that because components in the highJevel system are physi-
cally isolated, there are no significant common-mode failures. Then we may
write simply

R , r :  
- z t t ( 2  -  e 3 ^ t ) . (e.75)

In the low-level system, however, we speci$r that some fraction, B, of the failure
rate À is due to common-mode failures. In this case the quantities Ro, R6, ând

(e.70)

(e .71)

(e.72)

(e.73)

(e.74)
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R. will no longer reduce to Eq. 7.73, or

Ru. :  (2 t  ^ '  -  e  2^ ' )3 ,  (9 .76)

where there are no common-mode failures. Rather, the B-factor rnodel re-

places Eqs. 9.68 and 9.69 by Eq. 9.28 to yield

R,q :  Rn:  Rc :  2e  ̂ '  -  e  2^ te9^ t .  (9 .77)

Then, from Eq. 9.70, we find the low-level redundant system reliability is

reduced to

Ru.:  (2t-^ '  -  u zÀtt l t t t t ts.  (9.78)

This must be compared to Eq. 9.75 to determine how large B can become

before the advantage of low-level is lost. Consider the following example.

E)(AMPLE 9.8

Suppose that the design-life reliability of each of the components in the high- and

lowlevel redundant systems pictured in Fig. 9.7 is 0.99. What fraction of the failure

rate in the low-level system maybe due to common-mode failures, without the advantage

of low-level redundancy being lost?

Solution Set Rp,,- : Rn., using Eqs.9.75 and 9.78 at the end of the design life:

-t t |(2 - e-\^ ' t ' )  :  ( ls t ' r '*  e2^r+p[t ' ) : \ .

Solving for B yields
'l

É :  17t "12 
-  (2  -  e  3^ ' t ' )1 /31 + 1 .

Since e À7' :  0.99, ÀT : 0.01005. Thus

.l

Ê :  n n r n G h 1 2  
-  ( 2  -  0 . 9 9 3 ) r r r l  *  1  : 0 . 0 1 9 7 .

Fail-Safe and Fail-to-Danger

Thus far we have lumped all failures together. There are situations, however,
in which different failure modes can have quite different consequences.Jtdg-
ment must then be exercised in allocating redundancy between modes. One
of the most common examples occurs in the trade-off between fail-safe and
fail-to-danger encountered in the design of mlrl alarm and safety systems.

Consider an alarm system. The alarm may fail in one of two ways. It may
fail to function even though a dangerous situation exists, or it may give a
spurious or false alarm even though no danger is present. The first of these
is referred to as fail-to-danger and the second as fail-safe. Generally, the fail-
to-danger probability is made much smaller than the fail-safe probability. Even
then, small fail-safe probabilities are also required. If too many spurious alarms
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are sounded, they will tend to be ignored. Then, when the real danger is

present, the alarm is also likely to be ignored.
Two factors are central to the trade-offs between fail-safe and fail-to-

danger modes. First, many design alterations that decrease the fail-to-danger
probabiliq are likely to increase the fail-safe probability. Power supply failures,

which are often a primary cause of failure of crudely designed safety systems,
are an obvious example. Often, the system can be redesigned so that power
supply failure will cause the system to fail-safe instead of to-danger. Specifically,
instead of leaving the system unprotected following the failure, the power
supply failure will cause the system to function spuriously. Of course, if no

change is made in the probability of power supply failure, the amelioration of
system fail-to-danger will result in an increased number of spurious operations.

Second, as increased redundancy is used to reduce the probability of fail-
to-danger, more fail-safe incidents are likely to occur. To demonstrate this,
consider al/ Nparallel system with which are associated two failure probabili-
ties pa and p, for fail-to-danger and fail-safe, respectively. The system fail-to-
danger unreliabiliry Rr* is found by noting that all units must fail. Hence

Ror: PI

However, the system fail-safe reliability is calculated by noting that any one-
unit failure with probability p, will cause the system to fail-safe. Thus

R , r : 1 - ( l - p , ) * .  ( 9 ' 8 0 )

If p, << 1, then (1 - p,)N - NF,, and we see that the fail-safe probability
grows linearly with the number of units in parallel,

R{ o I'{F' (e .81)
-the m/N configuration has been extensively used in electronic and other

protection systems to limit the number of spurious operations at the same
time that the redundancy provides high reliability. In such systems the fail-
to-danger unreliability is obtained from Eq. 9.57:

N

R o r :  P { n =  N -  m } :

With the approximation that Pa << 1 this reduces to a form analogous to
Eq.  9 .61 :

Bor- CN*^*tPI***t

(e.7e)

(e.82)

(e.83)

(e.84)

(e.85)

Conversely, at least nz spurious signals must be generated for the system to
fail-safe. Assuming independent failures with probabiliV P,, we have

R.,/: P{r, > m} : cyp:(r - p,)*-"s
Z-J
n= tn

Now, assuming that p, << I, we may approximate this expression by

R,r: CY,P?'
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From Eqs. 9.83 and 9.85 the trade-off benareen fail-to-danger and spurious

operation is seen. The fail-safe probability is decreased by increasing m, and

the fail-to-danger probability is decreased by increasing l/ - m. Of course, as

l/ becomes large, common-mode failures may severely limit further im-

provement.

D(AMPLE 9.9

You are to design an m/N detection system. The number of components, N, must be

as small as possible to minimize cost. The fail-to-danp;er and the fail-safe probabilities

for the identical components are

P't :  I0-2' P' :  10 t '

Your design must meet the following criteria:

1. Probability of system fail-to-danger ( 10 +.

2. Probability of system fail-safe < 10-'.

\Arhat values of m and N should be used?

Solution Make a table of unreliabilities (i.e., the failure probabilities) for fail-safe

and fail-to-danger using the rare-event approximations given by Eqs. 9.85 and 9.83.

m/ N i8., nq. o.as rRa Eq. 9.83

1 / l  P , : 10 -2  P ,1 :  1O-z
| /2 2p,: 2 X 10 2 pl1 :  l }-a
2 / 2  p l : 1 0 - a  2 p a : 2  x  l 0 - 2
1  / 3  3p , : 3  x  10  2  

P l -  10 -6
2 / 3  3 p i : 3 x 1 0  1  3 F ' o : 3 x 1 0 - 1
3 / 3  p ? :  l 0  "  g q u : 3  x  1 0  2

7 / 4  4 F , : 4  x  l 0 - 2  p l , :  t o '
2 /4  6p ' l : 6  x  l 0 -1  4p l :  +  x  10 -6
3 / 4  4 p 1 : 4 x 1 0 6  6 p i : u x l o - ô
4 / 4  F i : 1 9  

,  + l r c :  4  x  t 0  2

At least four components are required to meet both criteria. They are met by a

2/4 system.

Voting Systems

In addition to the use of nxn{ redundancy to reduce the spurious operation

of safety and alarm systems, it plays an important role in the design of computer

control systems that must feed continuous streams of highly reliable output

to guarantee safe operations. Temperature controllers in chemical plants,

automated avionics controls, controls for respirators and other biomedical

devices offer a few examples where accurate sensing and control often requires

the use of redundancy.
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In these situations the most frequent configuration is a2/3 voting system.
Three process computers or other instruments operate in parallel. A voter
then compares the outputs of the three units, and if one differs from the

other two, its output is ignored. The configuration reliability is then obtained
by putting the voter reliability in series with the 2/3 res;.tlt obtained from
Eq. 9.56:

R , n , : ( 3 R t - z R s ) R , , , (e.86)

where R and -R, are the computer and voter reliabilities, respectively. Clearly

the voter must have a very small failure probability if the system is to operate
satisfactorily. Fortunately, the voter is typically avery simple device compared
to the computer, and therefore may be expected to have a much smaller
failure probability.

In some situations the electronic voter may be replaced by an operator
decision. Suppose, for example that three computers are used to calculate
the pitch and yawl of an aircraft. The pilot and copilot might have the displays
from two of the computers in front of them with a third placed to be readily
visible by both of them. Therefore comparisons can be made readily, and the
malfunctioning computer switched out of the system. Of course this system
also creates an additional opportunity for pilot error.

More extensive voting systems may be required to achieve exceedingly
small failure probabilities in computer controlled systems. In one such config-
uration each of the computers has a spare, which may be kept in hot standby
and switched into the circuit upon detection of a failure by the voter. An

alternative configuration isaS/5 majorityvote system. In each of these config-
urations at least three computers must fail before the system fails, but each
requires that additional computers be purchased.

D(AMPLE 9.TO

Derive the MTTF and the rare-event approximation for

(a) a 2/3 voting system,

(b) a 3/5 voting system.

Assume the failure probability of the voter can be neglected. How do the results

compare to those for a single unit?

Sohrtion (2/3) From Eq. 9.86 we have

R * e ^t :  R2yt 
- 

lu %'t -  2e 
:\^t.

Using the definition of MTTF given by Eq. 6.22 and evaluating the integrals we have

c 9 6

^ -  ^ : ; M r r F .

9.61 yields

Cï( I t ) ' � -  1  -  3(Àt )2

MTTF27' :

For the rare-event approximation Eq.

R z r - l -
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(3/5) From Eq. 9.56 we have

Âo/,' : Ci \  -  R ) ' ps - " :  Â5  +  5 (1  -  R )R '+  10 (1  -  R ) t4 : .

Thus,

R'tr-, : 10R3 - 15Ê1 + 6R5 : l\e 3^t - 15e 1^t + 6e 5^t

and we can again apply Eq. 6,22 to obtain

N,IrrF.r,  :  P - F * I  :{MrrF.
cÀ  4^  5^  60 '

For the rare-event approximation Eq. 9.61 yields

R z r s -  |  -  C t o \ t ) 3 :  1  -  1 0 ( À t ) 3

Increased number of voting components decreases the system MTTF. However, at

short times the rare-event approximations indicated that the reliability is increasingly

close to one. For example with Àt : 0.1 we have

Rrrr - 0.90, Â27, :  0.97 and Â*70 - 0.99.

Finally, it should be noted that in an electronic system, transient faults,

which may last only a fraction of a second, are expected to occur more

frequently than "hard" irrecoverable failure. Thus in voting systems, software

is often included to test for transient faults and restart the computer once

the fault is corrected. If this is not done the failure probability may be too

large even if three or more faults must occur before the system will fail. In

this case the failure mode is referred to as "exhaustion of spares." Conversely

if the testing to determine whether a correctable fault or an irreparable failure

has taken place takes a significant length of time, there is a small possibility

that a fault will cause a second computer to malfunction before the spare can

be switched in. The system is then said to have a fault handling or switching

failure. The achievement of very small failure probabilities in systems such as

shown in Fig. 9.8 often hinges on balancing the gains and losses incurred

with the use of such sophisticated fault handling systems.

9.6 REDUNDANCY IN COMPLD( CONFIGURATIONS

Systems may take on a variety of complex configurations. In what follows we
examine the analysis of redundancy in two classes of systems: those that may

be analyzed in terms of series and parallel configurations, and those in which
the components are linked in such a way that they cannot. For brevity, we

primarily treat configurations involving only active parallel units. However,

with proper care the analysis can be extended to systems containing standby

configurations.

z
s
.L
n = 0
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Voter-Switch-Detector  (VS D)

Voted
ou tpu t

FIGURE 9.8 Basic organization of a hybrid redundant system.
From S. A. Elkind, "Reliability and Availability Techniques,"
The Theory and Practice of fuliabl.e System Design, D. P. Siewiorek

and R. S. Swarz (eds.) Digital Press, Beclford, MA 1982.

Series-Parallel Confi gurations

As long as a system can be decomposed into series and parallel subsystem
configurations, the techniques of the preceding sections can be employed
repeatedly to derive expressions for system reliability. As an example consider
the reliability block diagram shown for a system in Fig. 9.9. Components al
through aa have reliability lR. and components ô1 and b2 have reliability rR6.
For the following analysis to be valid, the failures of the components must be
independent of one another.

We begin by noting that there are two sets of subsystems with type a
components, consisting of a simple parallel configuration as shown in Fig.
9.70a. Thus we define the reliability of these configurations as

Rl, : 2R, - Rl,. (9.87)

The system configuration then appears as the reduced block diagram shown
in Fig. 9.10ô. We next note that each newly defined subsystem A is in series

FIGURE 9.9 Reliability block diagram of
a series-parallel configuration.

Disagree-
men t

detector
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(c)

FIGURE 9.10 Decomposition of the system in Fig. 9.9.

with a component of type Ô. We

and the reduced block diagram
subsystems B are in parallel, we

ffi
(d)

may therefore define a subsystem B by

Rn:  RoRr ,  (9 .88)

then appears as in Fig. 9.10c. Since the two
may write

R c : z R B -  R l (e.8e)

to yield the simplified configuration shown in Fig. 9.10d. Finally, the total
system consists of the series of subsystems C and component c. Thus

R:  RçR, . (e.e0)

Having derived an expression for the system reliability, we may combine Eqs.
9.87 through 9.90 to obtain the system reliability in terms of that of R,,, R6,
and rR.

R: (2R.-  RTRILZ -  (ZR"*  Ri )RblR, . (e.e1)

Standby configurations can also be included within series-parallel con-
figurations. Suppose components a1 and a2are in aI/2 standby configuration,
and that componeritS aq and aa are in the same configuration. In the constant
failure rate approximation we would simply replace Roby.R5, given by Eq.
9.12, and proceed as before. We would obtain, instead of Eq. 9.91,

r R : R , , R 1 ( Z -  R , R ; ) R , (e.e2)

D(AMPLE 9.I1

Suppose that in Fig. 9.9, Ro : Rt - e ̂ t = R* and R. : 1. Find R in the rare-event

approximation.
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Solution We simplify Eq. 9.91,

R:  R I (Z  -  Ë* )12  -  (2  -  Ë* )Â i l

and write it as a polynomial in rR*:

n - 4R'i * zRi - 4Ri + 4R; - Â1.

T h e n w e e x p a n d R * ' :  e - N ^ t -  1 -  N À l + à N 2 ( À l ) 2  -  ' "  t o o b t a i n f o r s m a l l À r

R-411 -2À, t+  2 (Àr )21  -2 l l  -  3Àt+8(Àr ) ' �1  -  411 -  4À, t+  8 (Àt )21

+ 4 [1  -  5^ t+  LZr (Àr )2 ]  -  I  +  6Àr -  18(Àt )2

R -  ( 4  -  2  -  4  +  4 -  1 )  -  ( 8  -  6  -  1 6  +  2 0  -  6 ) ( À t )

- ( - 8  +  9  +  3 2  -  5 0 +  1 8 ) ( À r ) 2  +  .  .  .

R -  I  -  ( À 1 ) t .

Had the coefficient of the (Àt)2 term also been zero, we would have needed to carry

terms in (Àr)3.

Linked Configurations

In some situations the linkage of the components or subsystems is such that the
foregoing technique of decomposing into parallel and series configurations
cannot be applied directly. Such is the case for the system configuration shown
in Fig. 9.1 1, consisting of subsystem types 1, 2, and 3, with reliabilities R1 , ,R2 ,
and -R*.

To analyze this and similar systems, we decompose the problem into a
combination of series-parallels by utilizing the total probability rule given in
Eq. 2.20.

P{Y} : P{Y lx},r'{X} + P{Ylx}P{X}

Suppose we let X be the event that subsystem 2a fails. Then P{X} : I - Âz
and P{X} : Rz.If we then let Ydenote successful system operation, the system
reliability is defined as ,R : P{Y}.Now suppose we define the conditional
reliabilities that the system function with subsystem 2a failed as

(e.e3)

(e.e4)

(e.e5)
and with 2a operational as

R- -  P{Ylx}

.R* : P{Ylx]r

FIGURE 9.ll Reliabiliry block diagram of

a crosslinked system.
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Inserting these probabilities into Eq. 9.93, we may write the system reliability as

R :  R - ( 1  -  R z )  +  R * R 2 . (e.e6)

system consists of a series of

and 3a no longer make anY

(e.e7)

we must now evaluate the conditional reliabilities R* and rR-' For R- in

which 2a has failed, we disconnect all the paths leading through 2a in Fig'

9.1 1; the result appears in Fig. 9.IZa. Conversely, for R* in which 2a is function-

ing, we pass a puin througÈ 2a, thereby bypassing 2b with the result shown

in Fig.  9.12b.
W. ,.. that when 2a is failed, the reduced

three subsystems, lb, 2b, and 3b; subsystems la

contribution to the value of R-' We obtain

R-  -  Rr&Ra.

When 2a is operating, we have a series combination of two parallel configura-

tions, la and lb in ihe first an6 3a and 3b in the second; since component

2b is always bypassed, it has no effect on R*. Therefore' we have

R* : (2R, - RT) (2R3 - Âi). (e.e8)

Finally, substituting these expressions into Eq. 9.96, we find the system reliabil-

ity to be

R : Â ' R z R r ( l - R z ) + ( 2 R ' - Â T ) ( 2 R 3 - Â T ) R ' ( 9 ' 9 9 )

EXAMPLE 9.12

Evaluate Eq. 9.99 in the rare-event approximation with R,, : ,-Àt for all n'

Solut ion Let R* : R,.Then Eq. 9'99 becomes R: Âi( l  -  Ë*) + 
-(2Âx 

- nï)t t t '

Writing rhis exprerîio., u, a polynomial in R*, we have R: 5Ëi - 5Rï + Ri'

Noww"e expandRl ' :  e  Àt :1  -  NÀt  +  r /zN2( t r t )2  -  " ' to  obta in :

R  :  5  -  1 5 À i  *  r / 2 4 5 ( À t ; '  - ' ' '

- 5  +  2 0 À , t  -  V z 8 0 ( À " t ) '  + ' ' '

+  1 -  5 À r +  V z 2 5 ( À t ) '

Hence,

R : 1 - 5 ( À 1 ) 2 + " '

If the (Àt)2 term were zero, we would need to carry the (Àl)3 term in the expansion'

(a)

FIGURE 9.12 Decomposit ion of the system in Fig' 9'11'
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Exercises

9.1 A nonredund.ant system with 100 components has a design-life reliability
of 0.90. The system is redesigned so that it has only 70 components.
Estimate the design life of the redesigned systems, assuming that all the
components have constant failure rates of the same value.

-g.Z)At 
the end of one year of service the reliability of a component with a

constant failure rate is 0.95.

(a) What is the failure rate (include units)?

(b) If two of the components are put in active parallel, what is the one
year reliability? (Assume no dependencies.)

(c) If l0% of the component failure rate may be attributed to common-
mode failures, what will the one-year reliability be of the two compo-
nents in active parallel?

g.3 \Thermocouples of a particular design have a failure rate of À : 0.008/
hr. How many thermocouples must be placed in active parallel if the
system is to run for 100 hrs with a system failure probability of no more
than 0.05? Assume that all failures are independent.

9.4 In an attempt to increase the MTTF, an engineer puts two devices in
parallel and tests the resulting parallel system. The MTTF increases by
only 40%. Assuming the device failure rate is a constant, what fraction
of it, B, is due to common-mode failures of the parallel system?

"ô3',t 
disk drive has a constant failure rate and an MTTF of 5000 hr.

(a) \Arhat will the probability of failure be for one year of operation?

(b) \Ârhat will the probability of failure be for one year of operation if
two of the drives are placed in active parallel and the failures are
independent?

(c) \Arhat will the probability of failure be for one year of operation if
the common-mode errors are characterized by F : 0.21

9.6 Suppose the design life reliability of a standby system consisting of two
identical units must be at least 0.95. If the MTTF for each unit is 3
months, determine the design life. (Assume constant failure rates and
neglect switching failures, etc.)
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'ii.Z)fi"a 
the variance in the time to failure, assuming a constant failure rate À:

(a) For two units in series.

(b) For two units in active parallel.

(c) V\rhich is larger?

9.8 Suppose that the reliability of a single unit is given by a Weibull distribu-

tion with m:2. Use Eq.9.10 to show thata standby system consisting

of two such units has a reliability of

R,(/) - s (t/0)2 + fn(t/ o)erf(f l/2t/ 0) e*Luret2

where the error function is defined by

1  f n  '.f()) : 
Gl ,e-, dx.

g.9\uppose that naro identical units are placed in active parallel. Each has

^ Weibull distribution with known 0 and m) I.

(a) Determine the system reliability.

(b) Find a rare-event approximation for a.

g.l0 Suppose rhat the units in Exercise 9.9 each have a Weibull distribution

with m : 2.By how much is the MTTF increased by putting them

in parallel?

9.11 A component has a one-year design-life reliability of 0.9; two such compo-

nents are placed in active parallel. \Ahat is the one-year reliability of the

resulting system:

(a) In the absence of common-mode failures?

(b) If 20% of the failures are common-mode failures?

9.12 Suppose rhat the PDF for time-to-failure for a single unit is uniform:

( t / r ,  o < r < T l
I ( t ) :  r .

L o, othentnse 1

(a) Find and plot R(r) for a single unit.

(b) Find and plot ,R(t) for two units in active parallel.

(c) Find and plot ,R(l) for two units in standby parallel.

(d) Find the MTTF for parts a, b, antd c.

9.13 An amplifier with constant failure rate has a reliability of 0.90 at the end

of one month of operation. If an identical amplifier is placed in standby

parallel and there is a 3Vo switching failure probability, what will the

reliability of the parallel system be at the end of one year?

9.14 Consider the standby system described by Eq. 9.33:

(a) Find the MTTF.
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(b) Show that your result from a reduces to Eq. 9.15 as p ---> 0 and
À* -+ À.

(c) Show that your result from a reduces to a single unit MTTF as p + 1.

(d) Find the rare-event approximation for Eq. 9.33.

9.15lConsider a system with three identical components with failure rate À1.
Find the system failure rate:

(a) For all three components in series.

(b) For all three components in active parallel.

(c) For two components in parallel and the third in series.
(d) Plot the results for a, b, and c on the same scale for 0 < t = 5/ ^.

9.16 For a l/2 parallel system with load sharing:

(a) Show that for ^*/^ > 1.56 will have a smaller MTTF than a sin-
gle unit.

(b) Find the rare-event approximation for the case where ^* / ^: 1.56.

(c) Using rare-event approximations, compare reliabilities at À, : 0.05
for a s ingle uni t ,  for  À*/À,:  1.56 and for ^*/^:  1.0.

(d) Discuss your results.

9.17 In al/2 active parallel system each unithas afailure rate of 0.05 day-t.

(a) What is the system MTTF with no load sharing?

(b) \Arhat is the system MTTF if the failure rate increases by lÙVo as a
result of increased load?

(c) What is the system MTTF if one increases both unit failure rates
by  10%?

9.18 An engineer running a l/2 identical unit system in cold standby finds
the switching failure probability is 0.2 while the failure rate in standby
is negligible. He converts to hot standby and eliminates the switching
failure probability, but discovers that now the failure rate of the unit in
standby is 30Vo of the active unit. As measured by system MTTF, has
going from cold to hot standby improved or degraded the system? By
how much?

9.19 Suppose that a system consists of nrro subsystems in active parallel. The
reliabiliry of each subsystem is given by the Rayleigh distribution

R(t1 :  s U/e12.

Assuming that common-mode failures may be neglected, determine the
system MTTF.

9.20 Repeat exercise 9.18 assuming that the failure rate of the unit in standby
is only 20% of the active unit.
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9.21 The design criterion for the ac power system for a reactor is that its
failure probability be less than 2 X 70-5 /year. OfÊsite power failures
may be expected to occur about once in 5 years. If the on-site ac power
system consists of nvo independent diesel generators, each of which is
capable of meeting the ac power requirements, what is the maximum
failure probability per year that each diesel generator can have if the
design criterion is to be met? If three independent diesel generators
are used in active parallel, what is the value of the maximum failure
probability? (Neglect common-mode failures.)

9.22 Consider a1/3 system in active parallel, each unit of which has a constant
failure rate À.

(a) Plot the system failure rate À(/) in units of À versus Àtfrom À/ : 0,
to large enough Àf to approach an asymptotic system failure rate.

(b) What is the asymptotic value À(oo)?

(c) At what interval should the system be shut down and failed compo-
nents replaced if there is a criterion that À(r) should not exceed
l/3 of the asymptotic value?

9.23 An engineer designs a system consisting of two subsystems in series. The
reliabilities are Rr : 0.98 and Rz: 0.94. The cost of the two subsystems
is about equal. The engineer decides to add two redundant components.
\Vhich of the following would it be better to do?

(a) Duplicate subsystems I and 2 in highlevel redundance.

(b) Duplicate subsystems I and 2 in lowlevel redundance.

(c) Replace the second subsystem with 7/3 redundance.

Justi$, your answer.

9.24 For a 2/3 system:

(a) Express ,R(f) in terms of the constant failure rates.

(b) Find the system MTTF.

(c) Calculate the reliability y when Àt : 1.0 and compare the result to
a single unit and to a 7/2 system with the same unit failure rate.

.9.25)Suppose that a system consists of two components, each with a failure
rate À, placed in series. A redundant system is built consisting of four
components. Derive expressions for the system failure rates

(a) for high-level redundancy,

(b) for low-level redundancy.

(c) Plot the results of aand ôalongwith the failure rate of the nonredun-
dant system for 0 < t = 2/ ^.

9.26 Suppose that in Exercise 9.21 one-fourth of the diesel generator failures
are caused by common-mode effects and therefore incapacitate all the
active parallel systems. Under these conditions what is the maximum
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failure probabilig (i.e., random and common-mode) that is allowable
if two diesel generators are used? If three diesel generators are used?

9.27 The failure rate on ajet engine is À: l0-3/hr. What is the probabil ity
that more than nvo engines on a four-engine aircraft will fail during a

Z-hr flight? Assume that the failures are independent.

9.28 The shutdown system on a nuclear reactor consists of four independent
subsystems, each consisting of a control rod bank and its associated
drives and actuators. Insertion of any three banks will shut down the
reactor. The probability that a subsystem will fail is 0.2 x 10-a per
demand. What is the probability per demand that the shutdown system
will fail, assuming that common-mode failures can be neglected?

9.29 Two identical components, each with a constant failure rate, are in series.
To improve the reliability two configurations are considered:

(a) for high-level redundancy,

(b) for lowlevel redundancy.

Calculate the system MTTF in terms of MTTF of the system mean-time-
to-failure without redundance.

9.30 Consider two components with the same MTTF. One has an exponential
distribution, the other a Rayleigh distribution (see Exercise 9.19) . If they
are placed in active parallel, find the system MTTF in terms of the
component MTTF.

9.31 A radiation-monitoring system consists of a detector, an amplifier, and
an annunciator. Their lifetime reliabilities and costs are, respectively,
0 .83  ($1200) ,  0 .58  ($2400) ,  and 0 .69  ($1600) .

(a) How would you allocate active redundancy to achieve a system life-
time reliability of 0.995?

(b) What is the cost of the system?

9.32 For constant failure rates evaluate R111 and -R1,1 for high- and low-level
redundancy in the rare-event approximation beginning with Eqs. 9.72
and 9.73.

9.33 A system consists of three components in series, each with a reliability
of 0.96. A second set of three components is purchased and a redundant
system is built. \Ahat is the reliability of the redundant system (a) with
high-level redundancy, (à) with low-level redundancy?

9.34\The identical components of the system below have fail-to-danger proba-
- 
bil i t ies of pa: 10 

.2 
and fail-safe probabil it ies of P, : l}-t.

(a) What is the system fail-to-danger probability?

(b) What is the system fail-safe probability?
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\9.35 Ealculate the reliabilities of the following systems:

(a) (b)

9.36 A device consist of two components in series with a (l /2) standby system
as shown. Each component has the same constant failure rate.

(a) \Arhat is R(l)?

(b) What is the rare-event approximation for ^R(t)?
(c) What is the MTTF?

: 9.37,)Calculate the reliability for the following
component failure rates are equal. Then
tion to simplify your result.

system, assuming that all the
use the rare-event approxima-

systems, assuming that
the rare-event approxi-

9.38 Calculate the reliability, R(/), for the following
all the components have failure rate À. Then use
mation to simplify the result.

(b)
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g.3g Given rhe following component reliabilities, calculate the reliability of

the two systems.

g.40 Calculate the reliabilities of the following two systems, assuming that all

the component reliabilities are equal. Then determine which system has

the higher reliabilitY.

(b)(a)

(b)
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IO.I INTRODUCTION

Relatively few systems are designed to operate without maintenance of any
kind, and for the most part they must operate in environments where access
is very difficult, in outer space or high-radiation fields, for example, or where
replacement is more economical than maintenance. For most systems there
are two classes of maintenance, one or both of which may be applied. In
preventive maintenance, parts are replaced, lubricants changed, or adjust-
ments made before failure occurs. The objective is to increase the reliability
of the system over the long term by staving off the aging effects of wear,
corrosion, fatigue, and related phenomena. In contrast, repair or corrective
maintenance is performed after failure has occurred in order to return the
system to service as soon as possible. Although the primary criteria forjudging
preventive-maintenance procedures is the resulting increase in reliability, a
different criterion is needed forjudging the effectiveness of corrective mainte-
nance. The criterion most often used is the system availability, which is defined
roughly as the probabiliry that the system will be operational when needed.

The amount and type of maintenance that is applied depends strongly
on its costs as well as the cost and safety implications of system failure. Thus,
for example, in determining the maintenance for an electric motor used in
a manufacturing plant, we would weigh the costs of preventive maintenance
against the money saved from the decreased number of failures. The failure

290
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costs would need to include, of course, both those incurred in repairing

or replacing the motor, and those from the loss of production during the

unscheduled d.owntime for repair. For an aircraft engine the trade-off would

be much different: the potentially disastrous consequences of engine failure

would eliminate repair maintenance as a primary consideration. Concern

woulcl be with how much preventive maintenance can be afforded and with

the possibility of failures induced by faculry maintenance.

In both preventive and corrective maintenance, human factors play a

very strong role. It is for this reason that laboratory data are often not represen-

rative of field data. In field service the quality of preventive maintenance is

not likely to be as high. Moreover, repairs carried out in the field are likely

to take longer and to be less than perfect. The measurement of maintenance

quantities thus depends strongly on human reliability so that there is great

aifncutty in obtaining reproducible data. The numbers depend not only on

the physical state of the hardware, but also on the training, vigilance, and

judgment of the maintenance personnel. These quantities in turn depend on

*utry social and psychological factors that vary to such an extent that the

probabitities of maintenance failures and repair times are generally more

variable than the failure rates of the hardware.

In this chapter we first examine preventive maintenance. Then we define

and discuss availabiliry and other quantities needed to treat corrective mainte-

nance. Subsequently, we examine the repair of two types of failure: those that

are revealed (i.e., immediately obvious) and those that are unrevealed (i.e.,

are unknown until tests are run to detect them). Finally, we examine the

relation of a system to its components from the point of view of corrective main-

tenance.

IO.2 PREVENTTVE MAINTENANCE

In this section we examine the effects of preventive maintenance on the

reliability of a system or component. We first consider ideal maintenance

in which the system is restored to an as-good-as-new condition each time

maintenance is applied. We then examine more realistic situations in which

the improvement in reliability brought about by maintenance must be weighed

against the possibitity that faulty maintenance will lead to system failure.

Finally, the effects of preventive maintenance on redundant systems are ex-

amined.

Idealized Maintenance

Suppose that we denote the reliability of a system without maintenance as

R(t),where / is the operation time of the system; it includes only the intervals

when the system is actually operating, and not the time intervals during which

it is shut down. If we perform maintenance on the system at time intervals 4

then, as indicated in Fig. 10.1, for t < T maintenance will have no effect on
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FIGURE 10.1 The effect of preventive maintenance

on reliability.

reliability. That is, if rRna(r) is the reliability of the maintained system,

R r ( t ) :  R ( t ) ,  0 = t < T .

MTTF:

Then, inserting Eq. 10.4, we have

RMU) dt.

q
Ê

2T 3T

Now suppose that we perform maintenance at ?] restoring the system to an
as-good-as-new condition. This implies that the maintained system at- t ) T
has no memory of accumulated wear effects for times before T. Thus, in the
interval T < t - 2T, the reliability is the product of the probability R( 7) that
the system survived to T, and the probability Â( t - T) that a system as good
as new at T will survive for a time I - 7 without failure:

(10 . r  )

(10 .2 )

(10 .3 )

(10.4)

(10 .6 )

R * ( t ) :  - R ( D Â ( t -  T ) ,  T <  t < 2 7 l l .

Similarly, the probability that the system will survive to time l, 2T < t < 3T,
is just the reliability RM(?T) multiplied by the probability that the newly
restored system will survive for a time t - 2T:

R r ( t ) :  R ( T ) ' R ( I  -  2 T ) ,  2 T <  t <  3 T .

The same argument may be used repeatedly to obtain the general expression

Rr , ( t ) :  R(T) 'R( t -  NT) ,  I ' {T<  t<  ( l i  +  1 )2 ,

l y ' :  0 ,  1 , 2 , .  .  .  .

The MTTF for a system with preventive maintenance can be determined
by replacing R(r) by Rr(t) in Eq. 6.22:

MrrF: I; R,Q) dt. (10 .5 )

To evaluate this expression, we first divide the integral into time intervals of
length 7:

Ë f:l:"'"

@  ^ . , , , , , -

) .  |  

" n - ' ' '

nQ\

I
N
I
I
I

MTTF: ft( T)Nft( t - NT) dt. (10 .7 )



Setting t' : t - NT then Yields

MTTF:

Then, evaluating the infinite series,
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(10 .8 )

(10.e)

( 1 0 . 1 0 )

( 1 0 . 1 3 )

à^, t ) "J, '  
R( t ' )  dt '

we have

R(,)

Equation 10.4 then yields for the maintained system

i . ^ r r ) N : .  I
? u " ' "  l  -  R ( T ) '

li nça a,
N'ITTF 

r - Â(D 
'

We would now like to estimate how much improvement, if any, in reliabil-

ity we derive from the preventive maintenance. The first point to be made is

that in random or chance failures (i.e., those represented by a constant failure

rate À), idealized maintenance has no effect. This is easily proved by putting

R(r) : e-^' oî the right-hand side of Eq' l0'4' We obtain

Rr(t) 
-- (e-^'rÀr/-^(r-Nr) 

- e-N^te-^(t-Nr) 
- c-^t ( 1 0 . 1 r )

(10.12)
or simply

R M ( . t ) :  R ( t ) ,  0  <  t <  o o '

Preventive maintenance has a quite definite effect, however, when aging

or wear causes the failure rate to become time-dependent. To illustrate this

effect, suppose that the reliability can be represented by the two-parameter

weibull distribution described in chapter 3. For the system without mainte-

nance we have

:exp[- (r ' ]

Â",(') : exp 
[-r(t) ' ]  

.,.p 
[-

(trur)'1, Nr< r< (^/+ r)'r,
\  o  /  )  ( t o . t 4 )

l /  : 0 ,  1 , 2 , . . . .

To examine the effect of maintenance' we calculate the ratio Rr(t) / R(t) ' The

relationship is simplified if we calculate this ratio at the time of maintenance

t:  I {T:

*ffi:exp[-'(i)'.
Thus there will be a gain in reliability from maintenance only if the argument

of the exponential is positive, thatis, if (I '{T/0)*> 1'{(T/ 0)' '  This reduces to

(f) '] (,0,b)
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the condition

À ' / ' - 1  * l > 0 . (10 . r6 )

This states simply that m must be greater than one for maintenance to have
a positive effect on reliability; it corresponds to a failure rate that is increasing
with time through aging. Conversely, for m I l, preventive maintenance
decreases reliability. This corresponds to a failure rate that is decreasing with
time through early failure. Specifically, if new defective parts are introduced
into a system that has already been "worn in," increased rates of failure may
be expected. These effects on reliability are illustrated in Fig. 10.2 where Eq.
10.14 is plotted for both increasing (m> 1) and decreasing (m < 1) failure
rates, along with random failures (m: l).

Naturally, a system may have several modes of failure corresponding to
increasing and decreasing failure rates. For example, in Chapter 6 we note
that the bathtub curve for a device may be expressed as the sum of Weibull dis-
tributions

( 1 0 . 1 7 )

For this system we must choose the maintenance interval for which the
positive effect on wearout time is greater than the negative effect on wearin
time. In practice, the terms in Eq. 70.77 may be due to different components
of the system. Thus we would perform preventive maintenance only on the
components for which the wearout effect dominates. For example, we may
replace worn spark plugs in an engine without even considering replacing a
fuel injection system with a new one, which might itself be defective.

