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1 Introduction 

1.1 Preliminaries 

As evident in Error! Reference source not found. below, there is no shortage of active research area 
in CFD.  Besides the regular on-going research in new algorithms, there are ever expanding of new 
activities, some mentioned here but not all.  Some of the more prominent researches are shown in 
Figure 1.1.1 and out of them, some defined below.  

1.2 Computational Predictively plus Verification & Validation 

This includes relatively well-defined tasks such as verification of the correctness of computer codes 
and uncertainty quantification as well as more hazy ones like validations of the model being used. As 
codes become more complex their verification becomes more challenging. Methods such as the 

 
Figure 1.1.1     Current Research Area in CFD 
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Method of Manufactured Solutions are one way. In its simplest form, uncertainty quantification is 
simply the propagation of uncertainties in parameters, properties and models to the final solution.  
Although conceptually simple, this is a formidable task both because we need to know all elementary 
uncertainties and because of the number of computations involved. Other avenues are obtaining the 
Sensitivity Analysis of solution with respect to design variables of interest. This can be achieved with 
attaining the 1st order differentials which indicates the max/min of function. Statistical variations 
certainly has proved its value in many areas, such as quality control in manufacturing and uncertainty 
quantification is likely to become increasingly more important in the use of simulations in design. 

1.3 Multiscale/Multiphysics 

Multiscale is a broad term that usually means what the user intends it to. In most cases, however, it 
is used to mean phenomenon where some aspects of the physics that we wish to compute must be 
described by a different physical model. This can include contact lines in multiphase flow simulations 
represented by molecular or phase field models, reaction zones, shocks in rarified gases and so on. 
While we often think of multiscale representing different physical processes, such as continuum and 
non-continuum descriptions, it also applies to the same physics but modeled in different ways, such 
as when small drops are modeled as point particles. Numerical challenges include how to blend one 
description with another. 

1.4 Mesh Free Methods for CFD 

While the generation of meshes has always posed challenges for computational scientists, the 
problem has become more acute in recent years. While algorithms have seen great advances, mesh 
generation has lagged behind, creating a computational bottleneck. For industry and government 
looking to impact current and future products with simulation technology, mesh generation imposes 
great challenges. Many generation procedures often lack automation, requiring many man-hours, 
which are becoming far more expensive than computer hardware. More automated methods are less 
reliable for complex geometry with sharp corners, concavity, or otherwise complex features. Most 
mesh generation methods to date require a great deal of user expertise to obtain accurate simulation 
results. Since the application of computational methods to real world problems appears to be paced 
by mesh generation, alleviating this bottleneck potentially impacts an enormous field of problems1. 
Meshless methods applied to computational fluid dynamics is a relatively new area of research 
designed to help alleviate the burden of mesh generation. Despite their recent beginning, there exists 
no shortage of formulations and algorithms for meshless schemes in the literature. A brief survey of 
the field reveals varied approaches arising from diverse mathematical backgrounds applied to a wide 
variety of applications. All meshless schemes attempt to bypass the use of a conventional mesh 
entirely or in part by discretizing governing partial differential equations on scattered clouds of 
points or collection of smooth blob of particles.  
There are two different approaches which are called meshless. One contains methods like surface 
panel methods, boundary element methods, etc. which do not contain a volume grid. The other types 
are those which use an arbitrary distribution of points in the computational domain. Particle 
methods also belong to this category where the particles themselves act as discretization points. The 
method is called meshless because the points need not form any grid and they do not have to be 
arranged in any particular manner. The main motivation of meshless methods is that it is much easier 
to generate a point mesh. The accuracy of grid-based methods depends on the quality of the grid and 
so you have to ensure orthogonality, or make sure that elements are not highly skewed, while 
meshless methods are not very much affected by how the points are distributed2.  
A brief survey of the field reveals varied approaches arising from diverse mathematical backgrounds 

 
1 Aaron Jon Katz, ResearchGate,”Meshless methods for computational fluid dynamics”, January 2009. 
2 From CFD Online Forum. 

mhtml:file://C:/Users/Owner/Desktop/Meshless%20methods%20for%20computational%20fluid%20dynamics.mht!https://www.researchgate.net/researcher/2025359418_Aaron_Jon_Katz
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applied to a wide variety of applications. Sorting and classifying the many meshless methods is no 
simple task. To add to the confusion, meshless schemes fall under many other names including mesh 
free, grid free, grid less, generalized finite difference, and Smooth Particle Hydrodynamics (SPH).  
We try to adapt the mesh free vocabulary here. From the above methods, smooth particle 
hydrodynamics (SPH) is distinctive in mesh free methods. It is where the fluid mass is lumped into 
smoothed blobs that are moved using Newton’s second law directly, without an underlying mesh. In 
SPH the fluid is modeled as a collection of smooth “blobs” or particles3. 

1.5 Integrated Simulations of Complex Systems  

Engineers have long desired to have computational models that describe systems consisting of many 
coupled components. At the simplest level such simulators model the dynamics of connected rigid 
bodies, lumped models of chemical and power plants and so on. As computers become more powerful 
we are seeing growing efforts to attempt much more complex modeling, such as of rockets (the 
Illinois ASCI center) or a nuclear power plant (CASL), and other DOE research hub funded efforts. 
Other examples include the Human Body Simulator Project in Japan (lead by S. Takagi) and possibly 
the recently announced Living Earth Simulator proposal by D. Helbing. Overall there is very limited 
theoretical basis for how to do the coupling (with some exceptions such as for solid/fluid problems) 
and that there is considerable room for significant progress.  As the ASCI programs, CASL and other 
effort suggest, this is going to be a very significant area in the future. (See Figure 1.5.1). 

1.5.1 Case Study - CAD Embedded CFD 
While pushing simulation forward in the design cycle is a noble concept that has the potential to 
reduce costly engineering change orders, getting there is not as simple as making computational fluid 
dynamics (CFD) analysis available to designers within the 3D CAD interfaces they are familiar with.  A 
direct CAD interface with CFD in and of itself does not provide any new or improved solutions to the 

 
3 Grétar Tryggvason, “Smooth Particle Hydrodynamics”, Lecture Series 2013. 

 
Figure 1.5.1     Integrated Simulation for Nuclear Engineering 
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biggest challenges of CFD simulation, i.e., geometry simplification and cleanup, extracting the fluid 
region from what is typically a 3D model of the solids involved, ensuring simulation accuracy through 
high-quality meshing, and CFD process quality controls.  However, one particularly beneficial aspect 
of CAD-embedded or CAD-linked CFD that should be noted is its potential for enabling and 
streamlining parametric studies4.  Prime examples of CAD embedded CFD are: 

➢ SolidWorks Flow Simulation 
➢ Autodesk CFD 
➢ ANSYS Discovery Live 
➢ NX-embedded CFD Simulation FloEFD for NX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
4 Stewart Bible and Caleb Triece, P.E, “CAD Embedded CFD: Overhyped, but a Good Value for Some”, Digital 
Engineering, 2018. 
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2 Reduced Order Modeling (ROM) 

2.1 Introduction 

Many modern mathematical models of real-life processes pose challenges when used in numerical 
simulations, due to complexity and large size (dimension).  Model order reduction aims to lower the 
computational complexity of such problems, for example, in simulations of large-scale dynamical 
systems and control systems. By a reduction of the model's associated state space dimension or 
degrees of freedom, an approximation to 
the original model is computed.  This 
Reduced Order Model (ROM) can then be 
evaluated with lower accuracy but in 
significantly less time. Reduced order 
models (ROM) can be thought of as 
computationally inexpensive 
mathematical representations that offer 
the potential for near real-time analysis.  
While most ROMs can operate in near 
real-time, their construction can however 
be computationally expensive as it 
requires accumulating a large number of 
system responses to input excitations. 
Furthermore, ROM usually lack 
robustness with respect to parameter 
changes and therefore must often be 
rebuilt for each parameter variation. 
Together, these two issues underline the 
need for a fast and robust method for adapting pre-computed ROMs to new sets of physical or 
modeling parameters. However, ROMs and their corresponding Reduced Order Bases (ROB) are 
quantities that typically belong to nonlinear, matrix manifolds. As such, classical interpolation 
methods fail, as they are not able to enforce the constraints characterizing those manifolds. The first 
part of the project consists of designing a suitable interpolation method enforcing those constraints. 
A schematic representation of the algorithm is shown in Figure 2.1.1.  It relies on identifying the 
correct manifold for the given application, constructing the appropriate logarithm mapping to move 
the interpolation data to a tangent space to this manifold where a standard multivariate interpolation 
algorithm can be applied, and constructing the appropriate exponential mapping to bring back the 
computed result to the manifold of interest5.  The purpose of reduced order models (ROMs) is: 