O T 2 T 3 T

Nomaintenance--- With maintenance

FIGURE 10.2 The effect of preventive maintenance
on reliabil ity: m> 1, increasing failure rate; m 1 l,
decreasing failure rate; m: l, constant failure rate.

D(AMPLE IO.I

A compressor is designed for 5 years of operation. There are two significant contribu-
tions to the failure rate. The first is due to wear of the thrust bearing and is described
by a Weibull distribution with 0 : 7.5 year and m : 2.5. The second, which includes
all other causes, is a constant failure rate of Ào : 0.013/year.

/ ,  ̂ r  t , )  d t , :  ( ; , ) .  .  (â) ' .  (É) - ,

Ê(

I
- l
l -< r l

/ i
. m = L i

I

- > 1  |
I
I
I
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(a) What is the reliability if no preventive maintenance is performed over the 1-yeat

design life?

If the reliability of the l-year design life is to be increased to at least 0'9 by

periodically replacing the thrust bearing, how frequently must it be replaced?

Solution Let To: 5 be the design life'

The system reliability may be written as

R(To)  :  &(TàRM(T,ù,

where

&]Tù 
- e-trr ' to- r-oor3x5 : 0.9371,

is the reliability if only the constant failure rate is considered. Similarly,

Rr(Tù - e Q-i/0)" -'-lt/z't)'o : 0'6957

is the reliability if only the thrust bearing wear is considered. Thus,

R(Tr) :  0.9371 x 0.6957 : 0.6519.

Suppose that we divide the design life into N equal intervals; the time interval,

7, ài which maintenance is carried out is then T : Ta/ N. Correspondingly, Ta :

NT. For bearing replacement at time interval 4 we have from Eq. 10.14'

R,,(  r , )  :  exp 
[- t ("*) ' ]  

:  exp 
[- t ' - ' (?) ' ]

For the criterion to be met, we must have

Rn'(4') : 
m= ##' Ru( ro) =-�o'e604'

With (To/0)^ :  (5/7. i l  25 : 0.36289, we calculate

R*(Tù :  exP(-0 '36289N- '  5) '

Thus the criterion is met for N: 5, and the time interval for bearing replacement

i s  T :  T n / N :  Ê :  1 y e a r .

In Chapter 6 we state that even when wear is present, a constant failure

rate model may be a reasonable approximation, provided that preventive

maintenance is carried out, with timely replacement of wearing parts. Al-

though this may be intuitively clear, it is worthwhile to demonstrate it with

our present model. Suppose that we have a system for which wearin effects

.un b. neglected, allowing us to ignore the first term in Eq. 10.17 and write

( b )

:expl-;- (*)-lR(r) (10 .18)
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The corresponding expression for the maintained system given by Eq. 10.4 be-
comes

Æn,( r )  :  exp 
[ - r ( ; ) " ]  

. , .p  
[  

-  
â -  ( i - -  

t - ) " ] ,  Nr< r=  (N+ r ) r

(10 .1e )

For a maintained system the failure rate may be calculated by replacing ft by
R11 in Eq. 6.15:

À,,(t): _ #, l,^_ur.
Thus, taking the derivative, we obtain

(10.20)

À" , ( r )  : ] *  ! : ( t - - x r \ ^ ' ' ,  N r<  r<  (À /+  r ) r  (10 .21 )'  
0 2  0 r \  0 3  /

Provided that the second term, the wear term, is never allowed to become
substantial compared to the first, the random-failure term, the overall failure
rate may be approximated as a constant by averaging over the interval T. This
is illustrated for a typical set of parameters in Fig. 10.3.

Imperfect Maintenance

Next consider the effect of a less-than-perfect human reliability on the overall
reliability of a maintained system. This enters through a finite probability p
that the maintenance is carried out unsatisfactorily, in such a way that the
faulty maintenance causes a system failure immediately thereafter. To take
this into account in a simpleway, we multiply the reliability by the maintenance
nonfailure probability, I - p, eacti' time that maintenance is performed. Thus
Eq. 10.4 is replaced by

Rr( t )  :  .R( r ) ' ( l  -  p ) *R( t -  I {T ) ,  I {T< t< (N+ 1)2 ,

^ /  : 0 , 1 , 2 , . (10.22)

The trade-off between the improved reliability from the replacement of
wearing parts and the degradation that can come about because of mainte-

T

FIGURE 10.3 Failure
tive maintenance.

2T 3T
rate for a system with preven-

W



Maintained Ststems

nance error may now be considered. Since random failures are not affected
by preventive maintenance, we consider the system in which only aging is
present, byusingEq. 10.13 with m ) 1. Once again the ratio Rn/Rafter the
Mh preventive maintenance is a useful indication of performance. Note that
for p << I, we may approximate

( 1  -  p ) N :  u - N P (10.23)

to obtain

(10.24)

For there to be an improvement from the imperfect maintenance, the argu-
ment of the exponential in this expression must be positive. This reduces to
the condition

p< (^ { . -1  -  1 '  (â ' (  10.25)

Consequently, the benefits from imperfect maintenance are not seen until a

long time, when either N or I is large. This is plausible because after a long

time wear effects degrade the reliability enough that the positive effect of

maintenance compensates for the probability of maintenance failure. This is

i l lustrated in Fig. 10.4.

O T 2 T 3 T

Key:
lmperfect maintenance
No maintenance -

FIGURE 10.4 The effect of imperfect preventive
maintenance on reliabil ity.

D(AMPLE 10.2

Suppose that in Example 10.1 the probability of faulty bearing replacement causing
failure of the compressor is p: 0.02. \Arhat will the design-life reliability be with the
annual replacement program?

Solution At the end of the design life ( 4r : 5 years) maintenance will have been
performed four times. From the preceding problem we take the perfect maintenance

?^ffi:exp[-'(i)- - r,{p+(9']

q
c
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result to be

R(T) :  &rft ,u :  0.937 X 0.968 : 0.907.

With imperfect maintenance,

R ( T ) :  Â o R , u ( 1  -  p ) t : 0 . 9 0 7  x  0 . 9 8 4 : 0 . 9 0 7  x 0 . 9 2 2  -  0 . 8 3 6 .

In evaluating the trade-off between maintenance and aging, we must
examine the failure mode very closely. Suppose, for example, that we consider
the maintenance of an engine. If after maintenance the engine fails to start,
but no damage is done, the failure may be corrected by red.oing the mainte-
nance. In this case p may be set equal to zero in the model just given, with
the understandinq that preventive maintenance includes a checkout and a
repair of maintenance errors.

The situation is potentially more serious if the maintenance failure dam-
ages the system or is delayed because it is an induced early-failure. We consider
each of these problems separately. Suppose first that after maintenance the
engine is started and is irreparably damaged by the maintenance error.
Whether maintenance is desirable in these circumstances strongly depends
on the failure mode that the rnaintenance is meant to prevent. If the engine's
normal mode of failure is simply to stop running because a component is
worn, with no damage to the remainder of the engine, it is unlikely that even
the increased reliability provided by the preventive maintenance is economi-
cally worthwhile. Provided that there are no safety issues at stake, it may be
more expedient to wait for failure, and then repair, rather than to chance
damage to the system through faulty maintenance. If we are concerned about
servicing an aircraft engine, however, the situation is entirely different. Damag-
ing or destroying an occasional engine on the ground following faulty mainte-
nance may be entirely justified in order to decrease the probability that wear
will cause an engine to fail in flight.

Consider, finally, the situation in which the maintenance does not cause
immediate failure but adds a wearin failure rate. This may be due to the
replacement of worn components with defective new ones. However, it is
equally likely to be due to improper installation or reassembly of the system,
thereby placing excessive stress on one or more of the components. After the
first repair, we then have a failure rate described by u bathtub curve, as
in Eq. 70.17, with the first term stemming at least in part from imperfect
maintenance. The reliabil i ty is then determined by inserting Eq. 10.17 into
Eq. 10.4. If we assume that the early failure term is due to faulty maintenance,
it may be shown by again calculating rR,y(NT) / RWZ) that the reliability is
irnproved only if

(#)"(f)'( 1  -  À7 ' ' - t ; < ( l / ' '3-1 - 1) n L r  1 L ,  m r )  1 .  ( 1 0 . 2 6 )
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Whether or not an increase in overall reliability is the only criterion to
be used once again depends on whether the failure modes are comparable
in the system damage that is done. If no safery questions are involved, it is
primarily a question of weighing the costs of repairing the failures caused by
aging against those induced by maintenance errors. This might be the case,
for example, with an automobile engine. With an aircraft engine, however,
prevention of failure in flight must be the overriding criterion; the cost of
repairing the engine following failure, of course, is not relevant if the plane
crashes. In this, and similar situations, the more important consideration is
often the effect of maintenance errors on redundant systems because mainte-
nance is one of the primary causes of common-mode failures. We examine
these next.

Redundant Components

The foregoing expressions for RnoQ) may be used in calculating the reliability
of redundant systems as in Chapter 9, but only if the maintenance failures
on different components are independent of one another. This stipulation
is frequently difficult to justi$2. Although some maintenance failures are inde-
pendent, such as the random neglect to tighten a bolt, they are more likely
to be systematic; if the wrong lubricant is put in one engine, it is likely to be
put in a second one also.

The common-mode failure model introduced in Chapter 9 may be ap-
plied with some modification to treat such dependent maintenance failures.
As an example we consider a parallel system consisting of two identical compo-
nents. If the maintenance is imperfect but independent, we may insert Eq.
10.22 into Eq. 9.5 to obtain

R,( t )  :2R(r)"(1 -  p)*R(t  -  IvT) -  Â(r)"( ,  -  p) '*R(t  -  NT) ' ,

,^/r< r< (l/+ 1)r, (o0.27)

N  : 0 ,  1 , 2 , .

Suppose that a maintenance failure on one component implies that
the same failure occurs simultaneously in the other. We account for this by
separating out the maintenance failures into a series component, much as we
did with the common-mode failure rate À. in Chapter 9. Thus the system
failure is modeled by taking the reliability for perfect maintenance (i.e., P :

0) and multiplying by | ' p for each time that maintenance is performed.
Thus, for dependent maintenance failures,

RoQ): i2Â(r)nR(t*  I {T) -  Â(T)t ' 'n( t -  N7:) tXl  -  p) ' ,

l / r<  r<  (À /+  1 )?  (10 .28)

. ^ /  : 0 ,  1 , 2 , . . . .
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The degradation from maintenance induced common-mode failures is indi-
cated by the ratio of Eqs. 10.28 to 10.27. We find

1 - à ( t - p ) n R 1 r ; ' '

The value of this ratio is less than one, and it decreases each
preventive maintenance is performed.

IO.3 CORRECTIVE MAINTENANCE

With or without preventive maintenance, the definition of reliability has been
central to all our deliberations. This is no longer the case, however, when we
consider the many classes of systems in which corrective maintenance plays
a substantial role. Now we are interested not only in the probability of failure,
but also in the number of failures and, in particular, in the times required
to make repairs. For such considerations two new reliability parameters be-
come the focus of attention. Availability is the probability that a system is
available for use at a given time. Roughly, it may be viewed as a fraction of
time that a system is in an operational state. Maintainability is a measure of
how fast a system may be repaired following failure. Both availability and
maintainability, however, require more formal definitions if they are to serve
as a quantitative basis for the analysis of repairable systems.

Availability

For repairable systems a fundamental quantity of interest is the availability.
It is defined as follows:

A(t1 : probabiliry that a system is performing
satisfactorily at time /.

(10 .30)

This is referred to as the point availability. Often it is necessary to determine
the interval or mission availability. The interval availability is defined by

&)(Nr)
'RI('^/7)

I - +,R( r)N ( 10.2e)

time imperfect

( 1 0 . 3 1 )

It is just the value of the point availability averaged over some interval of time,
7. This interval may be the design life of the system or the time to accomplish
some particular mission. Finally, it is often found that after some initial tran-
sient effects the point availability assumes a time-independent value. In these
cases the steady-state or asymptotic availability is defined as

A*(r) :l[' aro a,.

1  r r
A * ( * )  :  l i m  

' J o  
A ( t )  d t . (  10.32)

If a system or its components cannot be repaired, the point availability
is just equal to the reliability. The probability that it is available at I is.jusr
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(10 .33)

(10.34)A*(r) :+[: RQ) dt.

Thus, as T goes to infinity, the numerator, according to Eq. 6.22, becomes
the MTTF, a finite quantity. The denominator, Z, however, becomes infinite.
Thus the steady-state availability of a nonrepairable system is

A * ( * )  :  0 . (10 .35)

Since all systems eventually fail, and there is no repair, the availability averaged
over an infinitely long time span is zero.

D(AMPLE 10.3

A nonrepairable system has a known MTTF and is characterized by a constant failure
rate. The system mission availability must be 0.95. Find the maximum design life that
can be tolerated in terms of the MTTF.

Solution For a constant failure rate the reliability is .R : e-^'. Insert this into Eq.
70.34 to obtain

A * ( T ) : + ( r _ s - ï r 1 .
A I

Expanding the exponential then yields

I
A ( r )  : ù ( 1  -  I  +  À r - t ( À O ,  +  .  .  . ) .

Thus A(T) - 1 - È^T,for ÀT << 1 or 0.95 - I - âÀf. T.hen À7' : 0.1, butMTTF :
1/À. Therefore. 1: 0.1 X MTTF.

Maintainability

We may now proceed to the quantitative d.escription of repair processes and
the definition of maintainability. Suppose that we let t be the time required
to repair a system, measured from the time of failure. If all repairs take the
same length of time, t is just a number, say t : r. In reality, repairs require
different lengths of time, and even the time to perform a given repair is
uncertain because circumstances, skill level, and a host of other factors vary.
Therefore t is normally not a constant but rather a random variable. This
variable can be considered in terms of distribution functions as follows.

Suppose that we define the PDF for repair as

m(t)  A^t :  P{t  < r  < t  + Lt) . ( r0 .36)
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That is, m(t) Ltis the probability that repair will require a time benveen / and

t + Lt. The CDF corresponding to Eq. 10.36 is defined as the maintainability

M( t1  :  I '  * ( t ' )  d t ' ,
J o

and the mean time to repair or MTTR is then

MTTR : f* ,*(r\ dr.
J O

Analogous to the derivations of the failure rate

define the instantaneous repair rate as

v(t)  A, t -  
P{t<- l< t  !  a ' t l  '

P{t> t} 
)

v(t) A,t is the conditional probability that the system will be

/ and t + L4 given that it is failed at ,. Noting that

M(t) : P{t= t} : I - P{t = t},

we then have

m ( t \v(t) :  |  _f f i

Equations 10.37 and 10.41 may be used to express the maintainability

and the PDF in terms of the repair rate. To do this, we differentiate Eq. 10.37

to obtain

d
( l) : =oru(r) ,

and combine this result with Eq. 10.41 to yield

v ( t ) : l r - M ( t ) l - ' + M U ) .
dt

Moving d,t to the left and integrating between 0 and t, we obtain

f t  ( I I ( l )  dM

J n r ( t ' )  d t '  :  
J u

(10.37)

M(t1 :

Finally, we may use Eq. 10.42

(10.38)

given in Chapter 6, we may

(10.3e)

repaired between

(10.40)

(10 .41)

(r0.42)

(10.43)

.  (10.45)

repair times as

(r0.44)

Evaluating the integral on the right-hand side and solving for the maintainabil-

iw. we have

Or'f
for

or'f

r - e x p [ - t ;

to express the

z(r) exp 
[- t;

v ( t ' )

PDF

v ( t ' )m ( t )  : (10.46)
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A great many factors go into determining both the mean time to repair
and the PDF, ?n(t) , by which the uncertainties in repair time are characterized.
These factors range from the ability to diagnose the cause of failure, on the
one hand, to the availability of equipment and skilled personnel to carry out
the repair procedures on the other. The determining factors in estimating
repair time vary greatly with the type of system that is under consid.eration.
This may be illustrated with the following comparison.

In many mechanical systems the causes of the failure are likely to be
quite obvious. If a pipe ruptures, a valve fails to open, or a pump stops running,
the diagnoses of the component in which the me chanical failure has occurred
may be straightforward. The primary time entailed in the repair is then deter-
mined by how much time is required to extract the component from the
system and install the new component, for each of these processes may involve
a good deal of metal cutting, welding, or other time-consuming procedures.

In contrast, if a computer fails, maintenance personnel may spend most
of the repair procedure time in diagnosing the problem, for it may take
considerable effort to understand the nature of the failure well enough to be
able to locate the circuit board, chip, or other component that is the cause.
Conversely, it may be a rather straightforward procedure to replace the faulty
component once it has been located.

In both of these examples we have assumed that the necessary repair
parts are available at the time they are needed and that it is obvious how
much of the system should be replaced to eliminate the fault. In fact, both
the availability of parts and the level of repair involve subtle economic trade-
offs between the cost of inventory, personnel, and system downtime.

For example, suppose that the pump fails because bearings have burned
out. We must decide whether it is faster to remove the pump from the line
and replace it with a new unit or to tear it down and replace only the bearings.
If the entire pump is to be replaced, on-site inventories of spare pumps will
probably be necessary, but the level of skill needed by repair personnel to
install the new unit may not be great. Conversely, if most of the pump failures
are caused by bearing failures, it may make sense to stock only bearings on
site and to repack the bearings. In such a case repair personnel r,vill need
different and perhaps greater training and skill. Such trade-offs are typical of
the many factors that must be considered in maintainability engineering, the
discipline that optimizes M(t) at a high level with as low a cost as possible.

IO.4 REPAIR: REVEALED FAILURES

In this section we examine systems for which the failures are revealed, so that
repairs can be immediately initiated. In these situations two quantities are of
primary interest, the number of failures over a given span of time and the
system availability. The number of failures is needed in order to calculate a
variety of quantities including the cost of repair, the necessary repair parts
inventory, and so on. Provided that the MTTR is much smaller than the MTTF,
reasonable estimates for the number of failures can be obtained using the
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Poisson distribution as in Chapter 6, and neglecting the system downtime for

repair. For availability calculations, repair time must be considered or else we

would obtain simply A(t) : 1. Ordinarily, this is not an acceptable approxima-

tion, for even small values of the unavailabitity Â( t) are frequently important,

whether they be due to the risk incurred through the unavailability of a

critical safety system or to the production loss during the downtimes of an

assembly line.
In what follows, two models for repair are developed to estimate the

availability of a system, constant repair rate, and constant repair time. It will

be clear from comparing these that most of the more important results depend

primarily on the MTTR, not on the details of the repair distribution.

Constant Repair Rates

To calculate availability, we must take the repair rate into account, even though

it may be large compared to the failure rate. We assume that the distribution

of times to repair can be characterized by a constant repair rate

(r0.47)

(10.48)

(10.4e)

v\t )  :  v.

The PDF of times to repair is then exponential,

and the mean time to repair uÏr|rl, 

" "

M T T R :  l / u .

Although the exponential distribution may not reflect the details of the distri-

bution very accurately, it provides a reasonable approximation for predicting

availabilities, for these tend to depend more on the MTTR than on the details

of the distribution. As we shall illustrate, even when the PDF of the repair is

bunched about the MTTR rather than being exponentially distributed, the

constant repair rate model correctly predicts the asymptotic availability.

Suppose that we consider a two-state system; it is either operational, state

l, or ir is failed, state 2. Then A(r) and ÂQ), the availability and unavailability,

are the probabilities that the state is operational or failed, respectively, at time

/, where /is measured from the time atwhich the system operation commences.

We therefore have the initial conditions A(0) : I and À10; : 0, and of course,

A ( t ) + 4 1 t 1  : 1 . (10.50)

A differential equation for the availability may be derived in a manner

similar to that used for the Poisson distribution in Chapter 6. We consider

the change in A(/) between /and t+ Lt. There are two contributions. Since

À A, is the conditional probability of failure during Af, given that the system

is available at /, the loss of availability during Ar is À Âr A(t). Similarly, the

gain in availability is equal to v L,t Â(t), where v L,tis the conditional probability

that the system is repaired during Af, given that it is unavailable at l. Hence



Maintained Ststems 305

it follows that

A ( t +  A t ; :  A ( t )  -  I L t A ( t )  *  v ' ' t Â ç t ' .

Rearranging terms and eliminating À(l) with Eq. 10.50, we obtain

(  10 .51)

A ( t + L t ) - A ( t )  / \  \
Lt 

:r:1 : - (À + u) A(t) + v.

Since the expression on the left-hand side is just the derivative
to time, Eq. 10.52 may be written as the differential equation,

d-OrO(t) :  -  (À + z) A(t) + v.

We now may use an integrating factor of e^*', along with

A ( 0 ) : l t o o b t a i n

(10 .52)

with respect

(10 .53)

the initial condition

(10 .54)

(10 .55)

infinity. Thus

(10.56)

repalr rates

Note that the availability begins at A(0) : I and decreases monotonically to
an asymptotic value 1/ (l + I/ z), which depends only on the ratio of failure
to repair rate. The interval availability may be obtained by inserting Eq. 10.54
into Eq 10.31 to yield

A(ty : #; #ru-.+v)t.

A*(T) :  - - ! -^ 
*  , .  ^+ru[t  

-  e- i , r - , ' i r '1,

and the asymptotic availability is obtained by letting T go to

A*(*) :  T+'A - r  u

Finally, note from Eqs. 10.54 and 10.56 that for constant

A * ( * )  :  Â ( æ ) . (10 .57)

Since, in most instances, repair rates are much larger than failure rates, a
frequently used approximation comes from expanding Eq. 10.56 and deleting
higher terms in À,/ u. We obtain after some algebra

A * ( * ) : l _ t r / u .  ( l o . b 8 )

The ratio in Eq. 10.56 may be expressed in terms of the mean time be-
tween failures and the mean time to repair. Since MTTF : L/ ̂  and
M T T R :  I / u , w e  h a v e

MTTF (10.5e)A ( - )  :
MTTF + MTTR.

This expression is sometimes used for the availability even though neither
failure or repair is characterized well by the exponential distribution. This is
often quite adequate, for, in general, when availability is averaged over a
reasonable period 7 of time, it is insensitive to the details of the failure
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or repair distributions. This is indicated for constant repair times in the
following section.

D(AMPLE IO.4

In the following table are times (in days) over a 6-month period at which failure of a

production line occurred (17) and times (t,) at which the plant was brought back on

line following repair.

i t 1i l,i i tt; t,;

1 12.8 13.0 6 56.4 57.3
2 r4.2 r4.8 7 62.7 62.8
3 25.4 25.8 8 137.2 734.9
4 31.4 33.3 I 146.7 150.0
5 35.3 35.6 l0 177.0 777.1

(a) Calculate the 6-month-interval availability from the plant data.

(ô) Estimate MTTF and MTTR from the data.

(c) Estimate the interval availability using the results of ô and Eq. 10.59, and compare

this result to that of a.

Solution During the 6 months (182.5 days) there are 10 failures and repairs.

( a) From the data we find that À1 T) is just the fraction of that time for which the

system is inoperable. Thus we find that

-  I  
l o

A ( T )  :  i . " )  t t , , -  t 1 i )
L . ,

:  ^ L ( 0 . 2 + 0 . 6 + 0 . 4 +  1 . 9 + 0 . g + 0 . 9 + 0 . 1  +  2 . 7  + 3 . 3 + 0 . 1 )
1 8 2 . 5  '

i lr l :  o.o63o

A(T\  -  1  -  0 .063 :0 .937.

(ô) Taking 14 : 0, we first estimate the MTTF and MTTR from the data:

M T T F : + Ë  ( t r i _  t , i _ t )
N =  ' .

:  +  (12.8 + 1.2 + 10.6 + 5.6 + 2.0 + 20.8 + 5.4

+ 68.4 + 11.8 + 27.0)

MTTF : lo-.L 16b.6 : 16.56.

MrrR:+ j  ( t , , -  t , , )  :++Ë, , , , -  182 '5 ' ' - '
- { v r = l  

t t '  
7 0 T u o r ' "  

l " ) :  
1 0  

A \ I )

:  1 .1b days.
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( c )  A ( T )
I

,  Æ : 0 . 9 3 5 .
r -1 

:-;=
1 b . 5

u: -
u *  À , . MTTR

r -r 
M-I*rF

Constant Repair Times

In the foregoing availability model we have used a constant repair rate, as we
shall also do throughout much of the remainder of this chapter. Before
proceeding, however, we repeat the calculation of the system availability using
a repair model that is quite different; all the repairs are assumed to require
exactly the same time, r. Thus the PDF for time to repair has the form

m ( t )  :  6 ( t  -  r ) , (10.60)

where â is the Dirac delta function discussed in Chapter 3. Although the
availability is more difficult to calculate with this model, the result is instructive.
Itwil l be seen thatwhereas the details of the time dependence of A(l) differ,
the general trends are the same, and the asymptotic value is still given by
Eq.  10 .59 .

A differential equation may be obtained for the availability, with the initial
condition A(0) : 1. Since all repairs require a time r, there are no repairs
for I ( r. Thus instead of Eq. 10.51, we have only the failure term on the
right-hand side,

which.".,.,o"io'i :î: -J"::*"lîiil; 
0 = '�= r' ( 1 0 . 6 1 )

(10.62)

(10 .63)

(10.64)

o!ror/) 
: - À"A(t), o s t< r.

For times greater than r, repairs are also made; the number of repairs
made during Ar is just equal to the number of failures during Lt at a time r
earlier: À L^t A(t - r). Thus the change in availability during Ar is

A ( t  +  A t ;  :  A ( t )  -  ^  L t A ( r )  +  À  L t A ( t  -  r ) ,  t )  r ,

which corresponds to the differential equation

d-o rO( t )  :  - ^A( t )  +  ÀA( t -  r ) ,  t )  r .

Equations 10.63 and 10.64 are more difficult to solve than those for the
constant repair rate. During the first interval, 0 s t = T, we have simply

A ( t ) : t - o t ,  0 = t < r . (10.65)

For I ) r, the solution in successive intervals depends on that of the preceding
interval. To illustrate, consider the interval ly'r< I = (l/+ 1)r. Applying an
integrating factor e^'to Eq. 10.64, we may solve for A(t) in terms of A( t - r):
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A(t)  :  A(Nr) e-^( t - ' \ - r t  *  f : .  dt '  Àe-^( ' - ' ' )A(t '  -  r ) ,
J 'vr

(r0.66)

For l/: 1, we may insert Eq. 10.65 on the right-hand side to obtain

A( t1  :  e -^ '  +  À( t  -  r )e -À( t * ' ) ,  r  3  t  =  2 r .

ly ' r< r= ( ,^/+ 1)2.

(  10.67)

For l/: 2 there will be three terms on the right-hand side, and so on. The

general solution for arbitrary l/ appears quite similar to the Poisson distri-

bution:

A ( t )  : j  [ À ( t  - " n  r ) ] '  
e - ^ ( t - n r t ,  N r <  , <  ( ^ / +  1 )  r .  ( 1 0 . 6 8 )

7--,, n!

The solutions for the constant repair rate and the constant repair time

models are plotted for the point availabil ity A(r) in Fig. 10.5 for r: l/v.

Note that the discrete repair time leads to breaks in the slope of the availability

curve. whereas this is not the case with the constant failure rate model. How-

ever, both cuwes follow the same general trend downward and converge to

the same asymptotic value. Thus, if we are interested only in the general

characteristics of availability curves, which ordinarily is the case, the constant

repair rate model is quite adequate, even though some of the structure carried

by a more precise evaluation of the repair time PDF may be lost. Moreover,

to an even greater extent than with failure rates, not enough data are available

in most cases to say much about the spread of repair times about the MTTR.

Therefore, the single-parameter exponential distribution may be all that can

be justified, and Eq. 10.59 provides a reasonable estimate of the availability.

IO.5 TESTING AND REPAIR: UNREVEALED FAILURES

As long as system failures are revealed immediately, the time to repair is the

primary factor in determining the system availability. \Arhen a system is not in

continuous operation, however, failures may occur but remain undiscovered.

This problem is most pronounced in backup or other emergency equipment

that is operated only rarely, or in stockpiles of repair parts or other materials

that may deteriorate with time. The primary loss of availability then may be

r 2 1 3 : , 4 t

FIGURE 10.5 Availability for different repair models.

Constant repair rate
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due to failures in the standby mode that are not detected until an attempt is
made to use the system.

A primary weapon against these classes of failures is periodic testing. As
we shall see, the more frequently testing is carried out, the more failures will
be detected and repaired soon after they occur. However, this must be weighed
against the expense of frequent testing, the loss of availability through down-
time for testing, and the possibility of excessive component wear from too-
frequent testing.

Idealized Periodic Tests

Suppose that we first consider the effect of a simple periodic test on a system
whose reliability can be characterized by a constant failure rate:

R(t)  :  o- t t (10.6e)

The first thing that should be clear is that system testing has no positive
effect on reliability. For unlike preventive maintenance the test will only catch
failures after they occur.

Testing, however, has a very definite positive effect on availability. To see
this in the simplest case, suppose that we perform a system test at time interval
Zo. In addition, we make the following three assumptions: (l) The time
required to perform the test is negligible, (2) the time to perform repairs is
negligible, and (3) the repairs are carried out perfectly and restore the system
to an as-good-as-new condition. Later, we shall examine the effects of relaxing
these assumptions.

Suppose that we test a system with reliability given by Eq. 10.69 at time
interval Tn. As indicated, if there is no repair, the availability is equal to the
reliabilitv. Thus, before the first test.

A( t )  :  À( r ) ,  0  =  t  I  T , t . (  10.70)

Since the system is repaired perfectly and restored to an as-good-as-new state
at t: Tu, we wil l have R(fr) : 1. Then since there is no repair between fry
and 2T0, the availability will again be equal to the reliability, but now the
reliabil iq' is evaluated at t - To:

A ( t ) : R ( t - T ù ,  n = t < 2 n . ( 1 0 . 7 1 )

This pattern repeats itself as indicated in Fig. 10.6. The general expression is

A(t) : R(t - l/20), l/fO = t < (N + 1) fo. (10.72)

For the situation indicated in Fig. 10.6, the interval and the asymptotic
availability have the same value, provided that the integral in Eq. 10.31 is
taken over a multiple of ft, say mTy. We have

àÏ 'ot"
A*(mh) : 

#,,[ ' : ' , '  ort) dr: dt. ( 10.73)
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2To 310

FIGURE 10.6 Availabil iry with idealized perioclic

testing for unrevealed failures.

Since the interval availability is independent of the number of intervals over

which A*(T) is calculated, so will the asymptotic availability A*(oo):

(r0.74)

The effect of the testing interval on availability may be seen by combining

Eqs. 10.69 and 70.74. We obtain

A*(*)  : l im 
#,1Ï 'AQ) 

dt :  
àÏ :  

AQ) dt .

A * ( * ) : # ( r - e - À ? i , ; . (10 .75)

Ordinarily, the test interval would be small compared to the MTTF: ÀT0 <<

1. Therefore, the exponential may be expanded, and only the leading terms

are retained to make the approximation

A * ( * ) : 1 - * I T , , . (10 .76)

D(AMPLE 10.5

Annual inspection and repair are carried out on a large group of smoke detectors of

rhe same design in public buildings. It is found that 75Vo of the smoke detectors are

not functional. If it is assumed that the failure rate is constant,

(a) In what fraction of fires will the detectors offer protection?

(ô) If the smoke detectors are required to offer protection for at leastggVo of fires,

how frequently must inspection and repair be carried out?

Solution With inspection and repair at interval Tn, the fraction of detectors that

are operational at the time of inspection will be

R _ e_l.t , . , :  0.9b,

Then Àîr :  - ln(0.85) :  0.162. Since ï :  1 year, À : Q-l$l/year.



Maintained Systems 311

(a) If we assume that the fires are uniformly distributed in time, the fractional protec-
tion is-just equal to the interval availability; from Eq. 10.75

A * ( - )  :  +  ( I  -  e - ) t t , , 1 :  ^ *  ( l  -  0 . 8 5 )  :  0 . 9 2 6 .
À 7 ; ,  '  0 . 1 6 2  ' -

(ô) For this high availability the rare-event approximation, Eq. i0.76, may be used:

0 . 9 9 : A x ( - ) - l - È ^ n .

Thus from Eq. 10.76,

^:4L{a9l:ffi#q :0.\23year

:  0.123 X 12 months = 1à months.

Real Periodic Tests

Equation 10.76 indicates that we may achieve availabilities as close to one as
desired merely by decreasing the test interval n. This is not the case, however,
for as the test interval becomes smaller, a number of other factors-test time,
repair time, and imperfect repairs-become more important in estimating
availability.

When we examine these effects, it is useful to visualize them as modifica-
tions in the curve shown in Fig. 10.6. The interval or asymptotic availability
may be pictured as proportional to the area under the curye within one test
interval, divided by T.Thus we may view each of the factors listed earlier in
terms of the increase or decrease that it causes in the area under the curve.
In particular, with reasonable assumptions about the ratios of the various
parameters involved, we may derive approximate expressions similar to Eq.
10.76 that are quite simple, but at the same time are not greatly in error.

Consider first the effect of a nonnegligible test time, /,. During the test
we assume that the system must be taken off line, and the system has an
availability of zero during the test. The point availability will then appear as
the solid line in Fig. 10.7. Provided that we again assume that ÀTo ( 1, so
that Eq. 10.76 holds, and that tt<< T6, the test time, is small compared to
the test interval, we may approximate the contribution of the test to system
downtime as t,/To. The availability indicated in Eq. 10.76 is therefore de-
creased to

A * ( * )  - l - L À T o tt- n (r0.77)

We next consider the effect of a nonzero time to repair on the availability.
The probability of finding a failed system at the time of testing is just one
minus the point availability at the time the test is carried out. For small
Tç this probabiliry may be shown to be approximately ÀTo. Since l/v is the
mean time to repair, the contribution to be unavailability over the period T6
is À,To/v, or dividing by the interval To, we find, as in Eq. 10.58, the loss of
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o r o 2To 3To

FIGURE 10.7 Availability with realistic periodic

testing for unrevealed failures.

availability to be approximately À/ u.We may therefore modify our availability

by subtracting this term to yield

A*(*)-r-t^n-+-+

fra.(*) : -â'r + fi: o'
The optimal test interval is then

(10 .78)

The effect of this contribution to the system unavailability is indicated by the

dotted l ine in Fig. 10.7.
Examination of Eq. 10.78 is instructive. Clearly, decreases in failure rate

and in test time l, increase the availability, as do increases in the repair rate

v. It may also be shown that the more perfect the repair, the higher the

availability. Decreasing the test interval, however, may either increase or de-

crease the availability, depending on the value of the other parameters. For,

as indicated in Eq. 10.78, it appears in both the numerator and the denomina-

tor of terms.
Suppose that we differentiate Eq. 10.78 with respect to To and set the

result equal to zero in order to determine the maximum availability:

(10.7e)

n :

Substitution of this expression back into Eq. 10.78 yields a maximum availabil-

ity of

(+)"' (10.80)

(10 .81)A * ( * ) - 1 -  ( Z À , t , ) r , r - À

If the test interval is longer than Eq. 10.80, undetected failures will lower

availability. However, if a shorter test interval is employed, the loss of availability

during testing will not be fully compensated for by earlier detection of failures.
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The test interval should increase as the failure rate decreases, and decrease

as the testing time can be decreased. Other trade-offs may need to be consid-

ered as well. For example, will hurrying to decrease the test time increase the

probability that failures will be missed?

E)(AMPLE 10.6

A sulfur dioxide scrubber is known to have a MTBF of 137 days. Testing the scrubber

requires half a day, and the mean time to repair is 4 days. (a) Choose the test period

to maximize the availability. (ô) What is the maximum availability?

Solution (a) From Eq. 10.80, with MTBF : I/À,

Tu:  (2 t ,  MTBF)t tz  :  (2  X 0.5  X 137) t /2  -  11.7  days.

(ô)  From Eq.  10.81,

A* ( * ) -1_ (# ) ' , ' _

A* ( * ) -1 - (z+r ) ' " -

MTBF'

4

IZ7 :0 .885 .

10.6 SYSTEM AVAII-ABILITY

Thus far we have examined only the effects on availability of the failure and
repair of a system as a whole. But just as for reliability, it is often instructive
to examine the availability of a system in terms of the component availabilities.
Not only are data more likely to be available at the component level, but the
analysis can provide insight into the gains made through redundant configura-
tions, and through different testing and repair strategies.

Since availability, like reliability, is a probability, system availabilities can
be determined from parallel and series combinations of component availabili-
ties. In fact, the techniques developed in Chapter 9 for combining reliabilities
are also applicable to point availabilities, but only provided that both the
failure and repair rates for the components are independent of one another.
If this is not the case, either the B-factor method described in Chapter 9 or
the Markov methods discussed in the following chapter may be required to
model the component dependencies. In this chapter we consider situations
in which the component properties are independent of one another, deferring
analysis of component dependencies to the following chapter.

In what follows we estimate point availabilities of systems in terms of
components. T'he appropriate integral is then taken to obtain interval and
asymptotic availabilities. \Arhen the component availabilities become time-
independent after a long period of operation, steady-state availabilities may
be calculated simply by letting I -+ oo in the point availabilities. In testing or
other situations in which there is a periodicity in the point availability, the
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point availability must be averaged over a test period, even though the system

has been in operation for a substantial length of time.V.ry often when repair

rates are much higher than failure rates' simpli$ting approximations' in which

À/ visassumed to be very small, are of sufficient accuracy and lead to additional

physical insight in comparing systems.
For systems without redundancy the availability obeys the product law

introduced in Chapter 9. Suppose that we let X represent the failed state of

the system, and X the unfailed or operational state of the system. Similarly,

let X; represent the failed state of component i, and X, the unfailed state of

the same component. In a nonredundant system, all the comPonents must

be available for the system to be available:

X :  X r a  X ,  n . . .  À  X r .  ( 1 0 ' 8 2 )

Since the availability is defined as just the probability that the system is avail-

able, we have

A ( t )  : il
i

A , ( t ) . (10 .83)

where the A;(l) are the independent component availabilities.

For redundant (i.e., parallel) systems, all the components must be unavail-

able if rhe system is to be unavailable. Thus, if X signifies a failed system and

X; the failed state of component i, we have

X : X r a x r n X 3 n . . . À X * .

Since the unavailability is one minus the availabiliq', we have

(10.84)

I  -  A ( r )  :  [ 1  -  A t  ( r ) ] t l  -  A r ( r ) l  . . .  t l  -  A * ( t ) J ,  ( 1 0 . 8 5 )

or more compactly,

A ( t 1  : 1 - [ 1  -  A , ( r ) ] . ( r0.86)

Comparing Eqs. 10.83 and 10.86 with Eqs. 9.1 and 9.38 indicates that the

same relationships hold for point availabilities as for reliabilities. The other

relationships derived in Chapter 9 also hold when the assumption that the

components are mutually independent is made throughout.

Revealed Failures

Suppose that we now apply the constant repair rate model to each component.

According to Eq. 10.54, the component availabilities are then

n
I

A,(t) : 
# 

* 
h,r-(À,+v,)t

(10.87)

This relationship may be applied in the foregoing equations to estimate sys-

tem availabiliw.



Combining this expression with Eq. 10.83, we have for a nonredundant system

If we are interested only in asymptotic availability, we may
second term of Eq. 10.87 to obtain

A,(*) :# , .

,{(*) : fJ Y,' , .- i  v , *  À ,

A(*) ='ry (' - i)

A ( * ) - l - > I
l u i

. { ( * ) - r - ( ' + ) '
\ À +  u / '

If we consider the case where v )) À, then

/ ' \ - \ '
A ( o o ) - r - { 4 )

\ u /
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delete the

( 1 0 . 8 8 )

(10.8e)

(10.e0)

availability of

(10 .e1 )

(10.e2)

(10.e3)

(10.e4)

( 10.e5)

If we further make the reasonable assumption that repair rates are large
compared to failure rates, ui)) À;, then

À '
A , ( * ) : 1 - ; ,

with this expression substituted into Eq. 10.83 to esrimare rhe
a nonredundant svstem. we obtain

But since we have already deleted higher-order terms in the ratios Ài/ v;, for
consistency we also should eliminate them from this equation. This yields

Thus the rapid deterioration of the availability with an increased number of
components is seen. If we further assume that all the repair rates can be
replaced by an average value ui : t), Eq. 10.92 becomes

where

A ( * ) . = 7 - À " / v ,

À : ) À , .
i

Therefore, we obtain the same result as given for the system as a whole,
provided that we sum the component failure rates as in Chapter 6.

The effect of redundancy may be seen by inserting Eq. l0.BB into Eq.
10.86, the availability of a parallel system. For l/ identical units wirh À, : tr
and u, : u, we have

(  10.e6)
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or correspondingly for the unavailability,

A ( * ) (  10.e7)

The analogy to the reliability of parallel systems is clear; both unreliability
and unavailability are proportional to the N'h power of the failure rate. The

foregoing relationships assume that there are no common-mode failures. If

there are, the B-factor method of Chapter 9 may be adapted, putting a fictitious

component in series with a failure and a repair rate for the common-mode
failure. Once again the presence of common-mode failure limits the gains

that can be made through the use of parallel configurations, although not as

severely as for systems that cannot be repaired. Suppose we consider as an

example l/units in parallel, each having a failure rate À divided into indepen-

dent and common-mode failures as in Eqs. 9.24 through 9.30. We have

A ( * )  :  { 1  
-  l l  -  A , ( o o ) l N } A . ( o o ) , (r0.e8)

where Al are the availabilities with only the independent failure rate À7 taken

into account, and A, is the common-mode availability with failure rate À.. We

assume that both common and independent failure modes have the same

repair rate. Thus

l -  / ^ r  \ ' l  y
zr ( * )  :  

L l  
-  

\ ^ , .  , /  )  n j  "  
( lo 'ee)

This may also be written in terms of B factors by recalling that À7 = (1 - B)À
and À. = pÀ.

E>(AMPLE IO.7

A system has a ratio of u/ À : 100. \iVhat will the asymptotic availability be (a) for the

system, (ô) for two of the systems in parallel with no common-mode failures, and (c)

for two systems in parallel with B : 0.2?

Solution (o) A(*) : ffiu 
: 0.990.

/  t  \ : r
(b )  A ( * )  -  I  -  

{  = -= -^  )  :  0 .99990 .
\ t  +  1 0 0 /

4 :  r I  -  0 . 2 )  - l -  : 0 . 8  x  l o - ,
r , ,  \^  " ' - '  

100

x 10-3.

Therefore, from Eq. 10.99,

- (i)'

( ù  \ r :  ( 1  -  P )

\ r :  e L :  2

[ ' -
A ( o o ) : (#H**)'] ,",,+*-:oeeTe
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Unrevealed Failures

In the derivationsjust given it is assumed that component failures are cletected

immediately and that repair is initiated at once. Situations are also encoun-

tered in which the component failures go undetected until periodic testing

takes place. The evaluation of availability then becomes more complex, for

several testing strategies may be considered. Not only is the test interval Ts

subject to change, but the testing may be carried out on all the components

simultaneously or in a staggered sequence. In either event the calculation of

the system availability is now more subtle, for the point availabilities will have

periodic structures, and they must be averaged over a test period in order to

estimate the asymptotic availability.
To illustrate, consider the effects of simultaneous and staggered testing

patterns on two simple component configurations: the nonredundant config-

uration consisting of nvo identical components in series, and the completely
redundant configuration consisting of nvo identical components in parallel.

For clarity we consider the idealized situation in which the testing time and

the time to repair can be ignored. The failure rates are assumed to be constant.

We begin by letting Ar(t) and A2(/) be the component point availabilities.

Since the testing is carried out at intervals of 70, we need only determine the

system point availability A(r) benveen f : 0 and , : Tç1, for the asymptotic

mission availability is then obtained by averaging A(/) over the test period:

A* ( * )  :  A*  (To)  : ( r0 .100)il:AU) dt'

Simultaneous Testing
t : 0 , n , 2 T 0 , . . . ,

and

When both components are tested at the same time,
the point availabilities are given by

A t ( t \ : e - À ' ,  0 = t < n ,

A r ( t ) : e - À ' ,  0 = t < " 0 .

For the series system we have

A ( t )  :  A ' ( t )  A r ( t ) ,

( 1 0 . 1 0 1 )

(10 .102)

(10 .103)

(10.104)

(10 .105)

(10 . r06)

or

For the

or

parallet system :t :r;,:'^"

0 = t < r o .

Ar( t )  -  At ( t )  A2Q),A( t )  :  A ' ( t )  +

A ( t )  : z e - ^ t - e - z ^ t , o < t < n .
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The availabilities are plotted as solid lines in
The asymptotic availability obtained from Eq.

Ar ( r , )  : #0_  e

whereas that of the parallel system is

AzQ) :

Fig. 10.8a and b, respectively.
10.100 for the series system is

(10 .107)

(10. r08)

at staggered

n , 2 T 0 , . . . ,
. . The point

(10.10e)

-  t l  lo )

1
Ai(n --  

,*r(3 
-  4e-trn I  n-ztro7.

Staggred Testing We now consider the testing of components
intervals of n/2. We assume that component I is tested at 0,
whereas component 2 is tested at the halÊintervals To/2,3T0/2, . .
availabilities within any interval after the first one are given by

A t ( t ) : e - À t ,  0 < f  < n ,

and

n
T =  t <  n '

f'"0 [-^('.i)]
l..o [-^(,-i)]

T,,
0  =  t . T ,

( 1 0 . 1 1 0 )

To determine the point system availability, we combine these two equations
with Eqs. 10.103 and 10.105, respectively, for the series and parallel configura-
tions. The results are plotted as dotted lines in Figs. 10.8a and 10.8ô.

To calculate the asymptotic availabilities for staggered testing, we first
note from Fig. 10.8 that the system point availabilities for both series and
parallel situations have a periodicity over the halÊintervals n/2. Therefore,
instead of averaging A(/) over an entire interval as in Eq. 10.100, we need to

2To 3?o o 2To

t t

/c/ Series (b) Parallel

FIGURE 10.8 Availability for a two-component system with unrevealed failures.

{

To

Simultaneous testing
Staggered testing

Key:
Simultaneous testing
Staggered testing
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TABLE l0.l Availability A*(?n) for Unrevealed Failures

Testing Series system Parallel system

Simultaneous
Staggered

1 - À T n + 3 ( ^ r n ) '
I  -  Àro + Èâ (Àro)'

I  -  à (ÀTo),

|  -  & (À"0),

average it over only the halÊinterval. Hence

For the series configuration we calculate At(t)Ar(/) from Eqs. 10.109 and
10.1 10, substitute the result into Eq. 10.I I I , and carry out the integral to obtain

A*(ro) : 
+,1:'' A(t) dt.

Ar ( rr) : 
,+(e-Àrutz 

- e-3^ro/2) .

1
Ai (n) : 

tr(Z 
- 2e-t7i - e-^r0/2 1 t-3Àro/2).

Similarly, for the parallel configuration we form A(t) by substituting Eqs.
10.109 and 10.110 into Eq. 10.105, combine the resul twi th Eq. 10.111, and
perform the integral to obtain

( 1 0 . l l l )

(  1 0 . 1 1 2 )

( 1 0 . 1 1 3 )

Although the point availabilities plotted as dotted lines in Fig. 10.8 are
interesting in understanding the effects of staggering on the availability, the
asymptotic values are often more useful, for they allow us to compare the
strategies with a single number. Evaluation of the appropriate expressions
indicates that in the nonredundant (series) configuration higher availability
is obtained from simultaneous testing, whereas staggered testing yields the
higher availability for redundant (parallel) configurations.

This behavior can be understood explicitly if the expressions for the
asymptotic availability are expanded in powers of À70, since for small failure
rates the lowest-order terms in À70 will dominate the expressions. The results
of such expansions are presented in Table 10.1.

The effects of staggered testing become more pronounced when repair
time, testing time, or both are not negligible. We can see, for example, that
even for a zero failure rate, the testing time /, will decrease the availability of
the series system by t,/ To if the systems are tested simultaneously. If the tests
are staggered in the series system, the availability will decrease by zh/n.
Conversely, in the parallel system simultaneous testing with no failures will
decrease the availability by t,/ T6, but if the tests are staggered so that they
do not take both components out at the same time, the availability does
not decrease.

D(AMPLE IO.8

A voltage monitor achieves an average availability of 0.84 when it is tested monthly;
the repair time is negligible. Since the 0.84 availability is unacceptably low, two monitors
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are placed in parallel. \Arhat will the availability of this twin system be ( a) if the monitors

are iested monthly at the same time, ( à) if they are tested monthly at staggered intervals?

Solution First we must find ÀTs. Try Eq. 10.76, the rare-event approximation:

0.84 : 1 - lÀTo; À'llo : 0.32.

This is too large for the exponential expansion to be used. Therefore, we use Eq.

I0.75 instead. We obtain a transcendental equation

0.84:# , t  -  e -^7 ' , , ) .

Solving iteratively, we find that

Therefore,

ÀTç, x .36'-

(a) From Eq. 10.108 we find for simultaneous testing

I
Af  (1 , , ) :  

t t  0 j6  
Q -  4e 036 a , -2x0 'o)  :  0 '967.

(t,) From Eq. 10.113 we find for staggered testing

1
AT(T, , ) :  

ô ;  
(2  -  2e- '20 -  e-036/2 I  u-3x0ta/21:  0 .978.

These results can be generalized to combinations of series and parallel

configurations. However, the evaluation of the integral in Eq. 10.100 over the

test period may become tedious. Moreover, the evaluation of maintenance,

testing, and repair policies become more complex in real systems that contain

combinations of revealed and unrevealed failures, large numbers of compo-

nents, and dependencies between components. Some of the more common

types of clependencies are included in the following chapter.
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Exercises

l0.l Without preventive maintenance the reliability of a condensate demin-
eralizer is characterized by

l '  ^ ( t ' \  d t '  :  1 . 2  x  l o - 2 t  +  1 . 1  x  1 o - e r 2
J o

where / is in hours. The design life is 10,000 hr.

(a) What is the designJife reliability?(b)::iï':Jlâll#ïi:;"*:iî:;ilï*"ï:ffi*ffi1:îï:î".1:
formed to achieve a design-life reliability of at least 0.95?

(c) Repeat b for a target reliability of at least 0.975.

10.2 Discuss under what conditions preventative maintenance can increase
the reliability of a simple active parallel system, even though the compo-
nent failure rates are time-independent. Justify your results.

10.3 Repeat b of Exercise l0.l assuming that there is a l7o probability that
faulty overhaul will cause the demineralizer to fail destructively immedi-
ately following start-up. Is it possible to achieve the 0.95 reliability? If
so, how many overhauls are required?

10.4 Derive an equation analogous to Eqs. 10.27 and 10.28 that includes a
probabiliV Pr of independent maintenance failure and a probability p,
of common-mode maintenance failure.

10.5 Suppose that a device has a failure rate of

À(r ;  :  (0.015 + 0.020 /year,

where I is in years.

(a) Calculate the reliability for a 1-year design life assuming that no
maintenance is performed.

(b) Calculate the reliability for a1-year design life assuming that annual
preventive maintenance restores the system to an as-good-as-new
condition.

(c) Repeat ô assuming that there is a 57o chance that the preventive
maintenance will cause immediate failure.

10.6 A machine has a failure rate given by À( t) : at. Without maintenance
the reliability at the end of one year is rR(l) : 0.86.

(a) Determine the value of " a" .

(b) If as-good-as-new preventive maintenance is performed at two-
month intervals, what will the one-year reliability be?
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(c) If in b there is a27o probability that each maintenance will cause
system failure, what will be the value of the reliability at the end
of one year?

10.7 Suppose that the times to failure of an unmaintained component may
be given by a Weibull distribution witl-t m: 2. Perfect preventive mainte-
nance is performed at intervals T: 0.250.

(a) Find the MTTF of the maintained system in terms of 9.

(b) Determine the percentage increase in the MTTF over that of the
unmaintained system.

10.8 Solve Exercise 10.7 approximately for the situation in which T << 0.

10.9 The reliability of a device is given by the Rayleigh distribution

l?(r) : ,-\t/o)'.

The MTTF is considered to be unacceptably short. The design engineer
has two alternatives: a second identical system may be set in parallel
or (perfect) preventive maintenance may be performed at some interval
7. At what interval Z must the preventive maintenance be performed
to obtain an increase in the MTTF equal to what would result from
the parallel configuration without preventive maintenance? (l/o/e: See
the solution for Exercise 9.19.)

10.10 Show that preventive maintenance has no effect on the MTTF for a
system with a constant failure rate.

10.11 The following table gives a series of times to repair (man-hours) ob-
tained for a diesel engine.

11.6 7  .9  27 .7  17.8 8 .9  22.5
3.3 33.3 7b.3 9.4 28.5 5.4

10.3 1 .1  7 .8  41.9 13.3 5 .3

(a) Estimate the MTTR.

(b) Estimate the repair rate and its 90Vo confr.dence interval assuming
that the data is exponentially distributed.

10.12 Find the asymptotic availabiliry for the systems shown in Exercise 9.38,
assuming that all the components are subject only to revealed failures
and that the repair rate is z. Then approximate your result for the case
u/ À. >> L.

10.13 A cornputer has an MTTF : 34 hr and an MTTR : 2.5 }i'r.

(a) What is the availability?

(b) If the MTTR is reduced to 1.5 hr, what MTTF can be tolerated
without decreasing the availability of the computer?
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1 0. 1 4 A gen erator has a lon g-term availab ility of 7 ZVo . Thr ough a managemen t
reorganization the MTTR (mean time to repair) is reduced to one half
of its former value. \Arhat is the generator availability following the
reorganization?

10.15 A system consists of nvo subsystems in series, each with v/ À, : 102 as
its ratio of repair rate to failure rate. Assuming revealed failures, what
is the availability of the system after an extended period of operation?

10.16 A robot has a failure rate of 0.05 hr-t. What repair rate must be achieved
if an asymptotic availability of 957o is to be maintained?

10.17 Reliability testing has indicated that without repair a voltage inverter
has a Gmonth reliability of 0.87; make a rough estimate of the MTTR
that must be achieved if the inverter is to operate with an availability
of 0.95. (Assume revealed failures and a constant failure rate.)

10.18 The control unit on a fire sprinkler system has an MTTF for unrevealed

failures of 30 months. How frequently must the unit be tested /repaired
if an average aaailability of ggTo is to be maintained.

10.19 A device has a constant failure rate. and the failures are unrevealed. It
is found that with a test interval of 6 months the interval availability is
0.98. Use the "rare-event" approximation to estimate the failure rate.
(Neglect test and repair times.)

10.20 Start ingwithEqs. l0. l0Tandl0. l l2,der ivetheresul tsforser iessystems
with simultaneous and staggered testing given in Table 10.1.

10.21 The following table gives the times at which a system failed (ry) and
the times at which the subsequent repairs were completed (f,) over a
2000-hr period.

t, L r

rr27
1236
r297
t372
r424
l53 l
1639
1789
1796
1859
r975

L ftl

5 l
90

405
507
535
615
751
760
835
881
933

1072

52
q9

4r2
529
539
616
752
766
839
884
g4t

1091

1134
t265
1303
r375
T439
r552
1667
t795
lBOB
1860
r976

(a) Calculate the average availability over
t s t^u* directly from the data.

the time interval 0



324 Introduction to Reliubility Engineenng

(b) Assuming constant failure and repair rates, estimate À and ;r, from

the data.

(c) Use the values of À and g, obtained in ô to estimate A(t) and the

time-averaged availability for the interval 0 = t s /,,.,"*. Compare

your results to a.

10.22 Starting with Eqs. 10.108 and 10.113, derive the results for parallel

systems with simultaneous and staggered testing given in Table 10.1.

10.23 An auxiliary feedwater pump has an avaTlability of 0.960 under the

following conditions: The failures are unrevealed; periodic testing is

carried out on a monthly (30-day) basis; and testing and repair require

that the system be shut down for 8 hr.

(a) What will the availability be if the shutdown time can be reduced

to 2 hr?

(b) \A4rar will the availability be if the tests are performed once per

week. with the 8-hr shutdown time?

(c) Given the 8-hr shutdown time, what is the optimal test interval?

10.24 A pressure relief system consists of two valves in parallel. The system

achieves an availability of 0.995 when the valves are tested on a staggered

basis, each valve being tested once every 3 months.

(a) Estimate the failure rate of the valves.

(b) If the test procedure were relaxed so that each valve is tested once

in 6 months, what would the availability be?

10.25 In annual test and replacement procedures B7o of the emergency respi-

rators at a chemical plant are found to be inoperable.

(a) \Arhat is the availability of the respirators?

(b) How frequently must the test and replacement be carried out if an

availability of 0.99 is to be reached? (Assume constant failure rates.)

10,26 Consider three units in parallel, each tested at equally staggered inter-

vals of Tn. Assume constant failure rates.

(a) What is A(r)?

(b)  P lo t  A( r ) .

(c)  What is A*(fo)?

(d) Find the rare-event approximate for A*(To).

10.27 Unrevealed bearing failures follow a Weibull distribution with m : 2
and 0: 5000 operating hours. How frequently must testing and repair

take place if bearing availability is to be maintained at least gbVo?

10.28 The reliability of a system is represented by the Rayleigh distribution

R( f ;  :  e - ( t / o ) '
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Suppose that all failures are unrevealed. The system is tested and re-
paired to an as-good-as-new condition at intervals of 7e. Neglecting the
times required for test and repair, and assuming perfect maintenance:

(a) Derive an expression for the asymptotic availability axloo;.
(b) Find an approximation for A*(oo) when n << e.
(c )  Eva lua te  A* ( * )  fo r  Tr /0 :  0 .1 ,0 .5 ,  1 .0 ,  and 2 .0 .
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II.I INTRODUCTION

In reliability analysis perhaps the most pervasive technique is that of estimating
the reliability of a system in terms of the reliability of its components. In
such analysis it is frequently assumed that the component failure and repair
properties are mutually independent. In reality, this is often not the case.
Therefore, it is necessary to replace the simple products of probabilities with
more sophisticated models that take into account the interactions of compo-
nent failures and repairs.

Many component failure interactions-as well as systems with indepen-
dent failures-may be modeled effectively as Markov processes, provided that
the failure and repair rates can be approximated as time-independent. Indeed,
we have already examined a particular example of a Markov process; the
derivation of the Poisson process contained in Chapter 6. In this chapter we
first formulate the modeling of failures as Markov processes and then apply
them to simple systems in which the failures are independent. This allows us
both to veri$z that the same results are obtained as in Chapter 9 and to
familiarize ourselves with Markov processes. We then use Markov methods to
examine failure interactions of two particular types, shared-load systems and
standby systems, and follow with demonstrations of how to incorporate such
failure dependencies into the analysis of larger systems. Finally, the analysis
is generalized to take into account operational dependencies such as those
created by shared repair crews.

II.2 MARKOV ANALYSIS

We begin with the Markov formulation by designating all the possible states
of a system. A state is defined to be a particular combination of operating

326



Failure Interactions 327

TABLE ll.l Markov States of Three-Component Systems

State #

Component

a
b
C

Note: O: operating; X: fai led.

and failed components. Thus, for example, if we have a system consisting of
three components, we may easily show that there are eight different combina-
tions of operating and failed components and therefore eight states. These
are enumerated in Table 11.1, where O indicates an operational component
and Xa failed component. In general, a system with l/components will have
2N states so that the number of states increases much faster than the number
of components.

For the analysis that follows we must know which of the states correspond
to system failure. This, in turn, depends on the configuration in which the
components are used. For example, three components might be arranged in
any of the three configurations shown in Fig. 11.1. If all the components are
in series, as in Fig. 7l.la, any combination of one or more component failures
will cause system failure. Thus states 2 through 8 in Table 11.1 are failed
system states. Conversely, if the three components are in parallel as in Fig.
17.Lb, all three components must fail for the system to fail. Thus only state B
is a system failure state. Finally, for the configuration shown in Fig. ll.lcboth
components I and 2 or component 3 must fail for the system to fail. Thus
states 4 through 8 correspond to system failure.

The object of Markov analysis is to calculate PrU), the probability that
the system is in state i at time /. Once this is known, the system reliability can
be calculated as a function of time from

Â(ri : P,( t )  , ( 1 1 . 1 )

where the sum is taken over all the operating states (i.e., over those states for
which the system is not failed). Alternately, the reliability may be calculated

(o) (b)

FIGURE ll.l Reliability block diagrams for three-component sysrems.

O X O O X X O X
O O X O X O X X
O O O X O X X X

;



where the sum is over the states for which the system is failed.
In what follows, we designate state 1 as the state for which all the compo-

nents are operating, and we assume that at t : 0 the system is in state 1.
Therefore.
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from

R ( t ) : 1  -  >  P , U ) ,

and

Pr (o )  :  1 ,

4 ( 0 ) : 0 ,  i + 1 .

Since at any time the system can only be in one state,

P ; ( t )  :  l ,

(  I  1 . 2 )

( 1 1 . 3 )

( 1 1 . 4 )

we have

( 1 1 . 5 )

( 1 1 . 6 )

where the sum is over all possible states.
To determine the 4(t), we derive a set of differential equations, one for

each state of the system. These are sometimes referred to as state transition
equations because they allow the P;(/) to be determined in terms of the rates
at which transitions are made from one state to another. The transition rates
consist of superpositions of component failure rates, repair rates, or both. We
illustrate these concepts first with a very simple system, one consisting of only
two independent componer'ts, a and b.

Two Independent Components

A two-component system has only four possible states, those enumerated in
Table 71.2. The logic of the changes of states is best illustrated by a state
transition diagram shown in Fig. 11.2. The failure rates À, and À6 for compo-
nents a and Ô indicate the rates at which the transitions are made between
states. Since À," L,t is the probability that a component will fail between times
/ and t + At, given that it is operating at r (and similarly for À), we may write
the net change in the probabiliq that the system will be in state I as

Pr( t  +  Ar)  -  P, ( t )  -  -  Io  L , t  P, ( t )  -  À, , ,  L , t  4Q) ,

TABLE ll.2 Markov States of Three-Component
Systems

Component

State #



FIGURE ll.2 State transirion diagram
with independent failures.

or in differential form
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( 1 r . 7 )

( l  l . B )

( 1 1 . e )

(  I  1 . 1 0 )

( 1 r . 1 1 )

( l 1 . 1 2 )

#rr,rt): 
- ^,n(ù - ^bpt(t).

To derive equations for state 2, we first observe that for every transition
out of state I by failure of componerrt a,, there must be an arrival in state 2.
Thus the number of arrivals during Ar is À, Mn (r). Transitions can also be
made out of state 2 during Al; these will be due to failures of comporrerrt b,
and theywill make a contribution of -À6 A,t Pr(/). Thus the net increase in
the probability that the system will be in srare 2 is given by

Pr(t + At) - Pr(t) : À. L^t nQ) - À.u A,t Pr(t),

or dividing by Al and taking the derivative, we have

! rr(t) : À.,P1(/) - Àupr(t).

ldentical arguments can be used to derive the equation for PoQ). The result is

#rrrrt) 
: À6p1 (r) - À..pue).

We may derive one more differential equation, which is for state 4. We
note from the diagram that the transitions into state 4 rnay come either as a
failure of component ô from state 2 or as a failure of component a from
state 3; the transitions during At are Àu At P2(t) and À," L,t &(t), respectively.
Consequently, we have

PnQ+ At)  -  P+(t)  :  À,u\ , tpr( t )  + À"A,tpr( t )

or, correspondingly,

#rrrrt): À,6P2(t) + I.p3u).
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State 4 is called an absorbing state, since there is no way to get out of it. The
other states are referred to as nonabsorbing states.

From the foregoing derivation we see that we must solve four coupled
ordinary differential equations in time in order to determine the f(r). We
begin wi th Eq. 11.7 for  Pt( t ) ,  s ince i t  does not depend on the other P;( t ) .By
substitution, it is clear that the solution to Eq. ll.7 that meets the initial
condi t ion,  Eq. 11.3,  is

P ' ( t ) :  e - ( À " t À " ) t '

To f ind Pr( t ) ,  we f i rst  insert  t rq.  11.13 into Eq. 11.9,

4 , r t l )  :  À, ,e- '^ , , '  ^ t , ) t  -  À, ,Pr( t ) ,
rIt

yielding an equation in which only &(/) appears. Moving the last term to the
left-hand side, and multiplying by an integrating factor slt,t, we obtain

d . ,
;t l4'/ 

Pr(z) I : Àue ̂,/.

Multiplying by dt, and integrating the resulting equation from time
zero to /, we have

là,tP2(4ll') : À.,, 
['o 

u-^,t d,/ .

Carrying out the integral on the right-hand side, utilizing Eq. 11.4 on the left-
hand side, and solving for P2(/), we obtain

Pr(t) : e- Àt,t - e- (^,,+ ^b) t. ( 1 1 .17)

Completely analogous arguments can be applied to the solution of Eq.
11.10. The resul t  is

Pr ( t )  :  e -Ào t  -  e *Q, ,+^ ) t .  (11 .18 )

We may now solve Eq. 11.11 for PnQ). However, it is more expedient to note
that it follows from Eq. 11.5 that

PnU)  :1  -  i  P , ( t ) .  ( 11 .1e )
i -7

Therefore, inserting Eqs. 11.13, 77.17, and 11.18 into this expression yields
the desired solution

PoQ) :  I  -  e ^, , t  -  e-^, , t  a r - {À, , -À, , ) t .

(  I  1 . 1 3 )

( 1 1 . 1 4 )

( 1 1 . 1 5 )

equals

(  1 1 . 1 6 )

(  1  1 .20)

With the P;(/) known, we may now calculate the reliability. This, of course,

depends on the configuration of the two components, and there are only two

possibilities, series and parallel. In the series configuration any failure causes

system failure. Hence

R,(r )  :  Pr( r ) (  1 1 . 2 1 )
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l?,(t)  -  e-(^,,+^h)t.  (11.22)

Since, for the active parallel configuration both components a and b must

fail to have system failure,

331

ReQ) : Pr ( t) + P2( t) + PoQ) ,

or ,  using Eq. 11.19, we have

Therefore,

Rt(t) - 1 - Pn(t).

ReQ) : g-^,, t  I  e 
^, '  -  e-(^n+^b)t.

(  11 .23)

(11.24)

( r  1 .25 )

(  1  1.26)

(1r.27)

(1 r .28)

This analysis assumes that the failure rate of each component is indepen-

dent of the state of the other component. As can be seen from Fig. 11.2, the

transitions 1 --+ 2 and 3 ---> 4, which involve the failure of component a, have

the same failure rate, even though one takes place with component ô in

operating order and the other with failed component ô. The same argument

applies in comparing the transitions 1 --+ 3 and 2 ---> 4. Since the failure

rates-and therefore the failure probabililiss-21s independent of the system

state, they are mutually independent. Therefore, the expressions derived in

Chapter 9 should still be valid. That this is the case may be seen from the

following. For constant failure rates the component reliabilities derived in

Chapter 9 are

R,(t)  :  s-^r t ,  l :  a,  b.

Thus the series expression, Eq. 17.22, reduces to

Â,( t) : R (t) Ru,Q) ,

and the parallel expression, Eq. 11.25, is

&,(t) : Â,( /) + R,(ù - R,(t) &( t) .

These are just the expressions derived earlier for independent components,
without the use of Markov methods.

Load-Sharing Systems

The primary value of Markov methods appears in situations in which compo-
nent failure rates can no longer be assumed to be independent of the system
state. One of the comrnon cases of dependence is in load-sharing components,

whether they be strlrctural members, electric generators, or mechanical pumps
or valves. Suppose, for example, that two electric generators share an electric
load that either generator has enough capacity to meet. It is nevertheless true

that if one generator fails, the additional load on the second generator is
likely to increase its failure rate.



and
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To model load-sharing failures, consider once again two components, a

and. b, in parallel. We again have a four-state system, but now the transition

diagram appears as in Fig. 11.3. Here Àf and Àf denote the increased failure

rares brought about by the higher loading after one failure has taken place.

The Markov equations can be derived as for independent failures if the

changes in failure rates are included. Comparing Fig. 11.2 with 11.3, we see

that the resulting generalizations of Eqs. 11.7,11.9, 11.10, and ll. l2 are

*rurt) 
: -(À, + trt) ''e),

#rrrrt) 
: À,.P1 (r) - tf, Pr(t),

#rrrr, 
: ^bPt (r) - Àf&(r)

frr^o 
: Àf Pz(t) + ̂ rP.u).

The solution procedure is also completely analogous. The results are

P ' ( t )  :  e - (^ '+^ù t '  (11 '33)

PzQ) : e-^i ' '  - ,-\Ào+À*olt, (11.34)

pu1) : e-À*ot - e-(^."+^ùt (11.35)

and

PnU):  |  -  e-^ i , -  e-^ i ,  -  e- (^ .+^ùt  +  e- (^ , ,+^*b\ t  a  , - { t - "+Àst .  (11.36)

FIGURE ll.3 State transition diagram

with load sharing.

(  11.2e)

(  11.30)

( 1 1 . 3 1 )

(  1  1 .32)
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Finally, since both components must fail for the system to fail, the reliability
is equal to I - Pq(t), yielding

&(t)  
:  e-^." '+ e-^ i l  + e-(^o+^b)t  -  n- l t ' , ,+t ' i ) t  -  g-(Ào+r) t (  11 .37)

It is easily seen that if Àf : À, and Àf : À6, there is no dependence
between failure rates, and Eq. 11.37 reduces to Eq. 11.25. The effects of
increased loading on a load-sharing redundant system can be seen graphically
by considering the situation in which the two components are identical: À, :

Àa : À and Àf : Àf : À*. Equation 17.37 then reduces to

R(t1 :2e-^* '  +  e-2^t  -  2e-0+^+) t (  11  .38 )

In Fig. 11.4 we have plotted R( t) for the two-component parallel system, while
varying the increase in failure rate caused by increased loading (i.e., the ratio
^* / I). The two extremes are the system in which the two components are
independent, À* : À, and the totally dependent system in which the failure
of one componentbrings on the immediate failure of the other, À* : oo. Notice
that these two extremes correspond to Eqs. 1I.25 and 11.22, for independent
failures of parallel and series configurations, respectively.

Àt

FIGURE 11.4 Reliability of load-sharing
systems.

EXAMPLE 11.I

Two diesel generators of known MTTF are hooked in parallel. Because the failure of
one of the generators will cause a large additional load on the other, the design
engineer estimates that the failure rate will double for the remaining genera.tor. For
how many MTTF can the generator system be run without the reliability dropping
below 0.95?

Solation Take À* :2À". Then Eq. 11.38 is

rR: 0.95 - 2e-2^t + e-2^t - 2e-3^t,

where I is the time at which the reliability drops below 0.95. Let x : e-tr'. Then

2 x j - 3 x 2 + 0 . 9 5 : 0 .

R



The solution must lie in the interval 0 ( x I 7. By plotting the left-hand side of the

equation, we may show that the equation is satisfied at only one place, at

x : 0 . 8 6 4 7 .

Therefore, Àt: ln(7/x) : 0.1454. Since À : I,/MTTF for the diesel generators, the

maximum time of operation is / : 0.L454/ ̂  : 0.L454 MTTF. Note that if only a single

generator had been used, i t  could have operated for only I  :  ln( l /rR) /À:0.0513
MTTF without violating the criterion.

II.3 RELIABILITY WITH STANDBY SYSTEMS

Standby or backup systems are a widely applied tlpe of redundancy in fault
tolerant systems, whether they be in the form of extra logic chips, navigation
components, or emergency power generators. They differ, however, from
active parallel systems in that one of the units is held in reserve and only
brought into operation in the event that the first unit fails. For this reason
they are often referred to as passive parallel systems. By their nature standby
systems involve dependency between components; they are nicely analyzed
by Markov methods.

Idealized System

We first consider an idealized standby system consisting of a primary unit a
and abackup unit à. If the states are numbered according to Table 11.2, the
system operation is described by the transition diagram, Fig. 11.5. When the
primary unit fails, there is a transition 1 + 2, and then when the backup unit
fails, there is a transition 2 --> 4, with state 4 corresponding to system failure.
Note that there is no possibility of the system's being in state 3, since we have

FIGURE ll.5 State transition diagram for

a sundby configuration.