• taking advantage of redundancies 
• identifying ‘genuine’ degrees of freedom 
• giving low dimensional approximations (few modes) 
• preserving a satisfactory accuracy 
• decreasing the computational resources (time & storage) 

Reduced Order Models (ROMs) based on statically non-linear flow solutions, but with a dynamically 
time linear approach have been developed.  Thus unsteady flows that are a small perturbation about 
a steady flow with shocks and separations are modelled.  This makes ROMs ideal for applications 
such as flutter clearance and aero-servo-elasticity. To generate a ROM about a particular non-linear 
mean solution, the dynamically time linear response must be extracted from the CFD code. In the 

 
5 Farhat Research group. 

 
Figure 2.1.1     Interpolation on a matrix manifold 
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study of fluid mechanics, there can be distinct physical features that are shared across a variety of 
flows and even over a wide range of parameters such as the Reynolds number and Mach number. 
Examples of common flow features and phenomena include von Kármán shedding6-7-8, Kelvin–
Helmholtz instability9, and vortex pairing/merging. The fact that these features are often easily 
recognized through simple visual inspections of the flow, even under the presence of perturbations 
or variations, provides us with the expectation that the features can be extracted through some 
mathematical procedure. We can further anticipate that these dominant features provide a means to 
describe in a low-dimensional form that appears as a complex high-dimensional flow. Moreover, as 
computational techniques and experimental measurements are advancing their ability in providing 
large-scale high-fidelity data, the compression of a vast amount of flow field data to a low-
dimensional form is ever more important in studying complex fluid flows and developing models for 
understanding and modeling their dynamical behavior10. 

2.2 Various Techniques  

There is a large variety of ROMs in the market.  They are also known as surrogate models.  A common 
approach for model order reduction is Projection-Based reduction. The following methods fall into 
this class: 

• The classic Proper Orthogonal Decomposition (POD) with Galerkin projection. 
• Either Singular Value Decomposition (SVD) or high-order singular value decomposition 

(HOSVD), possibly combined with interpolation. 
• Reduced Basis Method. 
• Balanced Truncation. 
• Approximate Balancing. 
• Matrix Interpolation. 
• Transfer Function Interpolation. 
• Piecewise Tangential Interpolation. 
• Loewner Framework. 
• Empirical (Cross Gramian)11. 
• Krylov Subspace Methods. 

Among those, the application of the POD-Galerkin reduced order modelling for Finite Volume 
discretization technique is gained more industrial fields acceptance. 

2.3 Common Features Shared by Reduced Order Methods (ROM) 

All reduced bases require the solution of high-fidelity and therefore very expensive discrete state 
and/or sensitivity equations and/or adjoin equations. The idea is that these expensive calculations 
can be done off-line before a state simulation or the optimization of the design parameters or 
feedback control is attempted. Moreover, one hopes that a single reduced basis can be used for 

 
6 Strouhal, V., “On One Particular Way of Tone Generation,” Annalen der Physik und Chemie (Leipzig), Series  , 
Vol. 241, No. 10, 1878, pp. 216–251. 
7 Rayleigh, L., “Acoustical Observations,” Philosophical Magazine and Journal of Science, Vol. 7, No. 42, 1879. 
8 Taneda, S., “Experimental Investigation of the Wakes Behind Cylinders and Plates at Low Reynolds Numbers ,” 
Journal of the Physical Society of Japan, Vol. 11, No. 3, 1956, pp. 302–307. 
9 von Helmholtz, H., “On Discontinuous Movements of Fluids,” Philosophical Magazine, Vol. 36, No. 244, 1868. 
10 Kunihiko Taira, Steven L. Brunton, Scott T. M. Dawson, Clarence W. Rowley, Tim Colonius, Beverley J. McKeon, 
Oliver T. Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S. Ukeiley, “Modal Analysis of Fluid 
Flows: An Overview”, AIAA Journal, Vol. 55, No. 12, December 2017. 
11 In control theory, the cross Gramian is a Gramian matrix used to determine how controllable and observable 
a linear system is. 
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several state simulations or in several design or control settings 12.  All reduced-basis sets are global 
in nature, i.e., the support the basis functions globally. Therefore, solving the state or sensitivity or 
adjoin equations with respect to any of the reduced bases requires the solution of dense linear and 
nonlinear systems. Thus, unless the dimension of a reduced basis is “small,” it cannot be used without 
some further processing. Unfortunately, in order to obtain meaningful approximations, it is often the 
case that the use of reduced bases requires the use of a relatively large number of basis functions. 
However, it is often the case that reduced bases contain “redundant” information in the sense that 
the dynamics of the state should be well approximated by a set of functions of much lower dimension.  
The question then arises: how can one extract a reduced basis of smaller dimension that contains all 
the essential information of a reduced basis of larger dimension?  This is where Proper Orthogonal 
Decompositions (POD) and Cantorial Voronoi Tessellations (CVT) come in and, in this sense, they 
are reduced-reduced basis methods. Unfortunately, there is no adequate theoretical foundation for 
reduced-order methods, even in state simulation settings. However, it is certain that without an 
inexpensive method for reducing the cost of state computations, it is unlikely that the solution of 3D  
optimization and control problems involving complex systems, e.g., the Naiver-Stokes system, will 
become routine anytime soon. Thus, it is also certainly true that these methods deserve more study 
from the computational and theoretical points of view. 