Failure Interactions 335

assumed that the backup unit does not fail while in the standby state. Hence

PzU) : 0. Later we consider the possibility of failure in this standby state

as well as the possibility of failures during the switching from primary to

backup unit.
From the transition diagram we may construct the Markov equations for

the three states quite easily. For state 1 there is only a loss term from the

transition 7 --> 2. Thus

d

l r ' r t ù :  
-43Q) '  (11 '39 )

For state 2 we have one source term, from the I --> 2 transition, and one loss

term from the 2 ---> 4 transition. Thus

d

*rrtt) 
: À."P1 ( ô - À.uPr(t) .

Since state 4 results only from the transition 2 ---> 4, we have

dt,rrlt) : À'6Pr(t).

(  I  1 .40)

( 1 1 . 4 1 )

(1r.42)

(  11 .43)

(11.44)

(  11 .45)

(11.47)

( 1 1 . 4 8 )

comparing
For brevity

The foregoing equations may be solved sequentially in the same manner

as those of the preceding sections. We obtain

and

P1(t) : s-t,,t,

^"
Pr(t) :  

T=T,(e- 
t"r -  e-^o') ,

&(r) :  0

I
PoQ) : I  -  

T-- (Àf-^" '  -  tr , ,e-^' /1,
A b -  A o

where we have again used the initial conditions, Eqs. 11.3 and 17.4. Since

state 4 is the only state corresponding to system failure, the reliability is just

R ( r ) : P ' ( t ) + P z ( t ) , ( 1 1 . 4 6 )

R(t1 :  e-^ut  * ,  +  (e-^ , , ,  -  e-^0, ) .
À r - À " '

This, in turn, may be simplified to

R(t) : 
#"(tr&-^"' 

- tr,,e-^/1.

The properties of standby systems are nicely illustrated by
their reliability versus time with that of an active parallel system.
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we consider the situation Ào : Àt: À. In this situation we must be careful in

evaluating the reliability, for both Eqs. 1 L.47 and I 1.48 contain tu - Ào in the

denominator. We begin with Eq. 11.47 and rewrite the last term as

f t ( r )  :  e-^ , , '+* \ ;  , - t " t l l  -  e-Qb-^" ) t l . ( l l . 4e )

(  11 .50)

( l 1 . 5 1 )

( l1 .53 )

( l1 .54 )

Then, going to the limit as À6 approaches Ào, we have (À, - l.)t 4 1, and we

can expand

e - $ h - ^ . ) t  -  1 -  ( À r -  À . , ) t + L ( ^ u -  I . ) z f

Combining Eqs. 11.49 and 11.50, we have

R ( t )  :  e - À " '  *  À o € - ^ " ' l t  -  à ( À " -  À r )  f  + ' ' ' 7 .

Thus as À6 and Ào become equal, only the first two terms remain, and we have

f o r À 6 : À o : À :

r R ( 4 : ( l 1 ' À t ) e - ^ ' (  I  r .52)

In Fig. 11.6 are compared the reliabilities of active and standby parallel
systems whose two components have identical failure rates. Note that the

standby parallel system is more reliable than the active parallel system because
the backup unit cannot fail before the primary unit, even though the reliability

of the primary unit is not affected by the presence of the backup unit.
The gain in reliability is further indicated by the increase in the system

MTTF for the standby configuration, relative to that for the active configura-

tion. Substituting Eq. 11.52 into F,q.6.22, we have for the standby parallel
system

compared to a value of

for the active parallel system.

MTTF :2 /  À

MTTF :3 /2 I

Standby
parallel

Active
parallel

q

1 ,

Àt

FIGURE ll.6 Reliability comparison for

standby and active parallel systems.
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Failures in the Standby State

We next model the possibility that the backup unit fails before it is required.

We generalize the state transition diagram as shown in Fig. 71.7. The failure

rate Àf represents failure of the backup unit while it is inactive; state 3 repre-

sents the situation in which the primary unit is operating, but there is an

undetected failure in the backup unit.

There are now two paths for transition out of state 1. Thus for Pr (f) we have

!*orrt) : - À-.Pt( t) - ^i Pt(t)'

The equation for state 2 is unaffected by the additional failure path; as in Eq.

11.40, we have

olrorrt) 
: À.,,P1 (r) - À,uPr(t).

We must now set up an equation to determine P:(/). This state is entered

through the 1 --+ 3 transition with rate Ài and is exited through the 3 -> 4

transition with rate À.,. Thus

7

4 prtt) : Àî Pt( t) - À",PuQ) .
d,t

Finallv. state 4 is entered from either states 2 or 3;

PnU): truPr(t) + I"Pz(t). (11 .58)

manner as before. WeThe Markov equations may be solved in the same

obtain, with the init ial  condit ions Eqs. 11.3 and 11.4,

PrU) :  e-Q,,+^;)t ,

d
dt

(  1 1 . 5 5 )

(  11 .56)

(11 .57)

(11.5e)

FIGURE ll.7 State transition diagram with

failure in the backup mode.



There is no need to solve for Pa(/), since once again it is the only state for
which there is system failure, and therefore,
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and

^-
Pr(t) :  

^" +:-_ ^r le-^ut 
- ,- t t ' .+t ' [ l t1

PzQ) : o-Ànt - n-{t t"+tt[) t .

Â ( t ) : R ( t ) + P z Q ) + P s Q ) ,

R ( f )  :  e - ^ . ' + ' , +  f e - ^ o t  -  , - r t t " + t Ç t t 1 .
L o - r  A I  -  A 6

Ë(,) : (t . +) ,-^,- # n-e,+,,n),.

(  r  1.60)

(  1 1 . 6 1 )

( r  r .62)

( l 1 . 6 3 )

À and

(11 .64)

(  1r .65)

yielding

Once again it is instructive to examine the case ^o : ^b :

Ài l-  :  À*, in which Eq. 11.63 reduces to

In Fig. ll.8 the results are shown, havingvalues of À* ranging from zero to
À. The deterioration of the reliability is seen with increasing À*. The system
MTTF may be found easily by inserting Eq. 11.64 into Eq. 6.22. We have

When Àt : À, the foregoing results reduce to those of an active parallel
system. This is sometimes referred to as a "hot-standby system,'n since both
units are then running and only a switch from one to the other is necessary.
Fault-tolerant control systems, which can use only the output of one device
at a time but which cannot tolerate the time required to start up the backup

Àt

FIGURE I1.8 Reliability of a standby system
with different rates of failure in the backup
mode.
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unit, operate in this manner. Unlike active paraliel systems, however, they must

switch from primary unit to backup unit. We consider switching failures next.

D(AMPLE 11.2

A fuel pump with an MTTF of 3000 hr is to operate continuously on a 500-hr mission.

(a) \Arhat is the mission reliability?

(ô) Two such pumps are put in a standby parallel configuration. If there are no failures

of the backup pump while in the standby mode, what is the system MTTF and

the mission reliability?

(6) If the standby failure rate is L5% of the operational failure rate, what is the system

MTTF and the mission reliabilitY?

Solution

(a) The component failure rate is À : l/3000 : 0.333 X 10-3/hr. Therefore, the

mission reliability is

/ r \
R(T) : ."p (-3000 x 500/ :  0.846.

(ô) In the absence of standby failures, the system MTTF is found from Eq. 11'53 to

be

MTTF :?: z x 3ooo : 6ooo hr.
^

The system reliability is found from Eq. 11.52 to be

/ t \ / r \
Â(500) :  {  I  + - l= x 500 ) x."p ( -; i= x 500 ) :  0.988.

\^  3000 /  
'  

\  3000 /

(c) We f ind the system MTTF from Eq. 11.65 with À+ : 0.15 /3000 : 0.5 X |}-a/hr:

MrrrF: o.,3* 10*. ** ro*

_0.333 x  10-3
0.5 x 10-4

MTTT : 5609 hr.

0 . 3 3 3 x 1 0 - 3 + 0 . 5 x 1 0 - o

From Eq. 11.64 the system reliability for the mission is R(500) : 0.986.

Switching Failures

A second difficulry in using standby systems stems from the switch from the

primary unit to the backup. This switch may take action by electric relays,

hydraulic valves, electronic control circuits, or other devices. There is always

the possibility that the switching device will have a demand failure probability

p large enough that switching failures must be considered. For brevity we do

not consider backup unit failure while it is in the standby mode.
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The state transition diagram with these assumptions is shown in Fig. 11.9.
Note that the transition out of state I in Fig. 11.5 has been divided inro two
paths. The primary failure rate is multiplied by 1 - p to get the successful
transition into state 2,in which the backup system is operating. The second
path with rate pÀ. indicates a transition directly to the failed-system state that
results when there is a demand failure on the switching mechanism.

For the situation depicted in Fig. 11.9, state I is still described by Eq.
11.39. Now, however, the I + 2 transition is decreased by afactor | - p and
so, instead of Eq. 11.40, state 2 is described by

d.

*rr<t) 
: (t - p)  ̂ .n(ù - ^bPzU)

and state 4 is described by

: À6P,(t) + pI"nU).#,'^u'
Since P1(l) is again given by Eq. 71.42, we need solve only

to obtain

pz4): G - p-+ (e-À,t - e-^u,).
A b -  A o

Accordingly, since state 4 is the only failed state and &(/) : 0, we

R(t \ :  Pr( t )  + PzQ),

or inserting Eqs. 71.42 and 11.68, we obtain for the reliability

(  l 1 .66 )

(  I1 .67 )

Eq.  11.66

(  11 .68)

may write

(  11 .6e)

R(l)  :  e-^, ,  + 
( l  -  

P)À'  (e- t" ,  -  e-^u,) .
A b -  f r o

( l  r .70)

FIGURE ll.9 State transirion diagram with
standby switching failures.
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once again it is instructive to consider the case À,, : Àr,: À, for which

we obtain

( 1 1 . 7 1 )

Eq. 11.71 with Eq. 9.11 for the active

- Ze-^r - e-z^'r.

- À 7  \)

_ e_o.tob4) : 0.0b.

R(r; :  [1 + (1 - p) À,t)e-n'

Clearly, as p increases, the value of the backup system becomes less and less,

until finally if p is one (i.e., certain failure of the switching system) , the backup

system has no effect on the system reliability'

D(AMPLE 11.3

An annunciator system has a mission reliability of 0.9. Because reliability is considered

too low, a redundant annunciator of the same design is to be installed. The design

engineer must decide between an active parallel and a standby parallel configuration.

Th-e engineer knows that failures in standby have a negligible effect, but there is a

significant probability of a switching failure.

(a) How small must the probability of a switching failure be if the standby configuration

is to be more reliable than the active configuration?

(ô) Discuss the switching failure requirement of a for very short mission times'

Solution

(a) Assuming a constant failure rate, we know that for the mission time T,

f  r ' - l : t , '
Àr :  ln  

L^ ,n- ,
To find the failure probability, we equate

parallel system:

t l  + ( 1  - P ) t T l e - ^ r

Thus

P : I _ # Q _ C
-  1  -  

-à" , t

(ô) For active parallel Eq. 9.19 gives the short mission time approximation:

R n :  I  -  ( À l ) t .

For standby parallel we expand 11.71 for small Àl:

À , r , :  [ 1  +  ( 1  -  ù I t ) e - t r ' :  t l  +  ( 1  -  p ) ^ t ] [ l  - À r + ] ( z t 4 z "  ' 1

-  1 -  p ^ t -  ( È -  p ) ( s , t ) ' .

Then we calculate p for,Rn - ,R.6 : 0:

I  -  (À r ) ' -  1  +  p^ t+  (È-  p l  (À r )2 :  s

I À t  1 .
P :  7  -  ^ t - r o '

(#�t) :01054
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The shorter the mission, the smaller p must be, or else switching failures will be more
probable than the failures of the second annunciator in the active parallel configu-
ration.

The combined effects of failures in the standby mode and switching
failures may be included in the foregoing analysis. For two identical units the
reliability may be shown to be

À -
( l  -  p)  n-  s- (À+À \ r ,

. A

d.

*r r<t ) :  
À, ,P1( t )  -  (Àr+ v)P2Q).

The reliability, once again, is calculated from Eq. 11.46.

R ( t y : [ t . r . � - D È ]  ' ^ ' - (1r.72)

(  11 .73)

which reduces to Eq. 11.71 as À* + 0. For a hot-standby system in which
identical primary and backup systems are both running so that À* : À, we
obtain from Eq. I 1.72

R(4 : Q - ple-À' - (1 - p\t-zt '

Thus the reliability is less than that of an active parallel system because there
is a probability of switching failure. As stated earlier, in hot-standby systems,
such as for control devices, the output of only one unit can be used at a time.
If the probability of switching failure is too great, an alternative is to add a
third unit and use a 2/3 votins system, as discussed in Chapter 9.

Primary System Repair

Two considerable benefits are to be gained by using redundant system compo-
nents. The first is that more than one failure must occur in order for the
system to fail. A second is that components can be repaired while the system
is on line . Much higher reliabilities are possible if the failed component has
a high probability of being repaired before a second one fails.

Component repair increases the reliability of either active parallel or
standby parallel systems. Moreover, either system may be analyzed using Mar-
kov methods. In what follows we derive the reliability for a system consisting
of a primary and a backup unit. We assume that the primary unit can be
repaired on line. For clari$, we assume that failure of the backup unit in
standby mode and switching failures can be neglected.

The state transition diagram shown in Fig. 11.10 differs from Fig. 11.5
only in that the repair transition has been added. This creates an additional
source term of vP2Q) in Eq. 11.39,

d=OrPr(t) : -À"Pt(t) + vP2Q), (11.74)

and the corresponding loss term is substracted from Eq. 11.40,

(  l  r .75)
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FIGURE ll.l0 State transition diagram

with primary system rePair.

The equations can no longer be solved one at a time, sequentially, as in

the previous examples, for now P,(t) depends on P2(t). Laplace transforms

may be used ro solve Eqs. 1L.74 andll.75, but to avoid introducing additional

nomenclature we use the following technique instead. Suppose that we look

for solutions of the form

Pr(t) : Ce-"'; PzU) : C'e-o', (lt '76)

where C, C', and a are constants. Substituting these expressions into Eqs.

LL.74 and 11.75, we obtain

-aC:  - t roC*  uC ' ;  -aC '  :  t roC-  (Àr*  v )C ' .  (11 .77)

The constants C and C' may be eliminated between these expressions to yield

the form

af  -  ( ^ ,+  À ,  +  v )a  *  ÀoÀ6:  0  (11 .78)

Solving this quadratic equation, we find that there are two solutions for a:

( l  l . 7e )

Thus our solutions have the form

Pr ( f )  :  Ca€-d+ t *  C-e -o - t ,  (11 .80 )

PzQ\ :  C'*s-"* '*  C'-e-"- t  (11.81)

We must use the initial conditions along with Eq. 11.79 to evaluate C1

and C!. Combining Eqs. 11.80 and 11.81 with the init ial conditions Pr(0) :

1 and &(0) : 0, we have

C a  *  C - :  L ; C ' * +  C ' - : 0 . (11 .82)
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Furthermore, adding E,qs. 17.77, we may write, for a* and a-,

a x C r :  ( À r ,  -  a . )  C - .

These four equations can be solved for C and C'x. Then, after some
we may add Eqs. 11.80 and 11.81 to obtain f rom Eq. 11.46

Ol+ O(.-
l ? ( f ; :  e - o - t * - e - d + t

(x+ - ot_ at+ - ot_

( 1 1 . 8 3 )

algebra,

( 1 1 . 8 4 )

The improvement in reliability with standby systems is indicated in Fig.
1 1.1 1, where the two units are assumed to be identi cal, À.o : Àb : À, and plots
are shown for different ratios of v/ À,. In the usual case, where v )) À, it is
easily shown that a1 )) a-, so that the second term in Eq. 11.84 can be
neglected, and that a, = -À,,trt/ z. Hence we may write, approximately,

R(t)- . .e(-+,) (  1  1 .85)

In the situation in which u )) tro, tru, the deterioration of reliability is
likely to be governed not by the possibility that the backup system will fail
before the primary system is repaired, but rather by one of the two other
possibilities: (1) that switching to the backup system will fail, or (b) that the
backup system has failed. These failures are dealt with either by improving
the switching and standby mode reliabilities or by utilizing an active parallel
system with repairable components. Then the switching is obviated, and the
configuration is more likely to be designed so thatfailures in either component
are revealed immediatelv.

J

II.4 MULTICOMPONENT SYSTEMS

The models described in the two preceding sections concern the dependencies
between only two components. In order to make use of Markov methods in

Àt

FIGURE ll.ll The effect of primary systenl
repair rate on the reliability of a standby
svstem.

Ê(
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realistic situations, however, it is often necessary to consider dependencies
between more than two components or to build the dependency models into
many-component systems. In this section we first undertake to generalize
Markov methods for the consideration of dependencies between more than
two components. We then examine how to build dependency models into
larger systems in which some of the component failures are independent of
the others.

Multicomponent Markov Formulations

The treatment of larger sets of components by Markov methods is streamlined
by expressing the coupled set of state transition equations in matrix form.
Moreover, the resulting coefficient matrix can be used to check on the formula-
tion's consistency and to gain some insight into the physical processes at
play. To illustrate, we first put one of the two-component, four-state systerns
discussed earlier into matrix form. The generalization to larger systems is
then obvious.

Consider the backup configuration shown in Fig. 11.7, in which we allow
for failure of the unit in the standby mode. The four equations for the 4(t)
are given by Eqs. 11.55 through 11.58. If we define a vector P(ô, whose
components are Pr(t) through &(/), we may write the set of simultaneous
differential equations as

l a t , l l  f -L - t ;  o  o  o l ln r , t l
d l p r ( r ) l _ l  , r ,  - À t ,  o  o l l  n t r l l-a,l r i iô l: |  ^; o -^. o l l  p,it i  |  

(11'86)

LP, ( r) _l L o ^b ^n o_lLP4( r) I
Consider next a system with three components in parallel, as shown in

Fig. 11.1ô. Suppose that this is a load-sharing system in which the component
failure rate increases with each component failure:

À1 : colrlponent failure rate with no component failures,

À2 : component failure rate with one component failure,

Àq : component failure rate with two component failures.

If we again enumerate the possible system states in Table 11.1, the state
transition diagram will appear as in Fig. 11.12. From this diagram we may
construct the equations for the P,(t). In matrix form they are

d

,tt

nQ)
Pr(t)
Pz(t)
P'(t)
PrU)
PuU)
P?(t)
Pr( t )

-3À,  0
Àr -2Àz

À r 0
À r 0
0 À 2
0 À ?
0 0
0 0

0
0

-2À,

0
À2

0
^2

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

- 2 À r 0 0 0 0

0 - À , 0 0 0
À 2 0 - À * o o
^ 2  0  0  - À 3 0

0 À . À , , À * 0

hu)
Pr(t)
Pu(ù
P+(t)
Pu( l )  I '
Po(t )

P? (ù

P-(t)

(  11 .87)
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FIGURE ll. l2 State transition diagram for
a three-component parallel system.

where there are now 23 : B states in all. The generalization to more compo-

nents is straightforward, provided that the logical structure of the dependen-

cies is understood.

Equations 11.86 and 17.87 rnay be used to illustrate an important property

of the coefficient matrix, one which serves as an aid in constructing the set

of equations from the state transition diagram. Each transition out of a state

must terminate in another state. Thus, for each negative entry in the coefficient

matrix, t-here must be a positive entry in the same column, and the sum of

the elements in each column must be zero. Thus the matrix may be constructed

systematically by considering the transitions one at a time. If the transition

originates from the lth state, the failure rate is subtracted from the ith diagonal

element. If the transition is to the 7th state, the failure rate is then added to

the 7th row of the same column.

A second feature of the coefficient matrix involves the distinction between

operational and failed states. In reliability calculations we do not allow a system

to be repaired once it fails. Hence there can be no way to leave a failed state.

In the coefficient matrix this is indicated by the zero in the diagonal element

of each failed state. This is not the case, however, when availability rather

than reliability is being calculated. Availability calculations are discussed in

the following section.

For larger systems of equations it is often more convenient to write Markov

equations in the matrix form

d

dt
P(ô :  MP(r ) , (  1 1 . 8 8 )
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where P is a column vectorwith components nQ), PzU),. . ., and M is referred
to as the Markov transition matrix. Instead of repeating the entire set of
equations, as in Eqs. ll.86 and 11.87, we need write out only the matrix.
Thus, for example, the matrix for Eq. 11.86 is

(  1 1 . 8 e )

The dimension of the matrix increases as 2t, where l/ is the number of
components. For larger systems, particularly those whose components are
repaired, the simple solution algorithms discussed earlier become intractable.
Instead, more general Laplace transform techniques may be required. If there
are added complications, such as time-dependent failure rates, the equations
may require solution by numerical integration or by Monte Carlo simulation.

D(AMPLE I1.4

A2/3 system is constructed as follows. After the failure of either component aor c,
whichever comes first, component ô is switched on. The system fails after any two of
the components fail. The components are identical with failure rate À.

(a) Draw a state transition diagram for the system.

( à) Write the corresponding Markov transition matrix.

(c) Find the system reliability R(t).

(4 Determine the reliability when time is set equal to the MTTF one component.

Solution For this three-component system, there are eight states. We define these
according to Table 11.1.

(a) The state transition diagram is shown in Fig. 11.13. Note that states 3 and 8 are
not reachable.

( ô) The Markov transition matrix is

M _

(c) The reliability is given by R(ô : hQ) + PzU) + P4U); thus only three of the eight
equations need be solved. First, dh/dt: -2^P1, with P,(0) : l yields Pr(t) :

e-2^'. -fhe equations for P2 * Pn are the same:

':[-ï-^' ï, ï, l]

- 2 ^  0  0  0  0 0 0 0
À  - 2 ^  0  0  0 0 0 0
0  0  0  0  0 0 0 0
À 0 0 - 2 ^ 0 0 0 0
0  À  0  0  0 0 0 0
0  À  0  À  0 0 0 0
0  0  0  À  0 0 0 0
0  0  0  0  0 0 0 0

dP_
- : :  À P t

dt
-  2^P, ,  P , (0 )  :  0 ;  n :  2 ,4 .
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FIGURE 11.13 State transition diagram for
Example 11.4.

Therefore,

#: ^e-z^, _ 2^p,.

We use the integrating factor e2^t to obtain

d

* (O,e - 'n ' )  
:  ^ .

Then integrating between 0 and l, we obtain

P , ( t )e2^ ' -  P , (01  :  71 .

Thus

P' ( t )  :  ^ tu-2^ t '  n :  2 '  4 '

Substituting into R(4 : n + P2 + Pn yields

Ê ( r ) :  ( l * 2 À t ) e - 2 ^ , .

(d)  t :  MTTF = 7/À.  Then

R(MTTF) :  (1  +  2  x  7)e-2xr  :  0 .406.

Combinations of Subsystems

In principle, we can treat systems of many components using Markov methods.
However. with 2N equations the solutions soon become unmanageable. A
more efficient approach is to define one or more subsystems containing the
components with dependencies benveen them. These subsystems can then
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f t F
[H ol-tF--- ffi

(o) U G)
FIGURE ll.l4 Standby configurations.

be treated as single blocks in a reliability block diagram, and the system

reliability can be calculated using the techniques of Chapter 9, since the

failures in the subsystem defined in this way are independent of one another.

To understand this procedure, consider the system configurations shown

in Fig. 11.14. In Fig. ll.l\a is shown the convention for drawing a two-

component standby system of the type discussed in the preceding section as

a reliability block diagram. In Fig. lL.l4b the standby parallel subsystem,

consisting of components a and 4 is in series with nvo other components.

The reliability of the standby subsystem (with no switching errors) is given by

Eq. 11.63. Therefore, we define the reliability of the standby subsystem as

R,r(t) : s-Àot+ 
ff;, 

le-^ut - ,-tt '"+t'[)t1.

Then, if the failures in components c and d are independent of those in the

standby subsystem, the system reliability can be calculated using the prod-

uct rule

R( r i  :  R ' ( r )  R , ( t )RaU) .  (11 .91)

Generalization of this technique to more complex configurations is straight-

forward.
The configuration in Fig. l l.l4cillustrates a somewhat different situation.

Here the primary and standby subsystems themselves each consist of n,rro

components, A and c, and Ô and d, respectively. Here we may simpliS the

Markov analysis by first combining the four components into two subsystems,

each having a composite failure rate. Thus we define

( l  l .e0)

(  11 .e2)

( l  l . e3 )

( l l . e4 )

reliability if we replace

À o r :  ^ o  +  ^ r ,

Àu:  ^b + ^d '

and

Àh: À; + À' '
We may again apply Eq. 11.90 to calculate the system
Ào, Àt, and Àf with Ào., À67, ând Àfi, respectively.

I I.5 AVAII-ABILITY

In availability, as well as in reliability, there are situations in which the compo-
nent failures cannot be considered independent of one another. These in-

clude shared-load and backup systems in which all the comPonents are repair-

able. They may also include a variety of other situations in which the
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dependency is introduced by the limited number of repair personnel or by

replacement parts that may be called on to put components into working

order. Thus, for example, the repair of nvo redundant components cannot be

considered independent if only one crew is on station to carry out the repairs.

The dependencies between component failure and repair rates may be

approached once more with Markov methods, provided that the failures are

revealed, and that the failure and repair rates are time-independent. Although

we have already treated the repair of components in reliability calculations,

there is a fundamental difference in the analysis that follows. In reliabiliry

calculations components can be repaired only as long as the system has not

failed; the analysis terminates with the first system failure. In availability calcula-

tions we continue to repair components after a system failure in order to

bring the system back on line, that is, to make it available once again.

The differences between Markov reliability and availability calculations
for systems with repairable components can be illustrated best in terms of the

matrix notion developed in the preceding section. For this reason we first

illustrate an availability calculation with a system for which the reliability was

calculated in the preceding section, standby redunclance. We then illustrate

the limitation placed on the availability of an active parallel configuration by

the availability of only one repair crew.

Standby Redundancy

Suppose that we consider the reliability of a two-component system, consisting

of a primary and a backup unit. We assume that switching failures ancl failure

in the standby mode can be neglected. In the preceding section the analysis

of such a system is carried out assuming that the primary unit can be repaired

with a rate u. Since there are only three states with nonzero probabilities the

state transition diagram may be drawn as in Fig. 1L.75a, where state 3 is the

b) b)
FIGURE ll.l5 State transition diagrams f<rr a standby sys-

tem: (a) I'or reliability, (b) for availability.
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failed state. The transition matrix for Eq. 11.88 is then given by

il' : [ ï '

l"lIi

u
- À t , -  u

^t'

(11 .e5 )

(  11.e6)

(  I  1 .e7)

(  11.e8)

( I  1.ee)

(  I  r .1  00)

( 1 1 . 1 0 r )

The estimate of the availability of this system involves one additional state
transition. In order for the system to go back into operation after both units
have failed, we must be able to repair the backup unit. This requires an added
repair transition from state 3 to state 2, as indicated in Fig. 71.15b. This repair
transition is represented by two additional terms in the Markov transition
matrix. We have

M -
u

-Àr , -  u
^ h

Here we assume that when both units have failed, the backup unit will be
repaircd first; we also assume that the repair rates are equal. More general
cases may also be considered.

An important difference can be seen in the structures of Eqs. 11.95 and
1 1.96. In Eq. I 1.96 all the diagonal elements are nonzero. This is a fundamen-
tal difference from reliability calculations. In availability calculations the system
must always be able to recover from any failed state. Thus there can be no
zero diagonal elements, for these would represent an absorbing or inescapable
failed state; transitions can always be made out of operating states through
the failure of additional components.

The availability of the system is given by

A( t )  : 2  P ,Q) ,

where the sum is over the operational states. The Markov equations, Eq. 11.88,
may be solved using Laplace transforms or other methods to determine the
P(t), and Eq. 17.97 may be evaluated for the detailed time dependence of
the point availabiliry.

We are usually interested in the asymptotic or steady-state availability,
A(*), rather than in the time dependence. This quantity may be calculated
more simply. We note that as t ---> æ, the derivative on the right-hand side of
Eq. 11.88 vanishes and we have the time-independent relationship

M P l o o )  : 0 '

In our problem this represents the three simultaneous equations

- À o P t ( * )  +  u P r ( æ )  : 0 ,

À , " h ( o o )  -  ( À a +  u ) P z ( * )  +  v P u ( æ )  : 0 ,

and

t r u P z ( o o ) - u P u ( æ ) : 0 .
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This set of three equations is not sufficient to solve for the P,(*). For all

Markov transition matrices are singular; that is, the equations are linearly

dependent, yielding only N - 1 (in ô.r. .ur. two) independent relationships'

This is easi ly r . . r r ls ince adding Eqs. 11.99 and 11.101 yields Eq'11'100'

The needed piece of additionallnformation is the condition that all of the

probabilities must sum to one:

2 P, ( * )  :  1 '

In the situation

Combining Eqs.

( 1 1 . 1 0 3 )

(1 r .104)

in which we take tro : lr,: À, our Problem
11.99,  11 .101,  and 11 '102,  we ob ta in

T  ,  / , \ 2 1 - l

p1(* , :  
Lr  * l *  ( ; )  I  ,

[ , * l *  (a) ' - l  l .
I  u  \ v / - l  u

( 1 1 . 1 0 2 )

is easily solved.

( 1  1 . 1 0 5 )

Eq.  11.97:

( l l . l 0 6 )

and

r , * t * (À) ' l -  ( l ) 'p . ( * ) : L ^  
u  \ u /  I  \ u /

The steady-srare availability may be found by setting t: æ

A(*) - r - [,*+. (+)"-] (+)'
L '  u  \ r /  )  \ v /

If we further assume that À"/ u 11 1, we may write

A ( * )  : t - ( 4 ) ''  
\ v /

( 1 1 . 1 0 7 )

E)(AMPLE TI.5

Suppose that the system availability for

maximum acceptable value of the failure
standby systems must be 0.9' \Arhat is the

to repair rate ratio À/ ù

Solat ion Let x :  ^/ z in Eq' 11'106' Then

A ( * )  -  1 -  ( 1  +  x *  x 2 ) - ' ( x 2 ) .

Converting to a quadratic equation, we have x2 - yx - y - 0' where

r - A  1 - 0 ' 9 - 1
Y: -7- :  

ls  
-  

0

L :  x : + Y  
+  Y f  +  4 / Y : 0 . 3 9 3 .

and
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If instead the rare-event approximation is used,

À -n  - - y j _ 7 1 r e 1 :  V ï -  0 g : 0 . 3 1 6 .
u

Other configurations are also possible. If nrro repair crews are available,
repairs may be carried out on the primary and backup units simultaneously;
the result is the four-state system of Table 11.2. As indicated in Fig. ll.76a,
it is possible to get the primary unit running before the backup unit is repaired.
In this situation states 1,2, and 3 are operating states and must be included
in the sum in Eq. f 1.97. The Markov matrix now becomes

Other possibilities may also be added. For example, if switching failures
and failures of the backup unit while in standby are not negligible, the state
transition diagram is modified as shown in Fig. 17.l6b, where p represents
the probability of failure in switching from the primary to the backup, and
Àf the standby failure rate of the backup unit. The Markov transition matrix
corresponding to Fig. 11.16ô is

l"l'  :  

[ -â '

l*,/r

u
- v  -  À u

0
^ b

u
0

- u  -  À o

^ o

(  I  1 .  l 0B)

( l 1 . 1 0 e )M :

v
- À u -  v

0
^ b

- À o -  u

^ o

0
v
v

- 2 v

u
0

(o) b)

FIGURE ll.16 State transition diagrams for repairable standby sysrems.
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To recapitulate, steady-state availability problems are solved by the same

proced.ure. Any N - 1 of the l/ equations represented by Eq. 11.98 are

combinedwith the condition, Eq. 11.102, that the probabil it ies must add to

one, to solve for the components of P(*). These are then substituted into

Eq. 11.97 with the sum taken over all operating states to obtain the availability.

Shared Repair Crews

We conclude with the analysis of an active parallel system consistins of two

identical units. We assume that the failure rates are identical and that they

are independent of the state of the other unit. We also assume that the repair

rates for the two units are the same. In this situation the failures and repairs

of the two units are independent, provided that each unit has its own repair

crew. The availability is then given by Eq. 10.95. The dependency is introduced

not by a hardware failure, as in the case of standby redundance, but by an

operational decision to provide a single repair crew that can handle only one

unit at a time.
The state transition d.iagram for the system using two repair crews is shown

in Fig. 7l.l7a. Since the availability can be calculated from the component

availabilities, as in Eq. 10.95, we shall not pursue the Markov solution further.

Our attention is directed to the system using one repair crew, indicated by

the state transition diagram given in Fig. lL-I7b.

The transition matrix corresponding to Fig. I1.17& is

M - IIr u
- À . -  u

0
À

v
0

- À -  v
À

( 1 1 . 1 1 0 )

(b)

FIGURE ll.1? State transition diagrams for an active parallel system: (a) two repair crews,

(ô) one repair crew.
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this matrix along with Eq. 11.102 toWe solve the equations obtained from

yield, after some algebra,

P ' ( * ) :

&( * )  +  & ( * )  :

and

A ( * ) - 1 -

or for the case where À/ u << 7

A ( * ) - 1 -

Thus the unavailability is roughly doubled

EXAMPLE 11.6

[' . ,1,*'(i)'] ',

['. ,1,*'(i)']-'+,

Pn(e : I t+z l * r ( i ) ' ]  
'

the results into Eq. 11.97 then

* 2 f4)'l-'ry. (u.n4)- \ u /  
- l  v 2 '

may be approximated by

2 ( ,4) '  (n.nb)
\ u /

A ( * )  -  1 -  [ ,  *  r À
L u

usual case where À,/u 11 1, this

[' . ,1,* (i)'] '(i)'

(i)'
if only

( 1 1 . 1 1 1 )

(  1  1 . 1  1 2 )

2^2
q '

u'

yields for the

(  1  1 . 1  1 3 )

steady-stateSubstitution of
availability

For the

A ( * ) - 1 -

The loss in availability because a second repair crew is not on hand can be
determined by comparing these expressions to those obtained for system
availability when there are two repair crews. From Eq. 10.95, with Ir.' : 2,
we have

( r  1 . 1 1 6 )

(  I  1 . 1  1 7 )

one repair crew is present.

A system has an availability of 0.90. Two such systems, each with its own repair crew,
are placed in parallel. \&rhat is the availability

( a) for a standby parallel configuration with perfect switching and no failure of the
unit in standby;

( ô) for an active parallel configuration?

( c) \t[hat is the availability if only one repair crew is assigned to the active parallel con-
flguration?



A ( * ) - 1 -

(ô )  From Eq.  11 .116,

A ( * ) - 1 -

(  c)  From Eq. 11.114,

Introduction to Rcliability Enginemng

Solution The system availability is given by A(oo) : v/ (u + À). Therefore u/ À :

A ( * ) / f l  -  a 1 . o ; ) : 0 . 9 /  ( 1  -  0 . 9 )  : 9 ;  À /  z : 0 . 1 1 1 1 .

(a)  From Eq.  11.106,

( 0 . 1 1 1 1 ) 2 :0 .989.
1 + 0 . 1 1 1 1  + ( 0 . 1 1 1 l ) ' �

( 0 . 1 1 1 1 ) ' � :0 .990.
l + 2 x 0 . 1 1 1 1 + ( 0 . 1 1 1 l ) ' �

2  x  ( 0 . 1 1 1 1 ) 2 :0 .980.A ( * ) - 1 -
|  +  2 x  0 . 1 1 1 1  +  2  x  ( 0 . 1 1 1 1 ) 2
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Exercises

ll.l Two stamping machines operate in parallel positions on an assembly

line, each with the same MTTF at the rated speed. If one fails, the other

takes up rhe load by doubling its operating speed. When this happens,

however, the failure rate also doubles. Assuming no repair, how many

MTTF for a machine at the rated speed will elapse before the system

reliabil ity drops below (a) 0.99, (Ô) 0.95, (c) 0.90?

11.2 Enumerate the 16 possible states of a four-component system by writing

a table similar to Table 11.1. For the following configurations which are

the failed states?

ffi# LEI-JL1-Lts

(a) (b)
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ll.3 Consider a system consisting of two identical units in an active parallel
configuration. The units cannot be repaired. Moreover, because they
share loads, the failure rate À* of the remaining unit is substantially
larger than the unit failure rates when both are operating.

(a) Find an approximation for the system reliability for a short period
of t ime ( i .e. ,  Àl  << 1 and À*r << 1).

(b) How large must the ratio of tr* / À become before the MTTF of the
system is no greater than that for a single unit with failure rate À?

ll.4 Repeat Exercise 11.1 for the standby configurations shown in Fig. 11.14.

11.5 For the idealized standby system for which the reliability is given by
Eq.  17 .52 ,

(a) Calculate the MTTF in terms of À.

(b) Plot the time-depend.ent failure rate À(/) and compare your results
to the active parallel system depicted in Fig. 9.2b.

l l.6 Verify Eq.. 77.42 through 11.45.

11.7 Calculate the variance for the time-to-failure for two identical units,
each with a failure rate À, placed in standby parallel configuration, and
compare your results to the variance of the same two units placed in
active parallel configuration. (Ignore switching failures and failures in
the standby mode.)

11.8 Derive E,q. 17.52 assuming that À6 : tro from the beginning.

11.9 Under a specified load the failure rate of a turbogenerator is decreased
by 30% if the load is shared by two such generators. A designer must
decide whether to put two such generators in active or standby parallel
configuration. Assuming that there are no switching failures or failures
in the standby mode,

(a) \tVhich system will yield the larger MTTF?

(b) What is the ratio of MTTF for the two systems?

ll. l0 Show that Eq. 77.64 reduces to Eq. 11.52 as À* -+ 0.

l1.ll Consider the following configuration consisting of four identical units
with failure rate À and with negligible switching and standby failure
rates. There is no repair.

(a) Show that the reliability can be expressed in terms of the Poisson
distribution discussed in Chapter 6.

(b) Evaluate the reliability in the rare-event approximation for small À2.
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(c) Compare the result from Ô to the rare-event approximation for

four identical units in active parallel configuration, as developed
in Chapter 9, and evaluate the reliabilities for À, : 0.1.

l l . l2  Ver i$ '  Eq.  11.68.

ll.l3 For the following system, assume unit failure rates À, no repair, and
no switching or standby failures.

(a) Calculate the reliability.

(b) Approximate the result by the rare-event approximation for small
Àt, and compare your result to that for four units in an active
parallel configuration.

I1.14 Consider a standby system in which there is a sr.vitching failure probabil-
iry p and a failure rate in the standby mode of Ài.

(a) Draw the transition diagram.

(b) Write the Markov equations.

(.) Solve for the system reliability.

(d) Reduce the reliability to the situation in which the units are identi-
cal ,  À, , , :  À,  :  À,  Àf  :  À.

11.15 A design team is attempting to optimize the reliability of a navigation
device. The choices for the rate gyroscopes are (o) a hot standby system
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consisting of two wroscopes, and (b) a 2/3 voting system consisting of
three gyroscopes. The mission time is 20br, and the gyroscope failure
rate is 3 x 10-5 / hr. What is the greatest probability of switching failure
in the hot standby system for which mission reliability is greater than
that of the 3 system? Assume that failures in logic on the 2/3 systen
can be neglected. (Hint: Assume rare-event approximations for the
gyroscope failures.)

11.16 Derive Eq. 11.72.

ll.l7 (a) Find the asymptotic availability for a standby system with two repair
crews; the Markov matrix is given by Eq. 11.108. Assume that
À , :  À r :  0 . 0 1 / h r  a n d  v  :  0 . 5 / h r .

(b) Evaluate the asymptotic availability for a standby system for the
same. data, except that there is only one repair crew. The Markov
matrix is given by Eq. 11.96.

11 .18  Der ive  Eqs .  11 .82  and 11 .83 .

11.19 A system has an asymptotic availability of 0.93. A second redundant
system is added, but only the original repair crew is retained. Assuming
that all failures are revealed, estimate the asymptotic availability.

11.20 Derive Eqs. 11.103 through 11.105.

11.21 Assume that the units in Exercise 11.11 all have fâilure and repair rates
À and z. A single crew repairs the most recently failed unit first.

Determine the asymptotic availability in terms of z and À.

Approximate your result fbr the case À/ u 11 l.

Compare your result to that for the same units in active parallel
configuration when À/ v : 0.02.

11.22 Consider the 2/3 standby configuration shown on the following page.
It consists of three identical units; two units are required for operation.
If either unit a or c fails, unit ô is switched on. Ignore switching failures
and repair, but assume failure rate À and À* in the operating and
standby modes.

(a) Enumerate the possible system states and draw a transition di-
agram.

(b) Write the Markov equations for the system.

11.23 Two ventilation units are in active parallel configuration. Each has an
MTTF of 120 hr. Each is attended by a repair crew, and the MTTR is
known to be 8 hr.

(a) Calculate the availability, assuming that either unit can provide

adequate ventilation.

(a)

(b )

( c )
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(b) The units are replaced by new models with an MTTF of 200 hr.

Can the staff be reduced to one repair crew without a net loss of

availability? (Assume that the MTTR remains the same.)

L1.24 Assume rhar the units in Exercise ll .22 have identical repair rates /.

(a) Enumerate the system states and draw a transition diagram.

(b) Write the transition matrix, M, for the Markov equations.

(c) Determine the asymptotic value of the system availability.
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T2.I INTRODUCTION

The discussion of system safety analysis in this chapter presents a different
emphasis from the more general reliability considerations considered thus
far. \Arhereas all failures are included in the determination of reliability, our
attention now is turned specifically to those that may create safety hazards.
The analysis of such hazards is often difficult, for with proper precautions
taken in design, manufacture, and operation, failures causing safety problems
should occur infrequently. Thus, the small probabilities encountered compli-
cates the collection of data needed for analysis and making improvements.
As a result, increased importance is assumed by more qualitative methods as
well as by the engineer's understanding of the hazards that may arise. These
difficulties notwithstanding, the potentially life-threatening nature of the haz-
ards under consideration make safety analysis an indispensable componenr
of reliability engineering.

Safety systems analysis has derived much of its importance from its associa-
tion with industrial activities that may engender accidents of grave conse-
quences. If we examine, in detail, historic accidents such as the disastrous
chemical leak at Bhopal, India in 1984, or the 1986 destruction of the nuclear
reactor at Chernobyl, some of the difficulties in the safety assessment of such
systems begins to become apparent. First, the system is likely to have very
small probabilities of a catastrophic failure, because it has redundant configu-
rations of critical components. It then follows that the events to be avoided

361
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have either never occurred, or if they have, only rarely. There are few if any

sratistics on the probabilities of failures of the system as a whole, and reliability

testing on the system level is likely to be impossible. Secondly, whatever acci-

dents have occurred have rarely been the result of component failures of a

rype that would be easy to predict through reliability testing. Rather, the web

of events leading to the accident is usually a complex of equipment failures,

faulty maintenance, instrumentation and control problems, and human

errors.
Safety analysis is essential for the full range of products and systems, from

the large technological systems just discussed to small consumer items. For

even though the later may not pose the threat of single catastrophic accidents,

their production in large quantities leads to the possibility of many individual

incidents, each capable of causing injury or death. Here again, the limitations

of standard reliability testing and evaluation procedures are apparent. The

primary challenge to the product development personnel is to understand

the wide variety of environments and circumstances under which the product

will be used, and to try to anticipate and protect against faulty installation or

maintenance, misuse, inappropriate environments, and other hazards that

may not be revealed through standard reliability tests. An additional imperative

is to examine not only how the product may fail in a hazardous manner,

but also how the user may be harmed during normal operation. Adequate

protection must be afforded from the rotating blades, electrical filaments,

flammable liquids, heated surfaces, and other potential hazardous features

that are necessary constituents of many industrial and consumer products.

Even though hazard creation most often involves the intertwined effects

of equipment failure and human behavior, analysis is expedited by examining

them separately. Thus in the following section we build on the discussion in

the preceding chapters to focus on those particular asPects of equipment

failure most closely related to safety hazards. In Section 12.3 the importance

of the human element is emphasized. In that discussion the primary focus is

on the operations of industrial facilities where efforts may be much more

effective in reducing human error than they are likely to be in modi$ing

consumer psychology. With the background gained in examining the hazard-

ous aspects of equipment and of human causes, we are prepared in Section

L2.4 for an overview of those analytical methods that have been developed to

rationalize the discussion of safety analysis. Sections 12.5 through 12.7 then

focus on the construction and evaluation of fault trees.

12,2 PRODUCT AND EQUIPMENT IIAZARDS

In examining equipment with safety repercussions, it is useful once again to

frame the analysis in terms of the bathtub curve, and consider infant mortality,

random events, and aging as hazard causes. Most of the materials discussed

in earlier chapters regarding these causes remains relevant. Now, however,

we must extend the level of analysis to even less probable and therefore

possibly more bizarre sets of causes. We also must consider not only product
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or equipment failures but also potential hazards created in the course of

product usage.

Desisn shortcomings or variability in the production process are the most

likely causes of early or infant mortality failures. Changes in details late in

the design process to facilitate manufacture or construction, which are not

thoroughly checked to ensure that a new hazard hasn't been introduced, may

be particularly dangerous. Such a change was implicated, for example, in the

1981 collapse of the Kansas Ciq' Hyatt Regency walkways that resulted in 114

fatalities. Failure to meet materials specification, improvisation in construction

procedures or unsafe econornic choices made in manufacturing processes

may all defeat the integrity of the original design and result in weakened

systems that are then prone to infant mortaliqz hazards. Faulty installations

of hot water heaters, stoves or other consumer products are also prone to

create infant mortality hazards.

Random failures or hazards are characterized by chance occurrences that

are independent of product age. In general they are caused by an environment

that is unanticipated or for which the product does not have the strength to

withstand. They tend to be brought about because the product is used-or

misused-under conditions that were not contemplated in the design, or

were thought to be so improbable that they were lost in the cost-performance

trade-offs. The largest danger in creating a new product is arguably not that

there is an inadequate safety margin against a known ltazard, but that a

potential hazard completely escapes the attention of the design team. Even

if a thorough study reveals all significant Itazards, however, many decisions

must be faced with safery implications.

Governmental bodies, professional organizations and insurance under-

writers' codes of standards provide a basis for assessing the level of potential

hazards for many products. Often such standards must be promulgated by

specialized bodies cognizant of uniqtte Itazard combinations of particular

industries. The safety of food processing equipment, for example, is compli-

cated by the conflictinu requirements that machinery be readily accessible

fbr cleaning to prevent unsanitary conditions from arising, and the need for

extensive guard equipment to protect workers from hot surfâces, cutting

blades, and other mechanical hazards. \tVhile standards and cod.es of good

practice provide a point of d,eparture for the analysis of hazards, new designs

and novel applications may be expected to present potentially hazardous

conditions that have not been contemplated in the standards. Thus to make

informed safety decisions it is incumbent upon the product development

personnel to gain a thorough understanding of the product and its re-

quired use.

To understand the difficult trad.e-offs that must be fâced, consider a

television monitor. Ventiiation slits are required to prevent overheating and

to allow the electronics to operate at a reasonable temperature. More and

larger ventilation paths will likely improve reliability and prolong the life of

the set. However, the designer must also consider unusual locations where

ventilation is curtailed, where debris is piled on top or stacked against the
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monitor or where other cooling impediments are encountered. Safety analysis

then requires not only the determination of the effects of these situations on

set life, but also whether there is an unacceptable risk of fire. Conversely, if

the ventilation slits are made larger to add an extra margin of cooling capaciq,

then the increased danger that a child will succeed in inserting a kitchen

knife or other object through a slit and come into contact with high voltage

must be addressed. Thirdly, the magnitude of the hazard created if fluid is

spilled or the monitor immersed must be considered to determine whether

fluid entering through the ventilation slits will result in a benign failure or

an unacceptable risk of electrical shock.
The engineering for safety must go beyond the contemplation of unusual

accidents and inadvertent misuse to consider situations where the user behav-

ior compounds potential hazards. From the nineteenth-century captains of

Mississippi river boats, who blocked safety valves in order to get more pressure

and more performance from their boilers, to present day motorists, who

negate the effects of antilock breaks by driving more aggressively on wet

pavements, product users frequently overcome safety features in order to

enhance performance at the cost of increased risk. Operational limits ex-

ceeded to increase performance, safety guards removed to facilitate mainte-

nance, and warnings ignored as a result of past false alarms are among the

plethora of causes of increased risk induced by unintended usage. Such behav-

ior further complicates the already difficult legal and ethical issues raised in

determining the extent to which users must be protected from their deliberate

unsafe practices.
Product modifications or modernizations likewise may introduce new and

unanticipated hazards. Motors modified for racing, aircraft converted from

civilian to military or from passenger to cargo use, robots or machinery devoted

to new and novel manufacturing tasks all require careful scrutiny to ensure
that the safety integrity of the original design is not compromised. But often

modifications take place years into the product life, when knowledge of the

original design calculations has faded, components suppliers have changed,
and technology has evolved. An example of particularly ill-conceived design

modifications were those made to the steamship Birkenhead. In converting this

warship to a troop carrier large passageways were cut through the water-tight
bulkheads to provide more light, air and spaciousness for the troops. But the

penetrations not only destroyed the water-tight compartmentalization of the
ship but also greatly weakened the bulkheads. Thus when the ship struck a

rock in 1852, it both flooded very rapidly and broke in two, resulting in over
400 fatalities. \A4rile engineering safety practices have matured a great deal
since that time, it, like other historical disasters, serves as a reminder of

the potential consequences of ignorance in making ad-hoc modifications to

existing systems.
Even after provisions have been made to minimize the dangers of infant

mortality or random hazards, there remains the problem of dealing with the

aging failures that r.rray be expected to become increasingly pronounced as
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the product approaches the end of its useful life. Normally, a target life is
stipulated as a part of the design process. Assuming adequate maintenance
is provided to replace those components with shorter lives-such as spark
plugs, brake linings, and tires on automobiles, for example-failures attribut-
able to aging should not create significant risk within the design life. In
relatively few situations, however, can it be guaranteed that a product or
system will not continue to be used well beyond its design life. To be sure,
in some areas of rapid technological development, such as in microprocessor
development, products may become obsolescent and be replaced long before
aging effects become important. Likewise, safety-critical systems may be li-
censed or controlled for removal from service after the number of operating
hours for which previous analysis and/ or life tests have verified their capability.
Military aircraft and nuclear reactor pressure vessels, for example may fall
into this category. More often than not however, the increasing cost of mainte-
nance and recovery from breakdown is weighed against replacement cost in
determining at what point a product is retired.

Even where there are strong safety implications, a system can be allowed
to operate well beyond its target design life provided dependable inspection
and repair protocols are employed. The knowledge of the aging process
that has been gained through the years of operation, however, must provide
inspection methods capable of detecting the aging phenomena early enough
to repair or take the system out of service before the deterioration reaches a
hazardous threshold. Many commercial aircraft, for example, have been al-
lowed to operate under such scrutiny beyond the design life originally targeted.

With consumer products the situation is likely to be quite different. For
unless there is a clear and obvious danger, the user is prone to run the product
until it fails and then decide whether to replace or repair it. The critical
design consideration here is to ensure that the wearout modes are benign.
The challenge is simply illustrated with a hot plate, coffee maker, or other
appliance with a heating element. Suppose the design includes a fuse to
prevent fire in the event that the heater fails in a dangerous mode. Then,
the heater failure had better occur before the fuse deterioration becomes a
problem. One complicated situation, in fact, was recently in the courts, where
a consumer product design was "improved" by incorporating a heater with
a longer design life. However, after the new design resulted in a number of
fires it was discovered that the melting temperature of the fuse gradually
increased with time to the point where by the time the heater finally failed,
the fuss was no longer operable.

The foregoing discussion provides only the beginnings for the level of
sophistication needed to ferret out the potential hazards thatmay be brought
about by infant mortality, random and aging phenomena, and their interac-
tions. The analytical methods introduced in Section 12.4 provide techniques
for more structured analysis. Use of these should reduce the possibility of
potentially significanthazards that escape consideration altogether. In addi-
tion, the reading of case histories in newspapers and the professional literature
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over a period of years is invaluable in enhancing one's ability to identiff and

eliminate potential hazards before they become safety problems.

I2.3 HUII,TAN ERROR

All engineering is a human endeavor, and in the broadest sense most failures

are due to human causes, whether they be ignorance, negligence, or limita-

tions of vigilance, strength, and manual dexterity. Designers may fail to fully

understand system characteristics or to anticipate properly the nature and

magnitudes of the loading to which a system may be subjected or the environ-

mental conditions under which it must operate. Indeed, much of engineering

education is devoted to understanding these and related phenomena. Simi-

larly, errors committed during manufacture or construction are attributable

either to the personnel involved or to the engineers resPonsible for the setuP

of the manufacturing process. Quality assurance programs have a central role

in detecting and eliminating such errors in manufacture and construction.

We shall consider here only human errors that are committed after design

and manufacture; those that are committed in the operation and maintenance

of a system. This is a convenient separation, since design and manufacturing

errors, whether they are considered human or not, appear in the as-built

system as shortcomings in the reliability of the hardware.
Even with our attention confined to human errors appearing in the

operation and maintenance of a system, we find that the uncertainties involved

are generally much greater than in the analysis of hardware reliability. There

are three categories of uncertainty. First, the natural variability of human

performance is considerable. Not only do the capabilities of people differ,

but the day-to-day and hour-to-hour performance of any one individual also

varies. Second, there is a great deal of uncertainty about how to model probabi-

listically the variability of human performance, since the interactions with the

environment, with stress, and with fellow workers are extremely complex and

to a large extent psychological. Third, even when tractable models for limited

aspects of human performance can be formulated, the numerical probabilities

or model parameters that must be estimated in order to apply them are usually

only very approximate, and the range of situations to which they apply is

relatively narrow.
It is, nevertheless, necessary to include the effects of human error in the

safety analysis of any complex system. For as the consequences of accidents

become more serious and more emphasis is put on reliable hardware and

highly redundant configurations, an increasing proportion of the risk is likely

to come from human error, or more accurately from complex interactions

of human shortcomings and equipment problems. Even though accurate

predictions of failure probabilities are problemmatical, a great deal may be

gained from studying the characteristics of human reliability and contrasting

them with those of hardware. From such study comes an insight into how

systems may be designed and operated in order to minimize and mitigate
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Stress level
FIGURE l2.l The effect of stress level on human performance.

accidents in which the operating and maintenance staff may play an im-

portant role.
It has been pointed out* that increasingly there is a centralization of

systems, whether they be larger-capacity power and chemical plants, aircraft

carrying greater number of passengers, or structures with larger capacities.

Since human error in the operation of many such centralized systems may

lead to accidents of major consequence to life and property, there has been

an increased emphasis on plant automation. There are certainly limitations

on such automation, particularly when the uncertainty of how an operator

may react to a situation is overriden by the need for human adaptability in

dealing with conditions that have not or could not be incorporated into the

automated control system. Moreover, automated operation does not tend to

eliminate humans from consideration, but rather to remove them to tasks

of two quite dissimilar varieties; routine tasks of maintaining, testing, and

calibrating equipment; and protective tasks of watching for plant malfunctions

and preventing their accident propagation. These two classes of tasks tend to

enter system safety considerations in different ways. \Arhen humans err in

routine testing, maintenance, and repair work, they may introduce latently

risky conditions into the plant.A.y errors that they make in taking protective
actions under emergency conditions may increase the severity of an accident.

The problems inherent in maximizing human reliability for the two classes

of tasks may be viewed graphically in Fig. 12.1. Generally, there is an optimum

level of psychological stress for human performance. When the level is too

low, humans are bored and make careless errors; too high a level may cause

them to make a number of inappropriate, near-panic responses to a situation.

To illustrate, consider the example of flying a commercial airliner. The pilot's
monitoring of controls during level, uneventful flight in a highly automated

xJ. Rasmussen, "Human Factors in High Risk Technology," in High Rish Technology, A. E. Green

(ed.) ,  Wi ley,  NY 1982.
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aircraft would fall on the low level of the curve. The principal danger here

is carelessness or lack of attention. Normal take-offs and landings are likely

to be closer to the optimum stress level for attentive behavior. At the other

extreme pilot reaction to major inflight emergencies, such as onboard fires

or power failures, is likely to be degraded by the high stress level present.

Because of the quite different factors that come into play, we shall now consider

human reliability and its degradation under the two limiting situations of very

routine tasks and tasks performed in emergency situations.

Routine Operations

For purposes of analysis it is useful to classify human errors as random, system-

atic, or sporadic. These classes may be illustrated by considering the simple

example, shown in Fig. 72.2, of the ability to hit a target.* Random errors are

dispersed about the desired value without bias; that is, they have the true

mean value (in x and y), but the variance may be too large. These errors may

be corrected if they are attributable to an inappropriate tool or man-machine

interface. For example, if it is not possible to read instruments finely enough or

to adjust setting precisely enough, such improvements are in order. Similarly,

training in the particular task may reduce the dispersion of random errors.

Figure 12.2b illustrates systematic errors whose dispersion is sufficiently small,

but with a bias departing from the mean value. Such bias rnay be caused by

tools or instruments that are out of calibration, or it may come from incorrect

performance of a procedure. In either case corrective measures may be taken.

More subtle psychological factols-ssçfi as the desire of an inspector not to

miss any faulty parts, and thus declaring a good many faulty even though they

are not-may also cause bias errors.
Perhaps sporadic errors, pictured in Fig. I2.2c, are the most difficult to

deal with, for they rarely show observable patterns. They are committed when

the person acts in an extreme or careless way: forgetting to do something

altogether, performing an action that was not called for, or reversing the

order in which things are done. For example, a meter reader might, in taking

a series of meter readings, read a wrong meter. Again, careful design of the

man-machine interface can minimize the number of sporadic errors. Color,

shape, and other means can be used to differentiate instruments and. control

and to minimize confusion. Sporadic errors, in particular, are amplified by

the carelessness inherent in low-stress situations, as well as by the confusion

of high-stress situations.
Let us first examine sporadic errors made in routine situations. Certainly,

under any circumstances, errors are minimized by a well-designed work envi-

ronment. Such design would take into account all the standard considerations

or human factors engineering: comfortable seating, adequate light, tempera-

ture and humidity control, and well-designed control and instrument panels

to minimize the possibilities for confusion. The attention span that can be

* H. R. Guttmann, unpublished lecture notes, Northwestern University, 1982.
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/c/ Random error /ô/Systematic enor (c/Sporadicenor

I|IGURE 12.2 Classes of human error.

expected for routine tasks is still limited. As indicated in Fig. 12.3, attention
spans for detailed monitoring tend to deteriorate rapidly after about half an
hour, indicating the need for frequent rotation of such duties for optimal
performance. The same deterioration may be expected for very repetitive
tasks, unless there is careful checking or other intervention to insure that
such deterioration does not take place.

Probably one of the most important ways in which system reliability is
degraded is through the dependencies introduced between redundant compo-
nents during the course of routine maintenance, testing, and repair. An
example is the turning off of both of the redundant auxiliary feedwater systems
at the Three Mile Island reactor. The point is that if technicians perform a
task incorrectly on one piece of equipment, they are likely to do it incorrectly
on all like pieces of equipment. This problem may be countered, at least in
part, by a variety of techniques. Diversity of equipment is one, for just as the
hardware will not be subjected to the same failure modes, the maintenance
procedures will also be different. Staggering the times or the personnel doing

0 r 1  I
Time, (hours)

FIGURE 12.3 Vigilance versus time.
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maintenance on redundant equipment also tends to reduce dependencies,

although some smaller degree of dependency may remain through the use

of common tools or incorrect training procedures.
Independent checking of procedures also decreases both the probability

of failure and the degree of dependency. Even here, however, psychological
factors limit effectiveness. When the inspector and the person performing

the maintenance have worked with each other for an extended period of

time, the inspector may tend to become less careful as he or she grows more

confident of the colleague's abilities. Similarly, if nvo independent. checks are

to be performed, they are unlikely to be truly independent, for often the very

knowledge that a procedure is being checked twice will tend to decrease the

care with which it is done.
Reliability is also degraded when operating and maintenance personnel

inappropriately modify or make shortcuts in operating and maintenance pro-

cedures. Often operating and maintenance personnel gain an understanding

of the system thatwas not available at the time of design and modi$, procedures

to make them more efficient and safer. The danger is that, without a thorough

design review, new loadings and environment degradation may be introduced,

and component dependencies may increase inadvertently. For example, in

the 1979 crash of the DC-l0 in Chicago, it is thought that a modified procedure

for removing the engines for inspection and preventive maintenance led to

excessive fatigue stresses on the engine support pylon, causing the engine to

break off during takeoff.
Although the methodology is not straightforward, data are available on

the errors committed in the course of routine tasks. Extensive efforts have

been made to develop task analysis and simulation methods.* Failure probabili-

ties are first estimated for rudimentary functions. Then, by combining these

factors, we can estimate probabilities that more extensive procedures will
engender errors.

Emergency Operations

At the high-stress end of the spectrum shown in Fig. 12.7 are the protective
tasks that must be performed by operations personnel under emergency condi-

tions to prevent potentially dangerous situations from getting completely out

of hand. Here a well-designed, man*machine interface, clear-cut procedures,
and thorough training are critical, for in such situations actions that are not

familiar from routine use must be taken quickly, with the knowledge that

mistakes may be disastrous. Moreover, since such situations are likely to be

caused by subtle combinations of malfunctions, they may be confusing and

call for diagnostic and problem-solving ability, notjust the skill and rule-based
actions exercised for routine tasks.

* A. D. Swain, and H. R. Guttmann, Handbook of Human Reliability Analysis tuith Emphasi.s on I'Juclear

Pouer Ptant Apptications, U.S. Nuclear Regulatory Commission, NUREG./CR-l287, 1980.
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Und.er emergency conditions conflicting information may well confuse

operators who then act in ways that further propagate the accident. With

proper training and the ability to function under psychological stress, however,

they may be able to solve the problem and save the day. For example, the

confusion of the operators at the Three Mile Island reactor caused them to

turn off the emergency core-cooling system, thus worsening the accident. In

contrast, the pilot of a Boeing 767 managed to make use of his earlier experi-

ence as an amateur glider pilot and safely land his aircraft after a series of

equipment failures and maintenance errors had caused the plane to run out

of fuel while in flight over Canada.
There are a number of common responses to emergency situations that

must be raken into consideration when designing systems and establishing

operaring procedures. Perhaps the most important is the incredulity response.

In the rare event of a major accident, it is common for an operator not to

believe that an accident is taking place. The operator is more likely to think

that there is a problem with the instruments or alarms, causing them to

produce spurious signals. At installations that have been subjected to substan-

tial numbers of false alarms, a real one may very well be disbelieved. Systems

should be carefully designed to keep spurious alarms to a minimum, and

straightforward checks to distinguish accidents from faulty instrument perfor-

mance should be provided. In some situations it is desirable to mandate

that safety actions be taken, even though the operator may feel that faulty

instruments are the cause of the problem.
A second common reaction to emergencies is reverting to stereotyPe.

The operator reverts to the stereot)?ical response of the population of which

he or she is a part, even though more recent training has been to the contrary.

For example, in the United States turning a light or other switch "tp" means

that it iS "on." In Europe, hOwever, "down" iS "on." Thus, althOugh Ameri-

cans may be trained to put a particular switch down to turn it on, under the

time pressure of an emergency they are likely to revert to the population

stereotype and try to put the switch up. The obvious solution to this problem

is to take great care in human factors engineering not to violate population

stereotypes in the design of instrumentation and control systems. This problem

may be aggravated if operators from one culture are transferred to another,

or if care is not taken in the use of imported equipment.

Finally, once a mistake is made, such as placing a switch in the wrong

position, in a panic an operator is likely to repeat the mistake rather than

think through the problem. This reaction, as well as other inappropriate

emergency responses, must be considered when deciding the extent to which

emergency actions should or can be automated. On the one hand, when there

is extreme time pressure, automated protection systems may eliminate the

errors discussed. At the same time, such systems do not have the flexibility

and problem-solving ability of human operators, and these advantages may

be of overwhelming importance, assuming that there is time for the situation

to be properly assessed.
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In summary, to ensure a high degree of human reliability in emergency
situations, control rooms, whether they be aircraft cockpits or chemical plant
control installations, must be carefully designed according to good human
factors practice. It is also important that the procedures for all anticipated
situations are readily understandable, and finally, that operators are drilled
at frequent intervals on emergency procedures, preferably with simulators
that model the real conditions.

Even though we may characterize human behavior under emergency
conditions and suggest actions thatwill improve human reliability, it is difficult
indeed to obtain quantitative data on failure probabilites. Aswe have indicated,
such situations happen only infrequently and often they are not well docu-
mented. Moreover, it is difficult to obtain a realistic response from simulator
experiments when the subjects know that they are in an experiment and not
a life-threatening situation.

12.4 METHODS OF ANALYSIS

Probably the most important task in eliminating or reducing the probability
of accidents is to identi$r the mechanisms by which they may take place. The
ability to make such identifications in turn requires that the analyst have a
comprehensive understanding of the system under consideration, both in
how it operates and in the limitations of its components. Even the most
knowledgeable analysts are in clanger of missing critical failure modes, how-
ever, unless the analysis is carried out in a very systematic manner. For this
reason a substantial number of formal approaches have been developed for
safety analysis. In this section we introduce three of the most widely used:
failure modes and effects analysis, event trees, and fault trees. In later sections
the use of fault trees is developed in more detail.

Failure Modes and Effects Analysis

Failure modes and effects analysis, usually referred to by the acronym FMEA,
is one of the most widely employed techniques for enumerating the possible
modes by which components may fail and for tracing through the characteris-
tics and consequences of each mode of failure on the system as a whole. The
method is primarily qualitative in nature, although some estimates of failure
probabilities are often included.

Although there are many variants of FMEA, its general characteristics
can be illustrated with the analysis of a rocket shown in Fig. 12.4.In the left-
hand column the major components or subsystems are listed; then, in the
next column the physical modes by which each of the components may fail
are given. This is followed, in the third column, by the possible causes of each
of the failure modes. The fourth column lists the effects of the failure. The
method becomes more quantitative if an estimate of the probability of each
failure mode is made. Criticality or an alternative ranking of the failure's
importance is usually included to separate failure modes that are catastrophic
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from those that merely cause inconvenience or moderate economic loss. The

final column in most FMEA charts is a listing of possible remedies.

In a more extensive FMEA the information shown in Figure 12.4 may be

expanded. For example, failures are not categorized as simply critical or not

critical but by four levels denoting seriousness.

1. Negligible-loss of function that has no effect on the system.

2. Marginal-a fault that will degrade the system to some extent but will not

cause the system to be unavailable, for example, the loss of one of two

redundant pumps, either of which can perform a required function.

3. Critical-a fault that will completely degrade system performance, for

example, the loss of a component that renders a safety system unavailable.

4. Catastrophic-a fault that will have severe consequences and perhaps cause

injuries or fatalities, for example, catastrophic pressure vessel failure.

Additional columns also may be included in FMEA. A list of symptoms

or methods of detection of each failure mode may be very important for safe

operations. A list of compensating provisions for each failure mode may be

provided to emphasize the relative seriousness of the modes. In order to

concentrate improvement efforts on eliminating those having the widest eÊ

fects, it is common also to rank the various causes of a particular mode

according to the percentage of the mode's failures that they incur.

The emphasis in FMEA is usually on the basic physical phenomena that

can cause a device or component to fail. Therefore, it often serves as a suitable

starting point for enumerating and understanding the fâilure mechanisms

before proceeding to one of the other techniques for safety analysis. To

understand better the progression of accidents when they pass through several

stages and to analyze the effects of component redundancies on system safety,

engineers often supplement FMEAwith the more graphic event-tree and fault-

tree methods for quanti$ring system behavior during accidents.

Event Trees

In many accident scenarios the initiating event-say, the failure of a compo-

nent-may have a wide spectrum of results, ranging from inconsequential to

catastrophic. The consequences may be determined by how the accident

progression is affected by subsequent failure or operation of other components

or subsystems, particularly safety or protection devices, and by human errors

made in responding to the initiating event. In such situations an inductive

method may be very useful. We begin by asking "what if " the initiating event

occurs and then follow each of the possible sequences of events that result

from assuming failure or success of the components and humans affected as

the accident propagates. After such sequences are defined, we may attempt

to attach probabilities to them if such a quantitative estimate is needed.

The event tree is a quantitative technique for such inductive analysis. It

begins with a specific initiating event, a particular cause of an accident, and
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then follows the possible progressions of the accident according to the success

or failure of other components or pieces of equipment. Event trees are a

particular adaptation of the more general decision-tree formalism that is

widely employed for business and economic analysis. They are quite useful

in analyzing the effects of the functioning or failure of safety systems in

response to an accident, particularly when events follow with a particular time

progression. The following is a very simple application of event-tree analysis.

Suppose that we want to examine the effects of the power failure in a

hospital in order to determine the probability of a blackout, along with other

likely consequences. For simpticity we assume that the situations may be ana-

lyzed in terms of just three components: (1) the ofÊsite local utility power

sysrem that supplies electricity to the hospital; (2) a diesel generator that

supplies emergency power, and (3) a voltage-monitoring system that monitors

the ofÊsite power supply and, in the event of a failure, transmits a signal that

starts the diesel generator.
We are concerned with a sequence of three events. The initiating event

is the loss of ofÊsite power. The second event is detection of the loss and

subsequent functioning of the voltage-monitoring system; and the third event

is the start-up and operation of the diesel generator. This sequence is shown

in the event tree in Fig. 12.5. Note that at each event there is a branch

corresponding to whether a system operates or fails. By convention, the upward

branches signify successful operation, and the lower branches failure.

Note that for a sequence of N events there will be 2N branches of the

tree. The number may be reduced, however, by eliminating impossible

branches. For example, the generator cannot start unless the voltage monitor

functions. Thus the path is impossible (has a zero probability) and can be

pruned from the tree, as in Fig. 12.6.
We may follow an event tree from left to right to find the probabilities

and consequences of differing sequences of events. The probabilities of the

various outcomes are determined by attaching a probability to each event on

the tree. In our tree the probabilities are P; for the initial event, P, for the

failure of the voltage monitoring system, and { for the failure of the diesel

generator. With the assumption that the failures are independent, the proba-

bility of a blackout is therefore PiP,, * Pt(\ - P,,) Pn.

Off-site
power

Voltage
monitor

Diesel
generator

No blackout

Blackout

Blackout

Blackout

Operate

FIGURE 12.5 Event tree for power failure.



376 Introduction to Reliabikty Engineering

Off-site
poler

No blackout

Blackout

Blackout

FIGURE 12.6 Reduced event tree for power failure.

Fault Trees

Fault-tree analysis is a deductive methodology for determining the potential
causes of accidents, or for system failures more generally, and for estimating
the failure probabilities. In its narrowest sense fault-tree analysis may be looked
on as an alternative to the use of reliability block diagrams in determining
system reliability in terms of the corresponding components. However, fault-
tree analysis differs both in the approach to the problem and in the scope of
the analysis.

Fault-tree analysis is centered about determining the causes of an unde-
sired event, referred to as the top event, since fault trees are drawn with it at
the top of the tree. We then work downward, dissecting the system in increasing
detail to determine the root causes or combinations of causes of the top event.
Top events are usually failures of major consequence, engendering serious
safety hazards or the potential for significant economic loss.

The analysis yields both qualitative and quantitative information about
the system at hand. The construction of the fault tree in itself provides the
analyst with a better understanding of the potential sources of failure and
thereby a means to rethink the design and operation of a system in order to
eliminate many potential hazards. Once completed, the fault tree can be
analyzed to determine what combinations of component failures, operational
errors, or other faults may cause the top event. F-inally, the fault trèe may be
used to calculate the demand failure probability, unreliability, or unavailability
of the system in question. This task of quantitative evaluation is often of
primary importance in determining whether a final design is considered to
be acceptably safe.

The rudiments of fault-tree analysis may be illustrated with a very simple
example. We use the same problem of a hospital power failure treated induc-
tively by event-tree analysis earlier to demonstrate the deductive logic of fault-
tree analysis. We begin with blackout as the top event and look for the causes,
or combination of causes, that may lead to it. To do this, we construct a fault
tree as shown in Fig. 12.7.In examining its causes, we see that both the ofÊsite
power system andthe emergency power supply must fail. This is represented by
a fl gate in the fault tree, as shown. Moving down to the second level, we see
that the emergency power supply fails if the voltage monitor or the diesel
generator fails. This is represented by a U gate in the fault tree as shown.

Voltage
inonitor

Dieçel
generator

Operate
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FIGURE 12.7 Fault tree for blackout'

We see that the fault tree consists of a structure of OR and AND gates,

with boxes to describe intermediate events. Using the same probabilities as

in the event tree, we can determine the probability of a blackout in terms of

P;, and P,,, arrd {, the failure probabilities for off-site power, voltage monitor,

and diesel generator.
The most straightforward fault trees to draw are those, such as in the

preceding example, inwhich all the significantprimaryfailures are component

failures. If a reliability block diagram can be drawn, a fault tree can also be

drawn. This can be seen in an additional example.

Consider the system shown in Fig. 9.9. We may look at the system as

consisting of an upper subsystem (al, a2, and Ô1) and a lower subsystem (a3,

a4, and b2),in addition to component c. For a system to fail, either component

cmust fail or the upper and lower subsystems must fail. Proceeding downward,

for the upper subsystem to fail either component bl must fail or both al and

a2 must fail. Treating the lower subsystem analogously, we obtain the tree

shown in Fig. 12.8.

E)(AMPLE 12.1

Consrrucr a reliability block diagram corresponding to the fault tree in Fig. 12'7.

Solution The reliability block diagram having the same logic and failure probabil-

ity as the fault tree of Fig. 12.7 is depicted in Fig. 12.9.

12.5 FAULT-TREE CONSTRUCTION

Of the methods discussed in the preceding section, fault-tree analysis has

been the most thoroughly developed and is finding increased use for system
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FIGURE 12.8 Fault tree.

safety analysis in a wide variety of applications. It is particularly well suited to
situations in which tracing a failure to its root causes requires dissecting the
system into subsystems, components, and parts to get at the level where failure
data are available. For example, in the aforetreated hospital blackout we may
not have the test data that is required to determine P,,for the voltage monitor
or Prfor the diesel generator. We must then delve more deeply and examine
the components of these devices; we may need to construct the probability
that the voltage monitor will fail from the failure rates of its components.

FIGURE I2.9
cal power.

Reliability block diagram for electri-
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It may be argued that such dissection can also be done by subdividing

the block, upp.uring in reliability block diagrams. Although this is true, there

are some important differences. Reliability block diagrams are success-

oriented; that is, all failures are lumped tosether to obtain the probability

that a system will fail. In most reliability studies we are interested only in

knowing the reliability (i.e., the probability that the system does not fail).

ConverJely, in fault-tree analysis we are often interested only in a particular

undesirable event (i.e., a failure that leads to a safety hazard) and in calculating

the probability that it will happen. Hence failures that do not cause the safety

hazàrd, defined by the top event are excluded from consideration.

The difference berween reliability analysis and safety analysis may be

illustrated by the example of a hot-water heater. In reliability analysis-carried

out with a reliability bl,ock diagram-failure of any kind will cause failure of

the system to supply hot water. Most of these failures have no safety implica-

tions: The heatérunit fails to turn on, the tank develops a leak, and so on'

In safery analysis-using a fault tree-we would be interested in a particular

safety h'azard.such as thè explosion of the tank. The other failures listed would

not be included in the fault-tree construction'

Because of the increasing importance of fault-tree analysis, the remainder

of this chapter is devoted to it. In this section we discuss the construction of

fault trees by first giving the standardized nomenclature. Then following a

brief discussion of fàult classifications, we supply several illustrative examples.

In Sections 12.6 and, 12.7 fault trees are evaluated. In qualitative evaluation

the fault tree is reduced to a logical expression, giving the top event in

terms of combinations of primary-failure events. In quantitative evaluation

the probabiliry of the rop event is expressed in terms of the probabilities of

the primary-failure events.

Nomenclature

As we har.,e seen, the fault tree is made up of events, expressed as boxes, and

gares. Two types of gates appear, the OR and the AND gate. The OR gate as

indicated in Èig. tZ.tOais used to show that the output event occurs only if

one or more of the input events occur. There may be any number of input

evenrs of an OR gate. The AND gate as indicated in Fig. l2.l0b is used to

(a)

FIGURE 12.10 Fault-tree gates: (a) OR' (r ' )  AND'

a U b U c a f l ô f l c
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show that the output fault occurs only if all the input faults occur. There may
be any number of input faults to an AND gate.

Generally, OR and AND gates are distinguished by their shape. In free-
hand drawings, however, it may be desirable to put the U and O symbols on
the gates. Or the so-called engineering notation, in which OR is represented
by u " *" and AND by ".", may be used. Obviously, if these notations are
included, the care with which the shape of the gate is drawn becomes of
secondary importance.

In addition to the AND and OR gates, the INHIBIT gate shown in Fig.
12.lla is also widely used. It is a special case of the AND gate. The output is
caused by u single input, but some quali$'ing condition must be satisfied
before the input can produce the output. The condition that must exist is
indicated conventionally by an ellipse, which is located to the right of the
gate. In other words the output happens only if the input occurs under the
conditions specified within the ellipse. The ellipse may also be used to indicate
conditions on OR or AND gates. This is shown in Figs. 12.11b and c.

The rectangular boxes in the foregoing figures indicate top or intermedi
ate events; they appear as outputs of gates. Shape also distinguishes different
types of primary or input events appearing at the bottom of the fault tree.
The primary events of a fault tree are events that, for one of a number of
reasons, are not developed further. They are events for which probabilities
must be provided if the fault tree is to be evaluated quantitatively (i.e., if the
probability of the top event is to be calculated).

In general, four different types of primary events are distinguished. These
make up part of the list of symbols in Table 12.1. The circle describes a
basic event. This is a basic initiating fault event that requires no further
development. The circle indicates that the appropriate resolution of the fault
tree has been reached.

The undeveloped event is indicated by a diamond. It refers to a specific
fault event, although it is not further developed, either because the event is
of insufficient consequence or because information relevant to the event is
unavailable. In contrast, the external event, signified by a house-shaped figure,
indicates an event that is normally expected to occur. Thus house symbol
displays are not of themselves faults.

The last symbols in Table l2.l are the triangles indicating transfers into

(a) (b)

FIGURE l2.ll Fault-tree conditional gates.

(c)
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TABLE 12.1 Fault-Tree Symbols Commonly Used

Symbol Name Description

rï

A

\-/

A
t l
tl

A
fi

A
H

A--\ r -

À

A

Fault event; it is usually the result of the logi-

cal combination of other events.

Independent Primary Iàult event.

Fault event not fully developed, for its causes

are not known; it is only an assumed pri-

mary fault event.

Normally occttrringç basic event; it is not a

fault event.

The union operation of events; i.e., the out-

put event occurs if one or more of the in-

puts occur.

The intersection operation of events; i 'e',

the output event occurs if and only if all

the inputs occur.

Output exists when X exists and condition A

is present; this gate functions somewhat

like an AND gate and is used for a second-

ary fàult event X.

Triangle symbols provide a tool to avoid re-

peating sections of a fault tree or to trans-

fer the tree construction from one sheet

to the next. The triangle-in appears at the

bottom of a tree and represents the

branch of the tree (in this case A) shown

someplace else. The triangle-out apFlears

at the top of a tree and denotes that the

tree A is a subtree to one shown some-

place else.

sonrce: Adaptecl from H. R. Roberts, w. E. vesley, D. F. Haast, and F. F. Goldberg' Fttult 
'l'ree Handbook' u 's'

Nuclear Regulatory Commission, NUREG0492' l98l '

and out of the fault tree. These are used when more than one page is required

to draw a fault tree. A transfer-in triangle indicates that the input to a gate

is developed on another page. A transfer-out triangle at the top of a tree

indicates that it is the input to a gate appearing on another page'

In fault-tree construction a distinction is made between a fault and a

failure. The wor d Jaiture is reserved for basic events such as a burned-out

bearing in a pump or a short circuit in an amplifier. The word fault is more

all-enc6mpuriir-rg.^ Thus, if a valve closes when it should not, this may be

Rectangle

Circle

Diamond

OR Gate

AND Gate

INHIBIT Gate

Triangle-in

Triangle-out
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considered a valve fault. However, if the valve fault is due to a spurious signal
from the shorted amplifier, it is not a valve failure. Thus all failures are faults.
but not all faults are failures.

Fault Classification

The dissection of a system to determine what combinations of primary failures
may lead to the top event is central to the construction of a fault tree. This
dissection is likely to proceed most smoothly when the system can be divided
into subsystems, components, or parts in order to associate the faults with
discrete pieces of the system. Even then, a great deal of attention must be
given to the component interactions, particularly common-mode failures.
Beyond decomposing the system into components, however, we must also
examine which components are more likely to fail and study with care the
various modes by which component failure may occur.

In the material already covered, we have examined several ways of classiSr-
ing failures that are very useful for fault-tree construction. Distinguishin.g
between hardware faults and human error is essential, as is the classification
of hardware failures into early, random, and aging, each with its own character-
istics and causes. In what follows we discuss briefly two additional classifications.
The division offailures into primary, secondary, and command faults is particu-
larly useful in determining the logical structure of a fault tree. The classifica-
tion of components as passive or active is important in determining which
ones are likely to make larger contributions to system failure.

Primary, Secondary, and Command Faults Failures may be usefully classified
as primar/, secondury,and command faults.* A primary fault by definition
occurs in an environment and under a loading for which the component is
qualified. Thus a pressure vessel's bursting at less than the design pressure is
classified as a primary fault. Primary faults are most often caused by defective
design, manufacture, or construction and are therefore most closely correlated
to wear-in failures. Primary faults may also be caused by excessive or unantici-
pated wear, or they may occur when the system is not properly maintained
and parts are not replaced on time.

Secondary faults occur in an environment or under loading for which
the component is not qualified. For example, if a pressure vessel fails through
excessive pressure for which it was not designed, it has a secondary fault. Às
indicated by the name, the basic failure is not of the vessel but in the excessive
loading or adverse environment. Such failures often occur randomly an4 are
characterized by constant failure rates.

Although a component fails when it has primary and secondary faults, it
operates correctly when it has a command fault, but at the wrong time or
place. Thus, our pressure vessel might lose pressure through the unwanted
opening of a relief valve, even though there is no excessivé pressure. If the
valve opens through an erroneous signal, it has a command fault. For com-

* Fault Tree Handbooh, op. cit.
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mand failures we must look beyond the component failure to find the source

of the erroneous command.

passiue and. Actiue Faults Components may be designated as either passive or

active. Passive components include such things as pipes, cables, bearings,

welds, and bolts. They function in a more or less static manner, often acting

as transmitters of energy, such as a buss bar or cable, or of fluids such as

piping. Transmitters of mechanical loads, such as structural members, beams,

aol.r-r-tt, and so on, and connectors, such as welds, bolts, or other fasteners,

are also passive components. A passive component may usually be thought of

as a mechanism for lransmitting the output of one active component to the

input of another. In the broadest sense, the quantity transmitted may be an

elàctric signal, a fluid, mechanical loading, or arry number of other quantities.

Active components contribute to the system function in a dynamic man-

ner, altering ir Some way the system's behavior. For example, pumps and

valves modify fluid flow; relays, switches, amplifiers, rectifiers, and computer

chips modi$t electric signals; motors, clutches, and other machinery modify

the transmission of mechanical loading.

Our primary reason for distinguishing between active and passive compo-

nents is that failure rates are normally much higher for active components

than for passive components, often by two or three orders of magnitude. The

terms actiae and passiae refer to the primary function of the component'

Indeed, an active component may have many passive parts that are prone to

failure. For example, a pump and its function are active, but the pump housing

is considered passiu", èu.n though a housing rupture is one mode by which

the pump -uy fuil. In fact, one of the reasons that active components have

higher failure rates than passive ones is that they tend to be made up of many

nonredundant parts both active and passive.

Examples

We present here four examples of rather simple systems, and ones that are,

*or.ou.., readily understandable without specialized knowledge. This is con-

sistent with the philosophy that one should not attempt to construct a fault

tree until the dèsign and function of the system is thoroughly understood.

The first example is a demand failure, the failure of a motor to start; and the

second is the failure of a continuously operating system. The third involves

both start-up and operation; in the fourth the top event is a catastrophic

failure, and its .u.r.., involve faulty procedures and operator actions as well

as equipment failures.

D(AMPLE 12.2*

Draw a fault tree for the motor circuit shown in Fig. 12.12. The top event for the fault-

tree analysis is simply failure of the motor to operate'

x Adapted from J. B. Fussel in Generic Techniques in System futiabitity AssessmenL E. .f . Henley ancl

J. W. Lynn (eds.), Nordhoff, Leyden, Holland, 1976.
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Power
supPly

FIGURE 12.12 Electric motor circuit. (FromJ. B. Fussel,in GenericT'echniques
in System Rckability Assessment, pp. 133-162,E.J.Henley andJ. W. Lpn (eds.),
Martinus Nijhoff/Dr. Junk Publishers (was Sljthoff Noordhoff), Leyden, 1976,
reprinted by permission.)

Solution The fault tree is shown in Figure 12.13. Note that failures are distin-

guished as primary and secondary. For primary failures we would expect data to

be available to determine the failure probabilities. If not, further dissection of the

component into its parts might be necessary. The secondary faults are either command
faults, such as no current to the motor, or excessive loading, such as an overload in

the circuits. For these we must delve deeper to locate the causes of the faults.

D(AMPLE I2.3*

Draw a fault tree for the coolant supply system pictured in Fig. 12.14. Here the top
event is loss of minimum flow to a heat exchanger.

Solution The fault tree is shown in Fig. 72.15. Not all of the faults at the bottom

of the tree are primary failures. Thus it may be desirable to develop some of the faults,

such as loss of the pump inlet supply, further. Conversely, the faults may be considered
too insignificant to be traced further, or data may be available even though they are
not primary failures.

D(AMPLE 12.4t

Wire

Consider the sump pump system
battery-driven backup system that
a fault tree for the flooding of a

shown in Fig. 12.76. Redundance is provided by a
is activated when the utility power supply fails. Draw
basement protected by this system.

* Adapted from J. A. Burgess, "Spotting

23, r50 (1970).

f Adapted from A. H-S. Ang and W. H.

Design, Vol. 2, Wiley, New York, 1984.

Trouble Before It Happens," Machine Design, 42, No.

Tang, Probability Concepts in Engineering Planning and
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FIGURE 12.13 Fault tree for electric motor circuit. (FromJ. B. Fussel in Gmeric Techniques in
System Rzkabikty Assessment, pp. 133-162, E.J.Henley andJ. W. Lynn (eds.), Martinus Nijhoff/
Dr.Junk Publishers (was SijthoffNoordhoff), Leyden, 1976, reprinted by permission.)

Solu,tion The fault tree is shown in Fig. 12.17. The tree accounts for the fact that
flooding can occur if the rate of inflow from the storm exceeds the pump capacity.
Moreover, flooding can occur from storms within the system's capacity if there are
malfunctions of both pumps and the inflow is large enough to fill the sump. Primary
pump failures may be caused either by the failure of the pump itself or by loss of ac
power. Similarly, the second pump may malfunction or it may be lost through failure
of the battery. The battery fails only if all three events at the bottom of the tree
take place.

Primary
motor
failure
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FIGURE 12.14 Coolant supply system.

IPC, Cleveland, Ohio.)

D(AMPLE I2.5*

(Reprinted from Machine Design, O 1984, by Penton/

The final example that we consider is the pumping system shown in Fig. 12.18. The

top event here is rupture of the pressure tank. This situation has the added complication

that operator errors as well as equipment failures may lead to the top event. Before

a fault tree can be drawn, the procedure by which the system is operated must be

specified. The tank is filled in 10 min and empties in 50 min. Thus there is a l-hr

cycle time. After the switch is closed, the timer is set to open the contact in 10 min.

If there is a failure in the mechanism, the alarm horn sounds. The operator then

opens the switch to prevent the tank from overfilling and therefore rupturing.

Solution A fault tree for the tank rupture is shown in Fig. 12.19. Notice how the

analyst has used primary (i.e., basic), secondary, and command faults at several points

in developing the tree. The operator's actions, a primary fâilure, are interpreted as

the operator's failing to push the button when the alarm sounds. A secondary fault

would occur, for example, if the operator is absent or unconscious when the alarm

sounded, and the command fault for the operator would take place if the alarm does

not sound.

The foregoing examples give some idea of the problems inherent in

drawing fault trees. The reader should consult more advanced literature for

* Adapted from E.J. Henley and H. Kumamoto , Reliabikty Engineering and Risk Assessment, Prentice-

Hall, Englewood Cliffs, NJ, 1981.

Primary
coolant
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FIGURB 12.16 Sump pump system. (From A. H-S. Ang and
W. H. Tang, Probability Concepts in Engineering Planning and De-
sign, Vol. 2, p. 496. Copyright O 1984, byJohn Wiley and
Sons, New York. Reprinted by permission.)

FIGURE 12.17 Fault tree for basement flooding. (From A. H-S. Ang and W. H. Tang, Proba-
bility Concepts in Enginening Planning and, Design, Vol. 2, p. 496. Copyright O 1984, byJohn
Wiley and Sons, New York. Reprinted by permission.)
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FIGURE 12.18 Schematic diagram for a pumping sys-

tem. (From ErnestJ. Henley and Hiromitsu Kumamoto,

Reliability Engineering and Rish Assessment, p'73,O 1981'

i},|p.' '" 'ssionfromPrentice-Hall,EnglewoodCliffs'

fault-tree constructions for more complex configurations, keeping in mind

that the construction of a valid fault tree for any real system (as opposed to

textbook examples) is necessarily a learning experience for the analyst. As

the tree is drawn, more and more knowledge must be gained about the details

of the system's components, its failure modes, the operating and maintenance

procedures and the environment in which the system is to be located.

12.6 DIRECT EVALUATION OF EAULT TREES

The evaluation of a fault tree proceeds in two steps. First, a logical expression

is constructed for the top event in terms of combinations (i.e., unions and

intersections) of the basic events. This is referred to as qualitative analysis.

Second, this expression is used to give the probability of the top event in

terms of the probabilities of the primary events. This is referred to as quantita-

tive analysis. Thus, knowing the probabilities of the primary events, we can

calculate the probability of the top event. In these stePs the rules of Boolean

algebra conrained in Table 12.2 are very useful. They allow us to simplif the

logical expression for the fault tree and thus also to streamline the formula

Sù.S the probability of the top event in terms of the primary-failure probabil-

ities.
In this section we first illustrate the fwo most straightforward methods

for obtaining a logical expression for the top event, topdown and bottom-

up evaluation. We then demonstrate how the resulting expression can be

réduced in a way rhat greatly simplifies the relation between the probabilities

of top and basic events. Finally, we discuss briefly the most common forms
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FIGUPJ 12.19 Fault rree for pumping system. (From ErnestJ. Henley and Hiromitsu Kuma-

moto, fuliabitity Engineering an-d, Risk Assessment, p.73, O 1981, with permission from Prentice-

Hall, Englewood Cliffs, NJ.)

Motor operates
too long

No command
opening switch
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TABLE 12.2 Boolean Logic

A '  B A U  B

thar the primary-failure probabilities take and demonstrate the quantitative

evaluation of a fault tree.
The so-named direct methods discussed in this section become unwieldy

for very large fault trees with many components. For large trees the evaluation

procedure must usually be cast in the form of a computer algorithm. These

algorithms make extensive use of an alternative evaluation Procedure in which

the problem is recast in the form of so-called minimum cut sets, both because

the technique is well suited to computer use and because additional insights

are gained concerning the failure modes of the sytem. We define cut sets and

discuss their use in the following section.

Qualitative Evaluation

Suppose that we are to evaluate the fault tree shown in Fig. 12.20.In this tree

we have signified the primary failures by uppercase letters A through C. Note

0
0
I
1

0
I
0
I

0
0
0
I

FIGURE 12.20 Example of a fault tree.
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that the same primary failure may occur in more than one branch of the tree.

This is typical of systemswith mfir{redundancy of the type discussed in Chapter

9. The intermediate events are indicated by Et, and the toP event by T.

Top Doum To evaluate the tree from the top down, we begin at the top event

and work our way downward through the levels of the tree, replacing the

gates with the corresponding OR or AND symbol. Thus we have

T:  E1î r  E2

at the highest level of the tree, and

Er: AU E* E2: CU Ea (o2.2)

ar the intermediate level. Substituting Eq. 12.2 into Eq. 12.1, we then obtain

T: (A U E3) n (CU E'*).  (12.3)

Proceeding downward to the lowest level, we have

Ez:  BU C;  E+:  A(1 B.  (12.4)

Substituting these expressions into Eq. 12.3, we obtain as our final result

T :  lAu  (Bu  C) l  n  t cu  (A  n  B)1 .  (12 .5 )

Bottom Up Conversely, to evaluate this same tree from the bottom uP, we
first write the expressions for the gates at the bottom of the fault tree as

E s :  B U  C ;  E + :  A ( 1  B .

Then, proceeding upward to the intermediate level, we have

E - -  AU Ey '  Ez :  CU En.

Hence we may substitute Eq. 12.6 into Eq. L2.7 to obtain

( 1 2 . 1 )

(12.6)

(r2.7)

(12 .8 )

(r2.e)

( 1 2 . 1 l )

and

E r :  A U  ( B U  C )

E z : C U ( A n B ) .

We now move to the highest level of the fault tree and express the AND gate
appearing there as

T: Er A Er. ( l2 . lo )

Then, substituting Eqs. 12.8 and 12.9 into Eq. 12.10, we obtain the final form:

T :  I A U  ( B u  C ) l  n  t C u  ( A n  B ) 1 .

The two results, Eqs. 12.5 and 12.11, which we have obtained with the
two evaluation procedures, are not surprisingly the same.
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Logical Reduc'tion For most fault trees, particularly those with one or more
primary failures occurring in more than one branch of the tree, the rules of
Boolean algebra contained in Table 2.1 l;-:'ay be used to simpli$' the logical
expression for Z, the top event. In our example, Eq. 12.11 can be simplified
by first applying the associative and then the commutative law to write
A U  ( B  U  C )  :  ( A  U  B )  U  C :  C U  ( A  U  B ) . T h e n w e h a v e

T :  l cu  (A  u  B ) l  n  [ cu  (A  n  B ) ] . (12 .12 )

We then applythe distr ibut ive lawwith X= C, Y= A U B, and Z= AÀ B
to obtain

T:  C U t (A u  B)  n  (A n  B)1. (  l  2 . 1 3 )

From the associative law we can eliminate the parenthesis on the right. Then,
since A a B: B fl A. we have

T : C U t ( A U B ) n B n A l .

Now, from the absorption law (A U B) O B : B. Hence

T :  C U  ( B n A ) .

This expression tells us that for the fault tree under consideration the failure
of the top system is caused by the failure of C or by the failure of both A and
B. We then refer to M1: Cand M: A n B as the two failure modes leading
to the top event. The reduced fault tree can be drawn to represent the system
as shown in Fig. 12.27.

Quantitative Evaluation

Having obtained, in its simplest form, the logical expression for the top event
in terms of the primary failures, we are prepared to evaluate the probability

FIGURE 12.21 Fault-tree equiva-
lent  to Fig.  12.20.

(12.r4)

(12 .15 )
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that the top event will occur. The evaluation may be divided into two tasks.

First, we must use the logical expression and the rules developed in Chapter

2 for combining probabilities to express the probability of the top event in

terms of the probabilities of the primary failures. Second, we must evaluate

the primary-failure probabilties in terms of the data available for component

unreliabilities, component unavailabilities, and demand-failure probabilities.

Probabikry Retationships To illustrate the quantitative evaluation, we again

use the fault tree that reduces to Eq. 12.15. Since the top event is the union

of Cwith B a A, we use Eq. 2.10 to obtain

P{r} :  P{C} + P{Bn A} -  P{An Bn C},

thus expressing the top events in terms of the intersections of the basic events.

If the basic events are known to be independent, the intersections may be

replaced by the products of basic-event probabilities. Thus, in our example,

p{r}: p{c} + p{A}p{B} - P{A}P{B}P{C}.

( 1 2 . 1 6 )

(12.17)

(12 . r8 )

If there are known dependencies between events, however, we must. determine

expression for P{A a B}, P{A n B n C}, or both through more sophisticated

rreatments such as the Markov models discussed in Chapter 11. Alternatively,

we may be able to apply the B-factor treatment of Chapter 9 for common-

mode failures.
Even where independent failures can be assumed, a problem arises when

larger trees with many different component failures are considered. Instead

of three terms as in Eq. 72.17 , there may be hundreds of terms of vastly different

magnitudes. A systematic way is needed for making reasonable approximations

without evaluating all the terms. Since the failure probabilities are rarely

known to more than two or three places of accuracy, often only a few of

the terms are of significance. For example, suppose that in E,q. 12.17 the

probabil it ies of A, B, and C are - 10-2, 10-4, and - 10-6, respectively. Then

the first two terms in Eq. 12.17 are each of the order 10-6; in comparison the

last term is of the order of 10-12 and may therefore be neglected.

One approach that is used in rough calculations for larger trees is to

approximate the basic equation for P{X U f} by assuming that both events

are improbable. Then, instead of using Eq. 2.10, we may approximate

P{xu Y}: P{x} + P{Y},

which leads to a conservative (i.e., pessimistic) approximation for the system

failure. For our simple example, we have, instead of Eq. 12.17, the approxi-

mation

P{r}- P{c) + P{A}P{B}. ( 1 2 . 1 e )

The combination of this form of the rare-event approximation and the

assumption of independence,

P{Xn Y): P{X}P{Y}, (12 .20)
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often allows a very rough estimate of the top-event probability. We simply
perform a bottom-up evaluation, multiplying probabilities at AND gates and
adding them at OR gates. Care must be exercised in using this technique, for

it is applicable only to trees in which basic events are not repeated-since
repeated events are not independent-or to trees that have been logically
reduced to a form in that primary failures apPear only once. Thus we may
not evaluate the tree as it appears in Fig. 12.20 in this way, but we may evaluate
the reduced form in Fig. 72.2T. More systematic techniques for truncating
the prohibitively long probability expressions that arise from large fault trees
are an integral part of the minimum cut-set formulation considered in the
next section.

Primary-Failure Data In our discussions we have described fault trees in terms
of failure probabilities without specirying the particular types of failure repre-
sented either b;r the top event or by the primary-failure data. In fact, there
are three types of top events and, correspondingly, three types of basic events
frequently used in conjunction with fault trees. They are (l) the failure on
demand, (2) the unreliability for some fixed period of time t, and (3) the
unavailability at some time.

\Àrhen failures on demand are the basic events, a value of p is needed.
For the unreliability or unavailability it is often possible to use the following
approximations to simpli$r the form of the data, since the probabilities of
failure are expected to be quite small. If we assume a constant failure rate,
the unreliability is

R-  À t . (12 .21 )

Similarly, the most common unavailability is the asymptotic value, for a system
with constant failure and repair rates À and z. From Eq. 10.56 we have

Â ( * ) - l -
v *  À .

(12.22)

(r2.23)

But, since in the usual case v >> À, we may approximate this by

A(-)  -  À/  u.

Often. demand failures, unreliabilities, and unavailabilities will be mixed
in a single fault tree. Consider, for example, a very simple fault tree for the
failure of a light to go on when the switch is flipped. We assume that the top
event, Z, is the failure on demand for the light to go on, which is due to

bulb burned out,

switch fails to make contact,

power failure to house.

Therefore T: XU Y U Z.In this case, Xmight be considered an unreliabil ity
of the bulb, with the time being that since it was originally installed; Ywould
be a demand failure, assuming that the cause was a random failure of the

X -
Y -
Z -
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switch to make contact; and Z would be the unavailability of Power to the

circuit. Of course, the tree can be drawn in more depth. Is the random

demand failure the only significant reason (a demand failure) for the switch

not to make contact, or is there a significant probability that the switch is

corroded open (an unreliability) ?

I2.7 FAULT-TREE EVALUATION BY CUT SETS

The direct evaluation procedures just discussed allow us to assess fault trees

with relativelyfewbranches and basic events. When larger trees are considered,

both evaluation and interpretation of the results become more difficult and

digital computer codes are invariably employed. Such codes are usually formu-

lated in terms of the minimum cut-set methodology discussed in this section.

There are at least two reasons for this. First, the techniques lend themselves

well to the computer algorithms, and second, from them a good deal of

intermediate information can be obtained concerning the combination of

component failures that are pertinent to improvements in system design

and operations.
The discussion that follows is conveniently divided into qualitative and

quantitative analysis. In qualitative analysis information about the logical struc-

ture of the tree is used to locate weak points and evaluate and improve

system design. In quantitative analysis the same objectives are taken further

by studying the probabilities of component failures in relation to system design.

Qualitative Analysis

In these subsections we first introduce the idea of minimum cut sets and

relate it to the qualitative evaluation of fault trees. We then discuss briefly

how the minimum cut sets are determined for large fault trees. Finally, we

discuss their use in locating system weak points, particularly possibilities for

common-mode failures.

Minimum Cnt-Set Fonnulation A minimum cut set is defined as the smallest

combination of primary failures which, if they all occur, will cause the top

event to occur. It, therefore, is a combination (i.e., intersection) of primary

failures sufficient to cause the top event. It is the smallest combination in that

all the failures must take place for the top event to occur. If even one of the

failures in the minimum cut set does not happen, the toP event will not

take place.
The terms minimum cut set and failure mode are sometimes used inter-

changeably. However, there is a subtle difference that we shall observe hereaÊ

ter. In reliability calculations a failure mode is a combination of component
or other failures that cause a system to fail, regardless of the consequences

of the failure. A minimum cut set is usually more restrictive, for it is the

minimum combination of failures that causes the top event as defined for a

particular fault tree. If the top event is defined broadly as system failure, the
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i,::i l.',',1i, #fril:iloTt'
agram.

two are indeed interchangeable. Usually, however, the top event encompasses
only the particular subset of system failures that bring about a particular
safety hazard.

The origin for using the term cut set may be illustrated graphically using
the reduced fault tree in Fig. 12.21. The reliability block diagram correspond-
ing to the tree is shown in Fig. 12.22. The idea of a cut set comes originally
from the use of such d.iagrams for electric apparatus, where the signal enters
at the left and leaves at the right. Thus a minimum cut set is the minimum
number of components that must be cut to prevent the signal flow. There
are two minimum cut sets, M1, consisting of components A and B, and M2,
consisting of component C.

For a slightly more complicated example, consider the redundant system
of Fig. 9.9, for which the equivalent fault tree appears in Fig. 12.8. In this
system there are five cut sets, as indicated in the reliability block diagram of
Fig. 12.23.

For larger systems, particularly those in which the primary failures appear
more than once in the fault tree, the simple geometrical interpretation be-
comes problematical. However, the primary characteristics of the concept
remain valid. It permits the logical structure of the fault tree to be represented
in a systematic way that is amenable to interpretation in terms of the behavior
of the minimum cut sets.

FIGURE 12.23 Minimum cut sets on a re-
liabiliry block diagram of a seven{ompo-
nent system.

Ms Mt
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Suppose that the minimum cut sets of a system can be found. The top
event, system failure, may then be expressed as the union of these sets. Thus,
if there are ly' minimum cut sets.

T : M r U M r U " ' U M N . (12.24)

Each minimum cut set then consists of the intersection of the minimum
number of primary failures required to cause the top event. For example, the
minimum cut sets for the system shown in Figs. 12.8 and 72.23 are

M : a l ) a Z n b 2

M + :  a Z ) a 4 À b l (12.25)

M \ : a l À a 2 À a 3 O a 4 .

Before proceeding, it should be pointed out that there are other cut sets
that will cause the top event, but they are not minimum cut sets. These need
not be considered, however, because they do not enter the logic of the fault
tree. By the rules of Boolean algebra contained in Table 2.1, they are absorbed
into the minimum cut sets. This can be illustrated using the configuration of
Fig. 72.23 again. Suppose that we examine the cut set Nft : bl (^l c, which
will certainly cause system failure, but it is not a minimum cut set. If we include
it in the expression for the top event, we have

T : I v I o U M U M r U " ' U M * . (12.26)

Now suppose that we consider M U M1. From the absorption law of Table
2.1. however. we see that

MoU Mt :  (b7  a  c )  U c :  c .  (12 .27)

Thus the nonminimum cut set is eliminated from the expression for the top
event. Because of this property, minimum cut sets are often referred to simply
as cut sets, with the minimum implied.

Since we are able to write the top event in terms of minimum cut sets as
in Eq. 72.24, we may express the fault tree in the standardized form shown
in Fig. 12.24.In this X*nis t}:,.e nt}:' element of the mth minimum cut set. Note
from our example that the same primary failures may often be expected to
occur in more than one of the minimum cut sets. Thus the minimum cut
sets are not generally independent of one another.

Cut-Set Determination In order to utilize the cut-set formulations, we must
express the top event as the union of minimum cut sets, as in Eq. 12.24. For
small fault trees this can be done by hand, using the rules of Table 2.1, just
as we reduced the top-event expression for T given by Eq. 72.11 to the two-
cut-set expression given by Eq. 12.15. For larger trees, containing perhaps 20
or more primary failures, this procedure becomes intractable, and we must
resort to digital computer evaluation. Even then the task may be prodigious,
for a larger tree with a great deal of redundancy rr,ay have a million or more
minimum cut sets.

M t :  c

M : b I a b z
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The computer codes for determining the cut sets* do not typically apply

the rules of Boolean algebra to reduce the expression for the top set to the

form of Eq. L2.24. Rather, a search is performed for the minimum cut sets;

in this, a failure is represented by I and a success by 0. Then each expression

for the top event is evaluated using the outcome shown in Table 72.2 for the

union and intersection of the events. A number of different procedures may

be used to find the cut sets. In exhaustive searches, all single failures are first

examined, and then all combinations of two primary failures, and so on. In

general, there are 2N, where Nis the number of primary failures that must

be examined. Other methods involve the use of random number generators

in Monte Carlo simulation to locate the minimum cut sets.

When millions of minimum cut sets are possible, the search procedures

are often truncated, for cut sets requiring many primary failures to take place

are so improbable that they will not significantly affect the overall probability

of the top event. Moreover, simulation methods must be terminated after a

finite number of trials.

Cut-Set Intrpretations Knowing the minimum cut sets for a particular fault

tree can provide valuable insight concerning potential weak points of complex

systems, even when it is not possible to calculate the probability that either a

particular cut set or the top event will occur. Three qualitative considerations,

in particular, may be very useful: the ranking of the minimal cut sets by the

number of primary failures required, the importance of particular component

failures to the occurrence of the minimum cut sets, and the susceptibility of

particular cut sets to common-mode failures.

* See, for example, N.J. McCormick, Retiability and Rish Analysis,Academic Press, New York, 1981.

FIGURE 12.24 Generalized minimum cut-set representation of a fault tree.
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Minimum cut sets are normally categorized as singlets, doublets, triplets,
and so on, according to the number of primary failures in the cut set. Emphasis
is then put on eliminating cut sets corresponding to small numbers of failures,
for ordinarily these may be expected to make the largest contributions to
system failure. In fact, the common design criterion, that no single component
failure should cause system failure is equivalent to saying that all singlets must
be removed from the fault tree for which the top event is system failure.
Indeed, if component failure probabilities are small and independent, then
provided that they are of the same order of magnitude, doublets will occur
much less frequently than singlets, triplets much less frequently than doublets,
and so on.

A second application of cut-set information is in assessing qualitatively
the importance of a particular component. Suppose that we wish to evaluate
the effect on the system of improving the reliability of a particular component,
or conversely, to ask whether, if a particular component fails, the system-wide
effect will be considerable. If the component appears in one or more of the
low-order cut sets, say singlets or doublets, its reliability is likely to have a
pronounced effect. On the other hand, if it appears only in minimum cut
sets requiring several independent failures, its importance to system failure
is likely to be small.

These arguments can rank minimum cut-set and component importance,
assuming that the primary failures are independent. If they are not, that
is, if they are susceptible to common-mode failure, the ranking of cut-set
importance may be changed. If five of the failures in a minimum cut set with
six failures, fbr example, can occur as the result of a common cause, the
probability of the cut set's occurring is more comparable to that of a doublet.

Extensive analysis is often carried out to determine the susceptibility of
minimum cut sets to comrnon-cause failures. In an industrial plant one cause
might be fire. If the plant is divided into several fire-resistant compartments,
the analysis might proceed as follows. All the primary failures of equipment
located in one of the compartments that could be caused by fire are listed.
Then these components would be eliminated from the minimum cut sets
(i.e., theywould be assumed to fail). The resulting cut sets would then indicate
how many failures-if any-in addition to those caused by the fire, would be
required for the top event to happen. Such analysis is critical for determining
the layout of the plant that will best protect it from a variety of sources of
damage: fire, flooding, collision, earthquake, and so on.

Quantitative Analysis

With the minimum cut sets determined, we may use probability data for the
primary failures and proceed with quantitative analysis. This normally includes
both an estimate of the probability of the top event's occurring and quantita-
tive measures of the importance of components and cut sets to the top event.
Finally, studies of uncertainty about the top event's happening, because the
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probability data for the primary failures are uncertain, are often needed to

assess the precision of the results.

Top-Eamt hobabikty To determine the probability of the top event, we
must calculate

P { T } :  P { M u  M u U Mn|. (12 .28)

As indicated in Section 2.2,tlrre union can always be eliminated from a probabil-
ity expression by writing it as a sum of terms, each one of which is the

probability of an intersection of events. Here the intersections are the mini-

mum cut sets. Probability theory provides the expansion of Eq. 12.28 in the
following form

P{r}: 
Ë 

P{Mo}- 
Ë àrru,. 

ur;

N i - l  l - r+ >
i=3  i=2  4=1

+ (-l)'v-t"t* À Mn . . . O M,,,,).

This is sometimes referred to as the inclusion-exclusion principle.
The first task in evaluating this expression is to evaluate the probabilities

of the individual minimum cut sets. Suppose that we let {. represent the mth
basic event in minimum cut set i. Then

P { M , }  :  P { X r )  X z À  X z n ' ' '  a  X ù - (12.30)

If it may be proved that the primary failures in a given cut set are independent,
we may write

P{M,) :  P{X}P{X,r} ' ' '  P{Xr'}

(r2.2e)

( r2 .31 )

(r2.32)

(r2.33)

If they are not, a Markov model or some other procedure must be used to
relate P{M,} to the properties of the primary failures.

The second task is to evaluate the intersections of the cut-set probabilities.
If the cut sets are independent of one another, we have simply

P{M,n N4} : P{M}P{w[jI,

P{M,) Min Mn} : P{M;}P{MjTP{MI},

and so on. More often than not, however, these conditions are not valid, for
in a system with redundant components, a given component is likely to appear
in more than one minimum cut set: If the same primary failure appears in
nvo minimum cut sets, they cannot be independent of one another. Thus an
important point is to be made. Even if the primary events are independent
of one another, the minimum cut sets are unlikely to be. For example, in the
fault trees of Figs. 12.8 and 12.23 the minimum cut sets M : c and M: bl À
b2wtll be independent of one another if the primary failures of components à1
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and b2 are ind.ependent of c. In this system, however, M2 and M, will be
dependent even if all the primary failures are independent because they
contain the failure of component b2.

Although minimum cut sets may be dependent, calculation of their inter-
sections is greatly simplified if the primary failures are all independent of one
another, for then the dependencies are due only to the primary failures that
appear in more than one minimum cut set. To evaluate the intersection of
minimum cut sets, simply take the product of probabilities that appear in one
or more of the minimal cut sets:

P{M,a m,}: P{X,i}P{Xni}. . . P{X*,i}, (r2.34)

where X4, Xzi1, . . . , X*,jis the list of the failures that appear in M;, Mi, or both.
That the foregoing procedure is correct is illustrated by a simple example.

Suppose that we have two minimal cut sets M1 : A ) B, Mz : B ) C where
the primary failures are independent. We then have

Xn:  A ,  Xuz :  B ,  Xzn:  C.

With the assumption of independent primary failures, the series in Eq.
12.29 may in principle be evaluated exactly. \Mhen there are thousands or
even millions of minimum cut sets to be considered, however, the task may
be both prohibitive and unwarranted, for many of the terms in the series are
likely to be completely negligible compared to the leading one or two terms.

The true answer may be bracketed by taking successive terms, and it is
rarely necessary to evaluate more than the first two or three terms. If P{f} is
the exact value, it may be shown that*

M r ) M z :  ( A n B )  n  ( B n  C ) : A f l  B a B a C ,

b u t B O B : B . T h u s

P{M, O Mz} : P{An B n C} : P{A}P{B}P{C}.

In the general notation of Eq. 12.34 we would have

N

n{r}
; - l

Pr{T} = n{T}

Pu{T} = Pz{T}

(  12 .35)

(12 .36)

( r2.37)

(12.38)

(12.3e)

(12.40)

P{Mo) M,} < P{:r},

Mi) M} > P{T}.

and so on, with Pn{T} < P{T).

* W. E. Vesely, "Time Dependent Methodology for Fault Tree Evaluation," Nucl. Eng. Design,
13 ,337-357  (1970) .

_ s
,L

+ J' Z-J
j=3

i - l

]
Z-J

5 5 P{M,n
j=2  k : r
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Often rhe first-order approximation A{f} gives a result that is both reason-

able and pessimistic. The second-order approximation might be evaluated to

check the accuracy of the first. And rarely would more than the third-order

approximation be used.
Even taking only a few terms in Eq. 12.38 may be difficult, and wasteful,

if a million or more minimum cut sets are present. Thus, as mentioned in

the preceding subsection, we often truncate the number of minimum cut sets

to include only those that contain fewer than some specified number of

primary failures. If all the failure probabilities are small, say (0.1, the cut-set

probabilities should go down by more than an order of magnitude as we go

from singlets to doublets, doublets to triplets, and so on.

Importnnce As in qualitative analysis, it is not only the probability of the top

event that normally concerns the analyst. The relative importance of single

components and of particular minimum cut sets must be known if designs

are to be optimized and operating procedures revised.
Two measures of importance* are particularly simple but useful in system

analysis. In order to know which cut sets are the most likely to cause the top

event, the cut-set importance is defined as

, P{M,)
t* , :  

P{T}

t , , : h * r 2 , p { r w ;

(12.4r)

for the minimum cut set i. Generally, we would also like to determine the

relative importance of different primary failures in contributing to the top

event. To accomplish this, the simplest measure is to add the probabilities of

all the minimum cut sets to which the primary failure contributes. Thus the

importance of component -{ is

(r2.42)

Other more sophisticated measures of importance have also found applica-

tions.

Uncertainty What we have obtained thus far are point or best estimates of

the top event's probability. However, there are likely to be substantial uncer-

tainties in the basic parameters-the component failure rates, demand fail-

ures, and other data-that are input to the probability estimates. Given these

considerable uncertainties, it would be very questionable to accept point
estimates without an accompanying interval estimate by which to judge the

precision of the results. To this end the component failure rates and other

data may themselves be represented as random variables with a mean or best-

estimate value and a variance to represent the uncertainty. The lognormal
distribution has been very popular for representing failure data in this manner.

* See, for example, E.J. Henley and H. Kumamoto, op. cit., Chapter 10.
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For small fault trees a number of analytical techniques may be applied to

determine the sensitivity of the results to the data uncertainty. For larger trees

the Monte Carlo method has found extensive use.*
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EXERCISES

l2.l Classify each of the failures in Fig. 12.15 as (a) passive, (ô) active, or
( c) either.

12.2 Make a list of six population stereotypical responses.

12.3 Suppose that a system consists of two subsystems in parallel. Each has a

mission reliabilitv of 0.9.

* See, for example, E.J. Henley and H. Kumamoto, op. cit., Chapter 12.
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(a) Draw a fault tree for mission failure and calculate the probability
of the top event.

(b) Assume that there are common-mode failures described by the

B-factor method (Chapter 9) with É : 0.1. Redraw the fault tree to
take this into account and recalculate the top event.

12.4 Find the fault tree for system failure for the following configurations.

(a)

12.5 Find the minimum cut sets of the following

b2
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12.6 Draw a fault tree corresponding to the reliability block diagram in Exer-
c ise 9.37.

12.7 The following system is designed to deliver emergency cooling to a
nuclear reactor.

In the event of an accident the protection system delivers an actuation
signal to the two identical pumps and the four identical valves. The
pumps then start up, the valves open, and liquid coolant is delivered to
the reactor. The following failure probabilities are found to be sig-
nificant:

po,: l0-5 the probability that the protection system will not deliver
a signal to the pump and valve actuators.

Ft, :2 X l0*2 the probability that a pump will fail to start when
the actuation signal is received.

p, : 70-1 the probability that a valve will fail to open when the
actuation signal is received.

P, : 0.5 X 10*5 the probability that the reservoir will be empty at
the time of the accident.

(a) Draw a fault tree for the failure of the system to deliver any coolant
to the primary system in the event of an accident.

(b) Evaluate the probability that such a failure will take place in the
event of an accident.

12.8 Construct a fault tree for which the top event is your failure to arrive
on time for the final exam of a reliability engineering course. Include
only the primary failures that you think have probabilities large enough
to significantly affect the result.

12.9 Suppose that a fault tree has three minimum cut sets. The basic failures
are independent and do not appear in more than one cut set. Assume
that 4M) : 0.03, P{M}: 0.12 and P{M3} : 0.005. Estimate P{T}by
the three successive estimates given in Eqs. 12.38, 12.39, and 12.40.

12.10 Develop a logical expression for the fault trees in Fig. 12.13 in terms
of the nine root causes. Find the minimum cut sets.
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l2. l l  Suppose that for  the faul t  t ree given in Fig.  12.21 P{A}:0.15,

P{B} : 0'20, and P{C} : 0'05'

(a) Calculate the cut-set importances.

(b) Calculate the component importances.
(Assume independent failures.)

12.12 The logical expression for a fault tree is given by

T :  A n  ( B U  C )  n  [ D U  ( E n F n  G ) ] .

(a) Construct the corresponding fault tree'

(b) Find the minimum cut sets.

(c) Construct an equivalent reliability block diagram.

12.13 From the reliability block diagram shown in Figure 12.23, draw a fault

tree for system failure in minimum cut-set form. Assume that the failure

probabilities for comPonent tlpes a, b, antd c ate, respectively, 0.1, 0.02,

and 0.005. Assuming independent failures, calculate

(a) P{T}, the probability of the top event;

(b) the importance of components a|, bl and c;

(c) the importance of each of the five minimum cut sets.

12.14 Construct the fault trees for system failure for the low- and high-level

redundant systems shown in Fig. 9.7. Then find the minimum cut sets.
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Integrating between )r0 ând x,, we have
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FIGURE 8.2 A 907o confidence inten'al for binomial sampling. (From W. J. Dixon and
F.J. Massey,Jr., Introduction to Statistical Analysis,2nd ed., O 1957, with permission from

McGraw-Hill Book Company, New York.)
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nomial," Biometrika,26, 404 (1934). With permission of Biometrika.l
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FIGURE 8.4 A 99% confidence interval for binomial sampling. lFrom E. S. Pearson and
C. J. Clopper, "The Use of Confidence or Fiducial Limits Illustrated in the Case of the Bi-
nomial," Biometriha,26,404 (1934). With permission of Biomerrika.l

o.7

0.6

q

o
s 0.5
a!
(J

at,

0.4

0.3

0.1

-æ v,/ t z t
z // 7 ry

7, //l / /
// "/ / /

f /, / / / /
,\o- ro

/
/

,/

/+,
nO

/ / /
/ \

lo.a / /
/ / / çP .)-

-tr /
/ / / / .tto

/ / /
J 9:

b\)

/ / ùo ts
f

/ ao \o'
1 / / / './

J

I
/

/ /, 'rl
'/

//

/ // // 7,2

, 4t t /, ffi7
-2

2 'æ 7z



A P P  E N D  I X C

O( z):  Standard À/ormal CDF

.09.07.0ô.(r5.04.03.02

- . 0
-  . l
- . 2
- . J

À- . 4

- . 5
- , 6

- . 8
- . 9

-  1 . 0
- 1 . 1
-7 .2
-  1 . 3
- t .4

-  1 . 5
-  1 . 6
-r.7
-  1 . 8
-  1 . 9
- r o
- 2 . 1
-2 .2
-2 .3
-2 .4

-2 .5
-2 .6
-2 .7
-  2.8
-2 .9

-3 .0
- 3 . 1
-3 .2
-3 .3
-3 .4

- . 1 . J

-3 .6
-3 .7
-3 .8
-3 .9

-4.0
-4 .1
-4.2
-  + -3
-4 .4

-4 .5
- 4 . 6
- 4 .  

I

-4 .8
-4 .9

.5000

.4602

.4207

.3821

.3446

.3085

.2743

.2420

. 2 1 1 9

.1841

.1587

.t357

. 1 1 3 1

.09680

.08076

.06681

.05480

.04457

.03593

.02872

.02275

.01786

.01390

.0r072

.0.8198

.0,6210

.0,4661

.0,3467

.022555

.0 '1866

.o'�l35o

.039676

.036871

.034834

.033369

.0'2326

.031591

.031078

.0r7235

.044810

.0"3167

.0120ô6

.011335

.058540

.055413

.053398

.052112

.051301

.0n7933

.0"4792

.4960 .4920 .4880

.4562 .4522 .4483

.4168 .4729 .4090

.3783 .3745 .3707

.3409 .3372 .3336

.3050 .3015 .2981

.2709 .2676 .2643

.2389 .2358 .2327

.2090 .2061 .2033

.1814 .1788 .1762

.1562  .1539  .1515

.1335 .1314 .1292

. 1 1 3 1  . l l l 3  . 1 0 9 3

.09510 .09342 .09176

.07927 .07780 .07636

.06552 .06426 .06301

.05370 .05262 .05155

.04363 .04272 .04182

.03515 .03438 .03362

.02807 .02743 .02680

.02222 .02169 .02118

.01743 .01700 .01659

.01355 .01321 .01287

.01044 .01017 .029903

.0,7976 .0'�7760 .0'�7549

.016037 .0'�5868 .0'�5703

.024527 .0'4396 .0'4269

.023364 .023264 .0'�3167

.0,2477 .0'�2407 .0'�2327

.0:rlg07 .O'�1750 .0'�1695

.011306 .021264 .0'�1223

.039354 .039043 .038740

.036637 .036410 .036190

.034663 .014501 .034342

.033248 .033131 .033018

.032241. .032158 .032078

.031531 .037473 .031417

.031036 .0{9961 .049574

.046948 .046673 .0n6407

.014615 .0+4427 .0n4247

.013036 .012910 .042789

.041978 .011894 .011814

.017277 .011222 .041168

.058163 .057801 .0"7455

.055169 .054935 .054112

.0'324t .053092 .052949

.052013 .051919 .051828

.0t1239 .051179 .0s1123

.0';7547 .067178 .066827

.064554 .064327 .0t'41 l1

.4840 .4801

.4443 .4404

.4052 .4013

.3669' .3632

.3300 .3264

.2946 .2912

.261r .2578

.2297 .2266

.2005 .7977

.1736 .1711

.1492 .1469

.1271, .725r

.1075 .1056

.09012 .08851

.07493 .07353

.06178 .06057

.05050 .04947

.04093 .04006

.03288 .03216

.02619 .02559

.02068 .02018

.01618 .01578

.01255 .01222

.029642 .0'�9387

.0,7344 .0'�7143

.025543 .0'�5386

.024745 .0'�4025

.023072 .0'�2980

.022256 .0'�2186

.0:'1641 .O'�1589

.0,1183 .021144

.038447 .038164

.035976 .035770

.034189 .034041

.032909 .032803

.032001 .051926

.031363 .03i311

.019201 .0'8842

.016152 .045906

.044074 .0n3908

.042673 .042561

.011737 .011662

.041118 .041069

.057t24 .056807

.0,14498 .014294

.052813 .052682

.057742 .051660

.051069 .051017

.066492 .066173

.063906 .063711
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.4761. .4721

.4364 .4325

.3974 .3936

.3594 .3557

.3228 .3792

.2877 .2343

.2546 .2514

.2236 .2206

.1949 .1922

.1685 .1660

.1446 .1423

.1230  .1210

.1038 .1020

.08691 .08534

.07275 .07078

.05938 .05821

.04846 .04746

.03920 .03836

.03144 .03074

.02500 .02442

.01970 .01923

.01539 .01500

.01191  .01160

.029137 .0'�8894

.0,6947 .0'�6756

.0,5234 .0'�5085

.023907 .0'�3793

.0,2890 .0'�2803

.022118 .0'�2052

.0r1538 .O'�1489

.021107 .0 ' �1070

.037888 .037622

.035571 .035377

.033897 .033758

.032707 .032602

.031854 .031785

.031261 .031213

.048496 .018162

.045669 .045442

.043747 .043594

.042454 .0*2351

.011591 .0n1523

.04t022 .059774

.056503 .056272

.054098 .053911

.052558 .052439

.051581 .051506

.0'i9680 .06921I

.065869 .otr558o

.0't3525 .0b3348

.4681 .4647

.4286 .4247

.3897 .3859

.3520 .3483

.3156 .312r

.2810 .2776

.2483 .2457

.2177 .2148

.1894 .1867

.1635  .1611

.1401 .1379

. 1 1 9 0  . 1 1 7 0

.1003 .09853

.08379 .08226

.06944 .06811

.05705 .05592

.04648 .04551

.03754 .03673

.03005 .02938

.02385 .02330

.01876 .01831

.01463 .01426

.01130  .01101

.028656 .0'�8424

.0:'6569 .0'�6387

.0,4940 .0'�4799

.013681 .023573

.o2z7tB .022635

.0r1988 .O'�1926

.0,144r .0!1395

.0,1035 .o'�1001

.037364 .037114

.035190 .035009

.033624 .033495

.032507 .032415

.031718 .031653

.0 r1166  .031121

.047841 .017532

.015223 .015012

.0n3446 .0*3304

.012242 .042757

.011458 .041395

.059345 .058934

.0s5934 .055668

.0"3732 .053561

.0"2325 .052216

.051434 .051366

.0't8765 .0b8339

.0,t5304 .0ô5042

.063179 .063019
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.09.08.07.0603,02.01.00

.0

. I

.2

.+

.5

. 6
1

.8

.9

1 . 0
1 . 1
t .2
1 . 3
t . 4

1 . 5

1 . 6
t . 7
1 . 8
1 .9

2 .0
2. r
9 9

9 ?

2 .4

2.5
2.6
9 J

2 .8
2.9

3.0
.1 .  I

3.2
a . a

.).  +

J . 5

. t . o

3 - t

3.8
3.9

4.0
4 .1
4 9

4.3
4.4

+ . 3

4 . 6

4.7
4.8
4.9

.5000

.5398

.5793

.6179

.6554

.6915

.7257

.7580

.7881

. 8 1 5 9

.8413

.8643

.8849

.90320

.9t924

.93319

.94520

.95543

.96407

.97128

.97725

.98214

.98610

.98928

.9,1802

.9:3790

.9'5339

.9,6533

.9'7445

.9 '8134

.928650

.9"0324

.933129

.9.5166

.936631

.9'7674

.9.8409

.9'8922

.912765

.945190

.916833

.917934

.948665

.951460

.914587

.956602

.957888

.958699

.962067

.9"5208

. 5120

.55t7

.5910

.6293

.6664

.7019

.7359

.7673

.7967

.8238

.5040 .5080

.5438 .5478

.5832 .5871

.6217 .6255

.6591 .6628

.6950 .6985

.7291 .7324

.7611 .7642

.7910 .7939

.8186 .8212

.5160 .5199

.555 I  .5590

.5948 .5987

.6331 .6368

.6700 .6736

.7054 .7088

.7389 .7422

.7703 .7734

.7995 .8023

.8264 .8289

.8508 .8531

.8729 .8749

.8925 .8944

.90988 .91149

.92507 .92647

.93822 .93943

.94950 .95053

.95907 .95994

.96712 .96784

.97381 .9744r

.97932 .97982

.98382 .98422

.98745 .98778

.910358 .910613

.9,2656 .922857

.924457 .9'�'4614

.9,5855 .9,5975

.9,6928 .917020

.9,7744 .927974

.9,8359 .92841I

.918817 .9rgg56

.931553 .931836

.934024 .934230

.93581I .935959

.937091 .917197

.937999 .938074

.938637 .938689

.940799 .911158

.943848 .944094

.945926 .946092

.9n7327 .917439

.948263 .948338

.918882 .9{8931

.952876 .953193

.955502 .955706

.957187 .957318

.958258 .958340

.958931 .958983

.963508 .963827

.966094 .966289

.5239 .5279

.5636 .5675

.6026 .6064

.6406 .6443

.6772 .6808

.7123 .7757

.7454 .7486

.7764 .77s4

.8051 .8078

.8315 .8340

.8554 .8577

.8770 .8790

.8962 .8980

.91309 .91466

.92785 .92922

.94062 .94779

.95154 .95254

.96080 .96164

.96856 .96926

.97500 .97558

.98030 .98077

.98461 .98500

.98809 .98840

.9,0863 .9,1106

.913053 .9\244

.914766 .914915

.916093 .916207

.9,71l0 .9r7t97

.927882 .9'7948

.9'8462 .918511

.9,8893 .9,8930

.932t12 .932378

.9t4429 .934623

.936103 .936242

.937299 .937398

.938146 .938215

.938739 .938787

.901504 .g*lg3g

.944331 .944558

.946253 .916406

.947546 .947649

.948409 .948477

.948978 .950226

.953497 .953788

.955902 .956089

.957442 .957561

.9584i9 .958494

.950320 .960789

.964131 sh4420

.9'"6475 .966652

.5319 .5359

.5714 .5753

.6103 .6141

.6480 .65t7

.6844 .6879

.7190 .7224

.7517 .7549

.7823 .7852

.8106 .8133

.8365 .8389

.8599 .8621

.8810 .8830

.8997 .90747

.91621 .91774

.93056 .93189

.94295 .94408

.95352 .95449

.96246 .96327

.96995 .97062

.97615 .97670

.98124 .98169

.98537 .98574

.98870 .98899

.9,1344 .911576

.9,3437 .913613

.015060 .015201

.016319 .026427

.0,7282 .017365

.018012 .018074

.9:,8559 .018605

.9,8965 .9?8999

.932636 .932886

.934810 .934991

.936376 .936505

.937493 .937585

.938282 .938347

.938834 .938879

.942159 .942469

.944777 .944988

.9*6554 .946696

.947748 .917843

.948542 .918605

.950655 .951066

.954066 .954332

.956268 .956439

.957675 .957784

.958566 .958634

.9'J1235 .961661

.964696 .964958

.9b6821 .9'i6981

.8438 .8461 .8485

.8665 .8686 .8708

.8869 .8888 .8907

.90490 .90658 .90824

.92073 .92220 .92364

.s3448 .93574 .93699

.94630 .94738 .94845

.95637 .55728 .95818

.96485 .96562 .96638

.97193 .97257 .97320

.97778 .97831 .97882

.98257 .98300 .98341

.98645 .98679 .98713

.98956 .98983 .910097

.9,2024 .912240 .912451

.9,3963 .gr4l32 .gr42g7

.9,5473 .915604 .915737

.9,6636 .9,6736 .916833

.9,7523 .917599 .917673

.9r8193 .918250 .918305

.918694 .918736 .928777

.930646 .930957 .931260

.933363 .933590 .933810

.9:15335 .g354gg .935659

.9,6752 .936869 .936982

.937759 .937842 .937922

.938469 .938527 .938583

.938964 .940039 .940426

.913052 .913327 .943593

.945385 .915573 .945753

.9{6964 .9{7090 .947211

.948022 .918106 .948186

.948723 .948778 .948832

.951837 .952199 .952545

.954831 .955065 .955288

.956759 .9,1ô908 .957051

.957987 .958081 .958172

.958761 .958821 .958877

.962453 .962822 .963173

.9b5446 .965673 .965889

From A. Hald, Statistical Tablcs and I'otmulas, Wiley, New York, 1952. Table II. Reproduced by permission. See
also W. Nelson, ANtplied Life Data Ana\sis, Wiley, New York, 1982.



A P P E N D  I X D

Prob ab i l i t y  Gra |h  PoF ers

The general procedures used with all probability graph papers may be illus-

,ru,.à using tn. W.ibull paper shown in Fig. D.1. The times to failure or

other random variable are ranked (i.e., placed in ascending order): fi <

t , <  t ^

^ i
F ' ( t , )  :  - , - 1 ,

/ v 1 -  L

and the appropriate probability paper is used to plotF(r;) versus [' The points

should fall roughly aiong a ,t.ai[hi line if the random variable is described by

the distribution. À rt uig-nt line is drawn through the data, and the distribution

parameters are estimated from the line'

Graph papers for the exponential, normal,lognormal, maxim.um extreme

value, Weibull, and minimum extreme value distributions are given in Figs'

D.2 through D.7. For plotting convenience the vertical and horizontal axes

such papers are labeléa *itn values of F and l. Observe, however' that the

ordinate scales are nonlinear while the abscissa is either linear or logarithmic'

These scales result from the rectification of the equation describing each

distribution to the form

y (F ) : | r . r t ) - x (P )1 .

The function y(F) and x(t) ate derived for each distribution in Chapter 5

and summ arizedin Table D.l. The distribution parameters are expressed in

terms of p and' q also as indicated in the table'

The values of p and, Ç, and hence the parameters, may be determined

from the straight line drawn on the probability paper' Equation D'2 indicates

that the condition t, : P satisfies

ylF(t") l  :  o. (D.3)

The value of Ffbr which this holds is given in Table D.1 for each distribution'

Thus for the Weibull plot in Fig. D.1, we note that at to, F : 0'632, and thus

from the horizontal and vertical dashed lines drawn on Fig. p.l to : P :

0: 46hr. To determine q,we find the values of F(f*) and F(i-) such that

y lF ( t . - ) l  :  t l . (D.4)

The corresponding values of F( t1) are tabulated for each distribution in Table

D.1. Combining Eqs. D.2 and D'4, we obtain

x ( t x ) - x ( p ) : t 4 ,

417

i : 1 , 2 , 3 , "  ' l / , (D . l )

(D.2)

(D.5)
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TABLE D.l Probability Graphing Information

.099

r{t*) -i095
.090

.080

.070
F(to) ---.-+

.050

.040
F(t) ->g39

f, .oeo

2 5 l0 2 5 loo+
t(hr) 

t-

FIGURE D.l Example Weibull probability plot.

.05

.04

.o3

.o2

distribution F(t) Y(r) xft) P q F(t") F(t.) F(t-)

exponential I  -  e-t/o

normal * fru)\ û /
lognormal o f] r' r r,, ,^l I

fc.t 
"' 

l
max. extreme val. expf-e-{t-")/tt1

weibull | - s-a/o)' '

min. extreme val. I - exp[-eu-")/o)

tn[r/ (1 - r')] t
o-'(r') t

o-'(F) ln(r)

- l n [n ( l / r ) ]  t

l n l l n l l / ( l  -  r ) l l  l n ( l )

l n l l n [ 1 / ( l  -  r ) ] l  t

0 0.632

(, 0.500 0.841 0.159

(ù 0.500 0.841 0.159

u 0.368 0.692 0.066

| / m 0.632 0.934 0.308

u 0.632 0.934 0.308

0

lL

to

@

0

@
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ô
Ê\

0.98

0.97

0.96

0.95

0.94
0.93
o.92
0.91
0.90
0.88
0.86
0.84
0.82
0.80
0.78
o.76
o.72
0.68

0.632
0.60
o.52
0.48
0.40
0.32
0.24
0.16
0.08

0
FIGURE D.2 Exponential distribution probability paper'
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0.999
0.998

0.995

0.99
0.98
o.97
0.96
0.94

0.90

0.84
0.80
0.75
0.70

0.60
Ë 0.50

0.40

0.30
o.25
o.20
0.16

0.10
0.08

0.04

o.o2
0.01

0.005
0.002
0.001

FIGURE D.3 Normal distribution probabiliry paper.
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0.999
0.998

0.995

0.99
0.98
o.97
0.96
0.94

0.90

0.84
0.80
0.75
0.70

ô
F\

0.60

0.50
0.40

0.30
0.25
o.20
0.16

0.10
0.08
0.06
0.04

0.02
0.01

0.005

0.002
0.001

FIGURE D.4 Lognormal distribution probability paper'
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0.9999

0.9998
0.9997

0.9995

0.999

0.998
a.997
0.996
0.995

0.99

0.98
S o.s7\  0.96

0.95

0.90

0.80

0.70
0.60
0.50
0.40
0.30
o.20
0.10
0.05
0.01

0.001
0.0001

FIGURE D.5 Maximum extreme-value probability paper.
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ô
ù

0.99
0.98
0.97
0.95
0.90
0.85
0.80
0.75
0.70

o.632
0.60
0.55
0.50
0.45
0.40
0.35
0.30
o.25
0.20
o .L7
0.  15
0 .L2
0 .10
0.08

0.06
0.05
0.04

0.03

0.02

0.01

t
-L
-L

l +
T
I
,t

l
l

I

I
l
I
T
I
l
I
I
I

T

FIGURE D.6 Weibull distribution probabiliry paper.



0.99

0.98
0.97
0.9s

0.90

0.85
0.80
0.75
0.70

o.632
0.60
0.55
0.50
0.45
0.40

0.35
0.30

o.25

o.20

0 . I 7
0 . 1 5

0 .12

0 .10

, 
0.08

0.06

0.05

0.04

0.03

0.02

fe

0.01

FIGURE D.7 Minimum extreme-value probability paper.

or with p eliminated between equations,

q : * l x . ( t + )  -  x ( t _ ) 1 . (D.6)

Finally, for the exponential normal and extreme value distributions, where
x(t) : t, we have q : (t* t_) /2, while for the lognormal and Weibull
distributions where x(t) : ln(r) we obtain q: ln(t*/t_)/2. In our Weibull
example, Table D.l yields f(r.) : 0.g24 and F( t_) :0.309. Therefore from
the horizontal and vertical dashed lines drawn on Fig. D.l we obtain
/ *  :  8 0 0  h r s  a n d  t - : 9 0  h r s .  H e n c e  m : 1 / q : 2 / l n ( 8 0 0 0 / 9 0 0 0 )  : 0 . g 2 .



Ansuers  to  Odd-Numb ered
t't

L , C C T C L S C S

CIIAPTER 2

2. r  (a )  0 .72 ,  (b )  0 .115,  (c )  0 .59 ,
(d) 0.165, (e) 0.115, ( f )  0.425
(independent).

2.3 (a) 0.5,  (b)  0.25,
(c)  0.625, (d) 0.5.

2.5 (a) 0.7225, (b) 0.0225.

2.7 RDr, :  0.9048.

2.9 (a) P{X} : 0.04,
(b) P{XrlXz} : 0.25.

2 . l l  ( a )  C :  l / 1 4 ,
(b) r(1) :  7/ \4,  F(2) :  5/14,
F(3)  :  l ,
( c )  t r = 2 . 5 7  a : 2 . L 0 .

2 .13  p .  =  1 .53 ,  o2  =  1 .97 .

2.15 (a) 10, (b) 36, (c)  792, (d) 20.

2.r7 0.0734.

2.19 P",w: 0.0036.

2 .21  (a )  0 .058,  (b ) ,6 .6  x  l0 -5 .

2.23 (a) 0.594, (b) 0.0166.

2.25 (a) 0.353, (b) 3.0.

2.27 0.0803.

2.29 (a) 1 -  1.2 x 10-6,  (b)  0.851.

2.31 230 consecutive starts.

2 .33  (a )  2  x  l0 - * ,  (b )  0 .061,
(c)  0.678.

2.35 0.140 -F 0.053, 0.140 -f 0.068.

2.37 415 units to test; no more than
18 failures to pass.

2.39 P :  12Vo.

CHAPTER 3

3 . 1  b  : 6 ,  p  ^ r  0 . 5 ,  o -  0 . 2 2 .

3.3 (a) a : 18 X 106 hr3,
(b) 3000 hr.

3.5 (a) f (x) : 0.04xe o2*,

(b) P -  10,  d :  50,  (c)  0.0278

3.7 (a) I pr.m, (b) 80.8%,
(c) 0.720 p'rn.

3 . 9  ( a )  k . r t  -  1 ) / ( e ' r '  -  1 ) ,
(b)  0.168.

3. l l  (a)  - ,  (b)  8.32 cm, (c)  9.76 cm,
(d)  - .

/ - 3 \ - B ( x r ) ( x ) + 2 ( x ) 3
3 . l 3 s k : #r"r r 'ù 

(("t) -  (* l ' )u' '

3.15 @) f,()) :

I  t l z - : \ - ' ( , , -J -o ) - - '
b -  a B \ b -  a /  \ -  b -  a /

't'

( b )  p r :  ( b -  a ) - - r  a .

(a) 0.1056, (b) 1043 lbs,
(c)  21.6 lbs.

7.44 hrs.

p - 19.8 kips, a ^, 1.676 kips.

( a )  n :  5 . 5 8 ,  ( b )  " :  7 . 5 7 .

(a) 0.026, (b) 0.308 yrs.

@) t .2a x 10-6,  (b)  0.037,
( c )  0 . 3 1 1 .

3 . 1 7

3.19

3.2r

3.23

3.25

3.27

CIIAPTER 4

4.1 (a) $125 x2, (b) $25, (c)  0.056.

4.3 L"/ 3.

425
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4.5 (a) 0.463, (b) $10, (c)  3.01.

4.7 0.0508

4.9 (a) 26.6 ppm, (b) 778 ppm.

4. l l  (a)  0.86638, (b) 0.866384,
(c)  0.788, (d) 0.5515c2.

4.13 780 ppm.

4.r5 0.0774.

4.r7 (a) 2.00, (b) 0.0049 cm,
(c) 0.680.

CHAPTER 5

5 . 1  ( a ) p = 1 5 0 6 1  , d -  0 . 0 1 6 9 3 5 ,
(b) graph.

5.3 (a) t-,, : 20.3, I : 142.8,
r t  :  0.794, kt  :  0.776
( b ) p : 2 0 . 3 , d : 4 I 2 ,
s k : 2 , k u : 7

5.5 nîL:  7.26, ê :  37,  12 :  0.972

5.7  î " :  10 .78 ,  ù  :  6 .28 .

5 .9  l ,  p  :  49 .8 ,  o :  0 .80 ,
2 , p : 5 0 . 5 ,  o : \ . 5 3 .

5 .11  î t :  17 .0 ,  ô  :  0 .824,  12  :  0 .957.

5.13 (a) graph, (b) 103,419,
(c)  2,507, (d) 0.987.

5. f5 (a) graph, (b) 514 hr.

5.17 90%: 547, 95%: 651

5.19 103,421 -r  3150.

CHAPTER 6

6 . 1  ( a )  7 6 / ( t  +  4 ) ' ,  ( b )  2 / ( t  +  4 ) ,
(.) a.

6.3 (a) 130 hr, (b) 256 hr,
(c)  155 hr,  (d)  513 hr.

6.5 (a) 0.966, (b) 0.980, (c)  0.975,
(d) 0.ee0.

6.7 (a) 0.905, (b) 0.9275.

6.9 (a) 1.63, (b) 0.224.

47 days.

À :  0.105/hr.

MTTF : {i e/2.

0.0492r.

287o.

(a) 1.667 hr, (b) 0.127 hr,
(c) increases.

(a) 3.98 yr, (b) 3.1,4 yr.

2 X 106 cycles.

(a) 723 hr, (b) 6.37o, (c) 86%.

MTTF : fi s7f aN.

2.5%.

(a) 70.2 fallures/yr,
(b) nine flashlights.

(a) 0.939, (b) 1.87 x 10 3,

(c )  3 .88  x  10  5 .

6.37 (a) 0.2856, (b) 0.1315, (c)  1.25.

6.39 (a) 7/  15,  (b) 0.00213.

CIIAPTER 7

7.1 (a) 1.39 x 10-3,  (b)  721 V,
(c )  2161 V.

7 . 3 r : 1 +  
t ç n ' . r - e " v ) .

ay

7 .5  R:  0 .2090.

7.7 >10 strands.

7.9 15.7 Nm.

7. l l  co/  lo :  4.64.

7.13 9Vo.

7.r5 (a) 0.269, (b) 0.00669.

7.17 (a) I cables, (b) I cables.

7.19 85.6 lbs.

7.2r 0.0436.

7.23 l0-t5.

6 . 1 I

6 . 1 3

6 . r 5

6 . r 7

6 . 1 9

6.2r

6.23

6.25

6.27

6.29

6.31

6.33

6.35



7.25 0.670.

7.27 (a) 0.18, (b) 0.06, (c) 2.40 Yr.

7.29 (a) 87 cycles,
(b) 1.25 x 106 cYcles.

CTIAPTER 8

8.1 (a) 0.647, (b) 0.999.

8.3 130 min.

8.5 (a\ 74.4 min, (b) 129 min'

8.7 (a) graph, (b) a : 0.5011.

8 . 9 ô : 9 6 . 4 h r , ô : 0 . 7 1 2 ,
MTTF : 124 ll'r.

8 . l l  îo :  92 .4  h r ,  ô  :  0 -657,
M T T F :  1 1 5  h r .

8 .13  ?h :  2 .16 ,  Ù :  110 hr ,
MTTF : 97.5 hr.

8.15 1.95 months.

8 .17  p , :  48 .1 ,  d  :  351.2 .

8 . 1 9  m - 2 . 5 , 0 = 1 3 0 .

8.21 (a) graph, (b) r. = 7000 hr,
o- 3000 hr,  (c)  48Vo.

8.23 increasing with time.

8 . 2 5  m æ 2 . 4 , 0 - 1 2 .

^  N + 0 . 7 - i
8.27 Rt tJ : -----

rv *  0.4

8.29 l43Vo.

8.31 MTTF : 9.76 months, 90Vo con-
fidence limits: 6.54 &.16.61
months.

8.33 (a) 177 ll'r,
(b)  104 I  t ' '  <-324hr.

8.35 33.8 days.

CHAPTER 9

9.1 ,R' : 0.9289.

9.3 6 units.

Answers to Odd-Numbered Exercises 427

9.5 (a) 0.827, (b) 0.683, (c)  0.696.

9.7 (a) 1/412, (b) 5/4i2,
(c) parallel larger.

9.9 (a) 2e-Ptot* - 62(t/o)-,

(b) I - (t/0)'^.

9. l l  (a)  0.990, (b) 0.973.

9.r3 0.629.

9.15 (a) ,R: {3À' ,
( b )  R -  1 -  ( 1  -  e - ^ ) '
( c ) R : f 6 2 À t - { u ^ ' ,

(d) graph.

(a) 30 days, (b) 27.3 daYs,
(c) 27.3 days.

0.647 tG e.

(a) 2.242 x l0-2,  (b)  0.1376.

(a) 0.9938, (b) 0.9960,
(c) 0.9798, b is best.

(a) 2R2 - Rn, (b) (2n - R2)'.

3.2 X l0-8.

(a) 2/3 MTTF,
(b) 1116 MTTF.

9.31 (a) 5 detectors, 7 amPlifrers, 5
annunciators, (b) $30,800.

9.33 (a) 0.9867, (b) 0.9952.

9.35 (a) 0.9769, (b) 0.99978'

CTIAPTER IO

10.1 (a) 0.885, (b) every 6300 hr,
(c) every 4275 hr.

10.3 No. maximum value is 0.934.

10.5 (a) 0.7225, (b) 0.8825,
(c)  0.7188.

r0.7 (a) 4.040, (b) 455%.

r0.9 1.0440.

l0. f  l  (a)  18.4 hr,
(b) 12.9 hr,  29.5 hr.

9 .17

9.19

9.2r

9.23

9.25

9.27

9.29
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10.13  (a )  0 .9315,  (b )  20 .4  h r .

10.15 0.980.

10.17 65.5 days.

10.19 2.2 x l } -a/day.

10.21 (a) 0.897, (b) À :  0.013/hr,
l r ,  :  0.111/hr,
(c) 2Vo difference.

10.23 (a) 0.968, (b) 0.946,
(c) every 18.6 days.

10.25 (a) 0.9594, (b) every 87.5 days.

10.27 every 1980 hr.

CTIAPTER 1I

l l . l  (a)  0.058 MTTF, (b) 0.129
MTTF, (c)  0.182 MTTF.

l l .3  (a )  1  -  À(2À*  -  À) t r ,  (b )  1 .56 .

l l .5 (a) 2/À, (b) À' � t /  (1 + Àr) .

l l .7 standby: 2/ À2,
active parallel: 5 / 4^2.

l l.9 (a) sharedload system,
(b) 1.063.

l l . l l  (a)  proof,  (b)  = |  -  3/s(Àt)4,

(c) active: 0.99990,
standby: 0.99996.

I  l . l 3

I  l . l 5

I  t . l 7

I  t . l 9

l l . 2 l

(a) 2(1 + Àt) e ̂ t - (\ t À,t)ze. 2^',

(b) 1 - Y+À+ta,
active parallel: I - À4t4.

1 .2  x  10-3 .

(a) 0.9998, (b) 0.9996.

0.09902.

w i t h e = À / u , ( a )
1 * e + e 2 + e 3

1 * e * e 2 * e 3 + t 4 '
( b )  = l - e ' ,
( c )  i d e n t i c a l , -  1 -  1 . 6  X  1 0 - 7

11.23 (a) 0.9961, (b) yes.

CHAPTER 12

l2.l passive-inlet line rupture,
either-valve closed when stop
fails, active-all other failures.

r2.3 (a) 0.01, (b) 0.0185.

I 2 . 5  A N B , A ' C , B ' C .

12.7 (a) graph, (b) 9.15 x 10-4.

12 .9  0 .12800,  0 .12385,  0 .12387.

l2 . l l  (a )  Mr :0 .382,  M2:0 .637,
(b )  A :  0 .382,  B :0 .382,  C:0 .637.

12.13 (a) 5.9 x 10-3,  (b)  0.0508,
0 .1016,  0 .847 (c )  0 .847,0 .0678,
0.0339, 0.0339, 0.0169.
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absorbing state, 351
absorption law, 14, 393
accelerated testing, 171,

208, 227-236, 247, 250
acceleration factor, 232-236
acceptance:

criteria. 31
testing, 30-33, 38, 39,

2r0,214
accident ,  8,  143,  221,367,

3 6 6 , 3 7 4 , 3 7 5 , 3 7 6
activation energy, 235, 236
adjustment parameter, 78
advanced stress test, 227,

230-236
aging, 5, 6, 69, 79,138-154,

t75, 177, t9t-202, 217,
230, 237, 290-298,
362-365,382

aircraft, 4, 16, 35, 177, 209,
365,367

alarms,274
alarms, spurious 133, 134,

2 7 4 , 3 7 r
analysis of mean, 85, 88
analysis of variance, 87, 88
AND gate, 376-380,392,

395
ANOM, see analysis of mean
ANOVA. see analvsis of

variance
Arrhenius equation, 235,

236,25r
as-good-as-n ew, 164, 292,

309,  321
assembly line, 356
associate law, 14, 393
asymptotic extreme value dis-

tribution, 59-62
attribute data, 25-30, 134
automated protection, 371
availability, 9, 290, 291,

300-332. 346.349-356
asymptotic, 300, 309-319,

322-324, 35 I , 359, 360
interval, 300, 305-310,

373 .323 .324
point ,  300,  312-319, 351
steady state, 301, 351-355

average range, 134
axioms, probability, 12

backup systems and units,
262,  308,  334,339-353

bar graph, 17, lB
batch size, 31

bathtub curve, 8, 139, 142-
145, 160, 177, l9l-202,
214,298,362

battery, 35, 100, 260, 385
bell-shaped curve, see nor.

mal distribution
Bernoulli trials, 2l
beta distribution, 64, 65
beta factor model, see com-

mon mode failure
Bhopal, 361
b ias ,  76 ,  79 ,92 ,368
binomial distribution, 2l-

27, 32, 124, 269
coefficients, 22, 266
expansion, 265
sampling, 30, 39, 244,245
sampling charts, 411-414
resr, 209
trials, 102

biomedical community, 221
Boeing 767, 371
Boolean Algebra, 14, 389,

393, 398, 399
bugs, computer software,

145,245
burnin, 143,214
buyer's risk, 31, 39

c a b l e , 5 l ,  1 8 3 , 2 0 4
calculator, pocket, 6 7
calendar time, 150, 209
calibration, 367, 368
capability index, 89-96
capacity, 8, 31, 143, 175-

207,268
factor, 150, l5l
variability and deteriora-

t ion,  177,  19l-196
carelessness, 368
case histories, 365
CCDF, see complementary

cumulative distribution
function

CDF, see cumulative distribu-
tion function

censored data, 8, 103, 208,
279-226

singly and multiple, 220
on the right,220,225,

226,237,238
central l imit theorem, 124,

125,137,237
central tendency, l9
chain, 58, 206
change ofvariables,49
chemical reactions. 235

Chernobyl, 361
Chi-squared distribution and

test, 120, 123,133
circuits, 12, 78, 82, 93, 744,

240
classical sampling, 29
clock time. 229
coefficient:

matrix, 346
of determination, 112,

231,233,235,245
of variation, 186, 197, 205

combinations of events, I l,
1 3 , 1 4 , 2 l

combined distributions, 189
common mode failure, 9,

28,  258-261,266,273-
276, 283, 284, 287, 299,
300,  316,  321,382,394,
399,400,405

communicative law, 393
competing flaws, 59
complementary cumulative

distribution function,
17, 42, 140

complexity, system, 2,3, B,
92-95,138,  144,  163,
175,252,366

component:
active and passive, 382,

383
count method, l6 l -163
importance, 407
interactions, 382
replacement, 286

composite model, 146
compressed-time test, 209,

227-229,235
computers, 23, 29, 37, 69,

82 ,93 ,  96 ,  L44 ,145 ,
278,283

concurrent engineering, 97
conditional gate, 380
confidence intervals and lim-

i t s , 28 ,30 ,  103 ,  107 ,
108 ,  l 2 l - 130 ,737 ,154 ,
205, 208, 220, 233, 237 ,
24t -245,250

confidence level, 25, 29,
1.20, r88,244

congenital defects, 142
consumer products and psy-

chology, 362-365
continuous operation, 145,

146,230,263
continuous random vari-

ables. 40-48

429
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contour plots, 82
control:

chart, 137
factors, 87
limits, l3l-I34,137
mechanism, 262

corrosion, 143, I44
costs,  1-5,  69,  73,85,  88,  96,

l3 l ,  164,  209,  2\4,  239,
270. 276, 287, 290, 299,
303, 363-365

c p , 8 9
cpr., 90
cracks, 143,205
crosslinked redundant sys-

tems, 289
cumulative distribution func-

t i on .  17 .  22 .  28 ,  41 ,  42 ,
r07, 216

cumulative effects, 143
cumulative hazard function,

276-2t9,246-249
curve fitt ing, 111
customer desires & needs, 5,

6 9 , 6 9 , 7 7
cur ser, 396-404

determination, 398, 399
importance, 399, 403,

404,407
interpretation, 399, 400
minimum, 391,395-407
qualitative analysis,

396-400
quantitative analysis,

400-404
ranking, 399
uncertainty, 403

cyclic operation, 235
cyclical failure, 228, 229
cycling, thermal, 274, 215

da ta ,7 ,8 ,  23 ,  102 ,  131
censored, 219-226, 237,

247-249
complete,  103,  130,  215,

237
f ie ld,  216,  238
grouped, 215-220,223-

2 2 7 , 2 4 7
ungrouped, I20, 135,

215-218, 221-223
DC-l0,  370
debugging, 145, 213
clecision tree, 375
demand failures, 145-15i,

263, 376,383, 394, 395
deMorgan's theorem, l4
dependencies, cornponent

and operational, 313,
326

derating, 143

derived distribution, 46
des ign ,  2 ,  5 ,  68 -81 ,96 ,97 ,

102 ,143 ,169 ,  176 ,
208-274,361, 365, 396

alterations, 274
characteristics. 8
conceptual, 77, 209
criteria. 5. 400
defects.  2L3.363
detailed, 69, 77, 209
life, 7, 144, I5B, 177, 173,

195, 227, 237, 261, 295,
365

robust, 68-81, 88, 96, 143
specifications & parame-

ters, 7n 72, 77, 78,
82-88

trade-offs, 270
verification, 228

design of experiments,
B I -BB

deterioration, 2, 3, 6, 69, 70,
76, 144, 177, lg3, lg4,
196,230,260,309, 344,
365, 369

differential equation, solu-
tion, 409

Dirac delta distribution. 48.
52-54,194,  195,  199,
307

disasters, 364
discrete random variables,

17 ,20 ,36 -40 ,165 ,  167
disease, infectious, 143
dispersion, 44,368
distribution parameters, 103,

108 ,  110 ,  115 ,  120 ,  l 2 l ,
220,235

distribution-free properties
distributive law, 14, 393
diversity, 369
double exponential distribu-

tion. 60
double sampl ing,  33,34
doublet, 400,403
downtime, 291,304
drift, 90, 91,97
Duane plots,  211,  213

early failure, see infant mor-
tality

earthquake, 143, 173, 176-
178, 206,  400

economic loss. 374. 376
electronics, 38, 94, 116, 162,

230
embrittlement, 143, 230
emergency power, 270
engine, 5, 6, 36, 38, 76, 80,

93, 144, 147, 160, 173,
209.238.259

envlronment:
operating, 6, I38,270
work, 368

environmental conditions. 3.
6 ,  7 6 , 8 4 , 9 7 , 9 6 ,  1 6 3 ,
210, 213, 227, 259, 362,
366

equipment:
failures, 363
hazards,362
imported, 371
redundant, 370

error bounds, 29
error function. 284
error, 84, 368-377, 376. See

a/so human error
estimate, 25,26, 103
estimator, 27
ethics, 364
Euler's constant. 190
event,  10,  12
event tree, 372, 374, 375
Excel  spread sheet,  107,  116
expansions, 268, 320, 408,

409
expected value, 20, 26, 43,

44
experiments:

full and partial-factorial,
84-87

two and three level. 82.
84. 86

explosion, 379
exponential distribution, 59,

1 0 3 , 1 0 9 - 1 1 1 , 1 3 6 ,
146-152, 157, 170, lg7,
192, 193, 203, 205, 233,
237, 238, 249, 251, 287,
304 ,305 ,308 ,  418

graph paper, 248,417,
419

power series expansion,
24

probability plot, 109-11 l,
120.249.250

extrapolation, 220
extreme value distribution,

5 7 , 5 9 - 6 2 , 1 0 3 ,  1 1 4 ,
l  16,  123,  127,  128,  t77 ,
183,  188,  189,  190,  206,
235,418

extreme value probability
plot ,  137

factor, adjustment, 88
fail-safe and fail to danger,

268, 27t, 274-276, 287
fai lure,  1,  10,  31,  69,  70,  138

classification, 374
interactions, 326
mechanisms, 144,228,

232,236, 374



mode, single, 197, 200
mode interact ions,  197,

200,202 ,
modes, 6, 138, 159, l7B,

179, 196, 210,213,221,
232, 237, 262, 294, 298,
299,372,389,  393,  396,
372

failure modes and effects
analysis, 208,372-374

failure probability 25, 140,
147,180,186-189,  203,
244, 245, 258, 259, 277,
300, 362, 366, 376

failure rate, I 38- I 68, 175,
177, 191-202, 209, 212,
276-220, 227, 228, 249,
260, 261., 286, 287, 295,
296, 304, 305, 313-317,
3 2 1 , 3 8 3

composite, 142, 145, 150,
151,  171,  195,206,207

constanr, 745-167, 192-
196, 199, 217,237-245,
250-259, 266, 267, 283,
291, 294, 3lO, 312, 323,
382, 395

de f i ned .140 .141
estimates, 16l, 236-245
in Markov models,

328-360
mode, 159, 160
redundant systems,

255-258
time-dependent, 142-145,

t77, 759, 167, 195, 217,
347

failures, See also infant mor-
tality, random and
aging failures

active and passive, 404
benign, 364
catastrophic, 361, 374
command,383
common mode, see com-

mon mode failure
critical, 374
defined, 38l
demand, 339, 376, 383,

394,395
equipment, 362, 371, 383
hard. 278
independent,2S9
maintenance,299,321 ,

322
marginal,374
power,  286,375,395
primary, 377, 382, 389-

396, 398-403, 406
revealed, 323, 297, 303-

308 ,  314-317 ,322 ,350

secondary, 382
sources, 376
standby, 350,357
switching, 258, 262, 263,

278,284, 323,335,  34r,
342,353,357-359

t imes,  l18,  136,  163,  216,
248

unrevealed, 291, 308-313,
317-320.323.324

false alarms, 133, 134, 371
fatigue, l l9, 137, 143, 144,

1 5 5 , 1 7 8
fault:

classifi cation. 382-383
command, 382
defined, 381
primary and secondary,

382
transient, 278

fault handling,2TB
fault tolerant system, 338
fault tree, 362, 372, 374,

376-389, 406
construction, 377 -389

cut sets, 396-404
direct evaluation. 389-396
event classification,

374-382
examples, 384-388
logical reduction, 393
nomenclature, 379
qualitative analysis, 379.

389,  391-393
quantitative analysis, 376,

389 .  39 r .393-396
top event, 376, 380, 382,

389, 392-398, 401-406
fleld:

data, 210
failures, 210
life,228
studies, 216

financial loss. 143
finite element analysis, 82
fire. 364. 400
flash light bulb data, 108,

l l 3 ,  2 3 1
flaw size, 63
flood, 176, 178, 206, 273,

385, 400
FMEA, see failure modes and

effect analysis
fractional factorial experi-

ment, 83, 84
frequency diagram, 104, 105
functional characteristic, 76
functional principles, 69
fuses, 365

gamma function, 57, 58, 157
geometric distribution, 37

I'ndex 431

goal-post loss function, 71,
72

goodness-oÊfit, 118, 120,
237

graph papers, probability,
771,417-424

Gumbel distributions, 59

half factorial experiment, 84
hardware, 213
hazardl.

function, 216
plot ,  216
îate, see failure rate

hazards analysis, 363
heating elements, 365
Herd-Johnson method, 223
histogram, 102-106, 121,

131 ,  135 ,  219 ,248
house symbol, 380
human:

adaptability, 367
behavior, 291,362,

366-372
error, 366-372, 374, 392
reliabil ity, 296, 367, 368,

372
hypothesis-testing, 1 33

idempotent law, l4
impact, mechanical, 143,

206
importance:

component,400, 403
cut set, 403

inclusion-exclusion princi-
ple, 401

incredulity response, 37 I
independent events, 14, 15,

35,  159,254
Indianapolis 500, 4
infant mortality, 6, 31, 69,

70 ,  l 38 -145 ,751 ,152 ,
160, 175, 777, l9l-202,
210, 220, 214, 229, 230,
237, 298, 362-365, 382

INHIBIT gate, 380
inspection, 144, 310, 365
installation, faulty, 362, 363
instrument panels, 368
integrals, definite, 408
interactions, statistical, 84
intersection of events. I l,

13 ,  15 ,  16 ,394 ,  398 ,
401,402

interval estimate, 120-724,
403

inverse operators, 116, l19

Kansas City Hyatt Regency,
363

Ibplan-Meire method, 223
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Kolmogorov-Smirnov test,

1 2 0
kurtosis, 44, 45,64, 106,

107, 136, 122, 2lg

Lro,  66,  246,  247
lamps, 86
Laplace transform, 343, 347,

351
learnins experience, 3, 271
least  squares f i t ,  111-113,

I  18 ,  136 ,  228 ,229 ,233 ,
235

lifè data and tests, 7, 723,
130 ,  209 ,  210 ,2 t3 -231 ,
246

limits, operational, 364
I inear equat ion,  116
linear graph, 98
linear transformation, 47
loacl sharing, 258, 260, 261,

266,285, 331-334, 345
load-capacity interference

theory, 177-l9l
loading,  2,  8,  67,  138,  143,

744, 175-207, 227, 366,
383

cycl ic  163,  178
location index, 90
location parameter, 174, 127
logar i th m ic t - ransformat ion,

5 l

logic:
deductive, 376
er ro rs ,144
expression, 389, 394, 406

log mean, 125, 128,729
lognormal distribution, 48,

53 -56 ,  62 ,  103 ,  116 ,
t 2 3 , 1 2 5 , 1 5 2 - 1 5 6 ,  1 8 3 ,
188 ,  189 ,  205 ,207 ,232 ,
233,236,246-249, 403,
4 1 8

graph paper, 417,421
parameters, lIB, 124, 125,

247
probability plot, 136, 137

log variance, 128, 129
long-term multiplier, 94
lons-term variation, 134
loss f r rnct ion,  73-75,98,  99

Taguchi, 70, 89

rnaintainability, 9, 300,
301-303

\ la in ta inab i l i  t y  eng ineer ing .
303

maintained system, 290, 324,
382

maintenance, 210,  285,
364-370

corrective, 290,291,
300-308

idealized, 291-296
imperfect, 291, 296-300,

362
interval, 294
personne l ,29 l
preventive, 744, 145, 168,

1 6 9 ,  2 9 0 - 3 0 0 , 3 0 9 , 3 2 1 ,
322

redunclant system, 299,
300

man-machine interfàce, 368,
370

manufacture, 68, 102, 208,
230,  361,  366

manufacturing processes, 5,
6 ,  69 ,  70 ,  76 ,  81 ,89 ,
90 -97 ,  103 ,177 ,209 ,
210 ,214 ,363

Markov:
analysis, 326, 327, 349
equations, 332, 335, 337,

346 ,357 ,358 ,  359 ,  360
methods ,  260 ,3 I3 ,331 ,

342-345,348, 350,  394,
407

processes, 326
states, 327, 328
transition matrix, 347,

357-354,359
maximum extreme value dis-

t r ibut ion,  59,  115,  128,
189 ,  190

graph paper, 417,122
maximum likelihoocl meth-

ods,  120,  233
mean ,  53 ,92 ,  106 ,  107 ,  116 ,

l2l, 122, 123, 135-737,
186 ,  219 ,  248 ,368 ,403

cont inuous random var i -
able, 43-60

discrete random variable,
79 -25 ,37

clrift, 91
estimate, 124
process, 90
rank,  108
shift, 91, 95
shift, equivalent, 92

mean time between failures,
164, 167, 174, 244, 246,
3 1 3

mean time to failure, 86, 87,
1 4 1 , 1 4 6 , 1 5 5 ,  1 5 6 ,  l 6 l ,
1 6 4 , 1 9 3

clefined, 141
in maintained systems,

292, 293, 301-306, 322,
323

in Markov models, 333,
336, 238-241, 355*357,
360

in redundant systems,
256-259, 265, 277,
283-285

in reliability testing, 217,
230, 231, 236, 237, 250,
257

mean time to repair, 302-
308, 313, 322,323

median rank, 103, 108
median value, 19
memorylessness, 146, 172
military procurement, 162,

163
minimum extreme value dis-

t r ibut ion,  59,  114,  115,
1 2 8 , 1 8 9

graph paper 417,424
mistake, repetition, 371
moment, bending, 181
Monte Carlo rnethod, 347,

399, 404
mortality, human, 142
mortality rate, 140. See a,lso

failure rate
most probable value, 19
Motorola Corporation, 94
motors, 223
moving averages, 134
MTBF, see rr'ear. time be-

tween failures
MTTF, see r\ear' time to

failure
MTTR, see rraeàn time to

repair
Multiple sampling, 33
mutually exclusive events,

12 ,35 ,255
mutually independent

events, 12,748

noise:
array, 87, 88
background, 96
factors, 85, 87
inner, outer and product,

76, 87, 143, 144, 191
nonlinear plot, 109
nonparametric methods,

103 ,  106 ,  215 ,219 ,227 ,
230,231,246-250

nonredundant system, .tee se-
ries system

nonreplacement rnethod,
237-245

normal distribution, 18, 12,
4g-56,  62,71,72,  r52-
154 ,157



in data analysis, 103, 105,
120 ,124 ,125 ,  131 ,  135 ,
235, 247, 248

in load-capacity theory,
1 7 1 ,  1 8 3 - 1 8 9 , 1 9 7 ,
204-206

plotting and paper, 116-
119 ,  137 ,  248 ,417 ,418 ,
420

in quality, 89-92, 99, 100
normalization condition,

105
null event, l5
number of components, 252
number of failures, 139,

163,  165,  166,212,213,
218, 220, 239, 300, 303

number of repairs, 307

on-off cyc\e,209,227
operating:

environment,  S,  69,70,
7 9 , 8 0 ,  1 4 3

life, 63, 150,209,229
state. 346. 351

operation, 138, 208, 235,
361

continuous, 227, 308, 383
emergency, 370-372
fully loaded, 263
routine, 230,362,

368-370
spur ious,  275,276

operators, 277,383
optimization, 5, 82
OR gate, 376-380, 392, 395
orthogonal array, 84-88, 98,

99
out-of-tolerance, 2, 89, 131,

142,213
outliers, 112,120,229
overheating, 273

paral le l ,  m/N,275
parallel system, B, 33, 254-

289, 313-321,324,
330-333, 404. See also re-
dundancy

active, 253-257, 261, 263,
27r, 278, 284-287,
335-342,354-359

standby or passive, 253-
257, 263, 278, 280, 283,
334, 336, 339, 341, 355

parameters, design, 87
parameters part, 69
parametric methods, 215,

220,232
parent distribution, 123, 137
part-to-part variation, 131,

1 3 3

parts:
commercial, 163
replacement, 144, 145,

210
s p a r e , 1 7 3
s t ress ,162

parts count method, 161-
163. 209

parts per million, 94
Pascal's triangle, 22
pass/fail test, 25, 30
PDF, see probability density

function
percentage survival, 238,

239,241,244
performance, 2, 3, 17 6, 297
performance characteristics,

5 , 7 , 6 8 , 6 9 ,  7 1 ,  7 7 , 8 0 -
88,  93,  96

larger-is-better, 7 6, 82, 88
smaller-is-better, 7 6, 82,

88
target, 76,82
variability, 6

periodic testing, 133,
309-313

physical isolation, 273
pilot error,277
plant layout and automa-

tion. 367. 400
PMF, see probability mass

function
point estimates, 25, 28,29,

107, 120-125, 130, 403
Poisson distribution, 24, 25,

3 2 , 3 7 , 1 6 5 ,  1 6 6 ,  1 7 3 ,
191,  304,  308,357

Poisson process, 149, 326
population, 25, \02, 221

distribution, 120
human, 143
stereotype, 371

power series, exponential,
257

power supply, 35.274
surges, 143
emergency, 375

pressure monitor, 241
pressure vessel, 205, 230,

365
primary system or unit, 254,

255, 262, 334, 337, 339,
342 .249 .350

probability, l0-12, 102
axioms, I I
condi t ional ,  l1-13
density function, 4l-45,

7 l
distribution, 102, 106
mass function, 17, 24, 26,

28
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plotting, B, 103, lO7-120,
125,133, 136,220,237

product rule, 12, 75,252,
314,349

problem-solving ability, 370,
37r

procedures:
emergency, 372
faulty, 383
maintenance, 389
operating, 371, 389

process:
capability, 89, 91, 96,

I  1 6 - l  l 8
control, 96
design, 69, 70, Bl
mean, 89,  133
mean shift, 131
parameter, 89, 96
target, 89

process variability, 89, 134
product:

consumer,  4,362,365
development cycle, 5, 69,

96,  208,  209,272,362
industrial, 362
life, 7, 69, 364
life cycle, 210
modifications, 364

product limit method, 223,
248,249

product rule, 12, 15,252,
314,349

producter's risk, 31, 32
production line, 213, 306
production process, 7, 71,

363. See a/so manufactur-
ing process

proof test, 143, 205,214
protective actions, 367
prototype, 5, 77, 82, 102,

209,211-213, 250
psychological factors, 368,

370

qtrality, 4, 5, 7, 68-102, 142,
210

assurance, 25,143,366
control, 70, 145, 163, 270
control, ofÊline, 70, 72,

89
loss ,  6 ,  71 ,72 ,76 ,  88 ,  143
loss function, see loss

function
multiplier, 163

random failures, 6, 138, 139,
143-747,152, 160,
173-177 ,191 ,  197-202 ,
230, 237, 240, 293-297,
362-365.395,396
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random va r iab le ,  18 ,  19 ,46 ,  t ime ,  173 ,291 ,302-308 ,  shocks ,66 ,  148 ,  149 ,747 ,
102 ,  106 ,  107 ,121 ,122 ,  312 ,  319  177
131, 139, 176,238,254, unrevealed failures, short-term variation, 131
301 308-313 shutdown, unscheduled,zTS

rank, 102, 116,216,233 repairable systems, 300-321 signal-to-noise ratio, 88, 98
rare event approximation, replacement, 143, 164-167, single-parameter at a time

257 ,259 ,265 ,268 ,270 ,  237-245 ,295-298 ,  350  des ign ,  82 ,  84
277-288, 320, 323, 324, resistors, 100, 116, 125, 134 singlet, 400, 403
353,357-359,394 return period, 206 Six sigma criteria and meth-

rat ional  subgroup, 131-134, r isk,  28,  122,  I24,364 oclo logy,  8,  70,  88-97
137 robust  design,  5,70,76,77,  skewness,  44,  45,64,  106,

Rayleigh distribution, 170- 88, 96, 143 107, 121, 122, 124, 136,
772 ,285 ,287 ,322 ,324  roo t  cause ,  376 ,378  137 ,218

rectified equation, 115, 417 rotation of coordinates, 184 soft failures, see transient
reduced system, 281 rule-based actions, 370 faults
reduced variate, 49, 61, 90, runin, 143 software, computer, 112,

124 120.123.213
reclundancy, 252-289, 366, safe operation, 276 spare parts , 774, 238, 277,

397 safety,  4-7,220,298,299 303
allocation, 270-278 analysis, 361-366, 371, spares, exhaustion, 278
cross-linked, 281-283 372,374, 378,379 SPC, see starisrical process
high and low level, 271- factors, 52,775-177,783- control

274,286,287,407 189, 197,  204,206 speci f icat ions,  T0-72,  88-96,
limitations, 258-264 guards, 361-364,376, 98, 116, 163, 363
mult ip le,  254,264-270, 379,397 spread sheet,  107,  111*116,

278-283 index, see reliability index 120, 137 , 237, 233
standby,  262,267,268, margin,  31, I75,176,363 spur ious s ignals,  371

350, 354 systems, 274, 275, 304, square deviation, 111
reliability: 375 shble process, 96

block diagram,252-254, sample statistics, 106, 107, standard deviation, 20,53,
258,  268,  279-282,328, 721 91,92,94,  \16,124,
349,376-379,397, 406,  kurtosis,  136 725,  l3 l - I34,137,784,
407 mean, 102,724,127,131, 186

component,209,270,  736,187,220,232 standard error ,20
273,281 size,26, 37, 34, 103, 108, standardized probability dis-

defined, 1 123, 128,208, 210 tribution, 48, 50
design life, 266, 274,283, skewness, 136 standard normal CDF table,

297,321 var iance,  102,124,127, 4I5,416
enhancement and growth, 131, 136, 187,220 standard normal distribu-

8, 145, 210-215,245 sampling distribution, 25- tion, 49, 50 54-56,77,
human, 291 28,127,1,22-124 75,89,116,123-125,
index,  185,  187 scale parameter,57,58,  113,  153,  184,  185,  188
mission, 339, 341, 404 114, 729,229,232-236 stanclards, 274, 363
system, 160, 252, 255, 269, second-moment methods, standby system, 228,262,

280,295,327,341 187 326,334-344,349,
testing, 208-251, 362 semilog paper, i 10, l l l 352-359

repair, 4,23, 170,260,290, sequential sampling, 33, 34 hot and cold and warm,
291,298,300, 301, 309, series-parallel system, 263-265,277,28b
310, 32ô,  342,365,367, 279-28I  mode, 150,  309
369 series system , 253, 271, 278, start-stop cycle, 150

crew, 303, 350-355, 359, 28I,284,313-320,323, state:
360 330 absorbing,33O

crew, shared and single, service records, 216,225 failed, 346, 351
354-356 shape parameter, 57,58, nonabsorbing, 330

parts, 303, 308 713, 174, 729,229,233, transition diagram, 328-
PDF, 301 235,237 354, 359,  360
policy, 320 shared load, 260, 326,349, statistical analysis, B, 102
rate,302-305, 312-315, 357 statistical inference, 25

322-324,326, 328,350, Shewhart x chart, 134 statistical process control,
354,359 shock,  e lectr ical ,  364 96,  103,  130-134



stereotypical response, 404
st  ra ight  l ine approxi tnat i t - rn.

1 1 1
s t reng th ,  31 ,  5 l  , 57 -59 ,75 ,

80 ,  143 ,  176 ,204 ,205 ,
363. ,5rr also capacity

stress, See also loading
cycles,  118,  209
electrical, 163
environmental,30, 144
fatigue, 370
high and low, 368, 370
level, 2, 213, 214, 227,

230-235,260, 367, 368

P$'chcrlogical, 367, 37 |
screening, environmental,

143 ,214
testing, environmental, 8,

209,2t3-215
transient, 263

stress-strength interference
theory, 177-791

strlrctlrres, 776, 177, 204
Student's t distribution, 123
Sturges forrnula, 105, 135
strbsystem, 273, 349, 348
suppliers, 209,213
sunivability, 142, 747, l4B,

1 5 9
sun'ival times, 48
switching failure, sez failure,

switching
system, 2,  l38,  162,  301,

344-349
centralizati on, 367
decomposition, 279-282
maintained, 9, 290-324
redrrndant, see parallel

and redundancy
safety-critical, 365
standby, se.e parallel
state, 326, 331
voting, 264

Taguchi, 70-89
Ioss firnction, 92, 97-100,

1 1 6 , 1 1 7
methoclolog, 8, 143, 144,

1 9 1
tarpîet life, 365
tar€îet  value,  5,  71,  81,  82,

89 -92 ,99 ,  133
tasks:

repetitive, 369
routine, 367, 369

periodic, 377, 324
procedures, 236, 237, 317
simultaneous and stag-

Eered, 377-324,369
time, 212, 312, 313, 317,

3 r 9
for unrevealed failures,

308-313
thermal cycling, 150
Three Mile Island, 369, 37\
three sigma criteria, 94
time scaling laws, 236
time sequence, 130
time-to-failure, 87, 99, 102,

108 ,  139 ,  140 ,  152 ,  168 ,
215,236,248,284, 308,
372 ,317 ,322 ,357 .  See
also mean time t()
fàilure

t i res,  154,  159
tolerances, 69, 71, 77-79,

91 ,  89 ,  94 ,  97 ,  100 ,  183
total probability law, \6, 17,

281
training procedures, 370
transfer-in and out triangle,

381
transformation of variables,

46, 47, 54
transition probability, 165
trial and error, [32
triplet, 400,403
turbine disk data, 224,225
Type I:

censoring, 220, 237 -243,

25r
distribution, 59, 60
errors, 133

Type II:
cerrsoring, 220, 237 -242,

250
errors,  133

unavailabil iLy, 304, 314, 31 6,
355,  376,394-396

variability, 5, 6, 68-70, 77,
89,94, 143

part-to-part, 90, 91, 92
short- and long-term,

90-96
variance 79, 92, 106, 107,

727-124, 736-137, 146,
166, 277, 2r9, 237, 248,
284 ,357 ,368 ,403

binomial and Poisson dis-
tributions, l9-2b,37

continuous random vari-
able, 43-60,127,128

reduction, 76
sampling distribution, 27
short-term, 94

Venn diagram, 11, 12, 14,
16,  35

voting syst€ms, 268, 276-
278,342,359

warrantee, 149, Lb}, I70,
771,210,220

weakest link, 57, 58, 102
wear ,  5 ,  6 ,54 ,69 ,152 ,  160 ,

277, 239, 290-298
wearin, 143, 744, 152, 756,

169, 196, 294,295,298
wearout, 153, 156, 220,246,

294
Weibull distribution, 57 -62,

66,75,  102,  114-116,
123, 727-129,737,152,
156-160, 172,206,220,
232-236, 247, 249, 283,
293,294,322,324

three-parameter, 158, 159
two-parame ter , 57 -62,

156-158
graph paper, 417,478,

423
probability plot, 113, 136,

228,248
wind damage,73

yield, 92, 93-96, 100
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technologv, advance, 3 unbiased estimator, 26, 107,

television monitor, 363 721, 124,278

temperature elevation, 236 union of events, 12, 13,75,

temperature stress profile, 16, 394,398' 401

215 universal event, 15

test-fix, 745, 211, 212, 246 unreliabil ity, 740, 204, 270,

test ing,  25,  31,275,238,367 316, 376,394-396

interval, 312-374, 317, user behavior, 364

324