2.4 Reduced Basis Methods 

All reduced-order methods are reduced basis methods. However, there is a class of methods that use 
Lagrange bases, Hermit bases, Taylor bases, and Snapshot bases (or more precisely, snapshot sets) 
that have come to be known as Reduced-Basis Methods.  

2.4.1 Lagrange 
Lagrange bases consist of state solutions corresponding to several different values of the parameters 
(Reynolds number, design parameters, etc.). These solutions are obtained by standard (and 
expensive) techniques such as finite element or finite volume methods. For example, if one has the 
design parameters {αj}j=1, J, one obtains an approximate state solutions for n sets of parameter values 
to form the n-dimensional Lagrange reduced basis13.  

2.4.2 Hermit 
Hermit bases consist of the state variables and the first derivatives of the state variables with respect 
to parameters (the sensitivities) determined for different values of the parameters. The state and 
sensitivity approximations are obtained through standard (and expensive) techniques such as finite 
element or finite volume methods. Thus, again, if one has the design parameters {αj}j =1, J, one chooses 
M sets of parameter values and then one obtains the corresponding M approximate state solutions 
and the corresponding MJ sensitivity derivative approximations. The n = M( J+ 1) state and sensitivity 
approximations form the Hermit reduced basis of dimension n.  

2.4.3 Taylor  
Taylor bases consist of the state and derivatives of the state with respect to parameters (sensitivities 
and higher-order sensitivities) determined for a fixed set of design parameters. The state and 
derivative approximations are obtained through standard (and expensive) techniques such as finite 
element or finite volume methods. The Taylor basis may be somewhat complicated to program due 
to the complexity of the partial differential equations that determine the higher-order sensitivities. 
In addition, the number of higher-order derivatives grows very rapidly with the number of design 

 
12 John Burkardt, Qiang Du, Max Gunzburger & Hyung-Chun Lee, “Reduced order modeling of complex systems”, 
NA03 Dundee 2003. 
13 John Burkardt, Qiang Du, Max Gunzburger & Hyung-Chun Lee, “Reduced order modeling of complex systems”, 
NA03 Dundee 2003. 
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parameters, e.g., if one has 10 design parameters, there are 55 different second derivative 
sensitivities. Thus, the dimension of the Taylor reduced basis grows quickly with the number of 
parameters and the number of derivatives used. 

2.4.4 Snapshot Sets Method 
The state of a complex system is determined by parameters that appear in the specification of a 
mathematical model for the system. Of course, the state of a complex system also depends on the 
independent variables appearing in the model. Snapshot sets consist of state solutions corresponding 
to several parameter values and/or evaluated at several values of one or more of the dependent 
variables. For example, steady-state solutions corresponding to several sets of design parameters or 
a time-dependent state solution for a fixed set of design parameter values evaluated at several time 
instants during the evolution process. Or several state solutions corresponding to different sets of 
parameter values evaluated at several time instants during the evolution process. Snapshot sets are 
often determined by solving the full, very large-dimensional discretized system obtained via finite 
volume or finite element discretization. Experimental data have also been used to determine a 
snapshot set. Snapshot sets often contain “redundant” information; therefore, snapshot sets must 
usually be post-processed to remove as much of the redundancy as possible before they can be used 
for reduced-order modeling. POD and CVT may be viewed as simply different ways to post-process 
snapshot sets. 
Since snapshot sets are the underpinning for POD and CVT, we briefly discuss how they are generated 
in practice. At this time, the generation of snapshot sets is an art and not a science; in fact, it is a rather 
primitive art. The generation of snapshot sets is an exercise in the design of experiments, e.g., for 
stationary systems, how does one choose the sets of parameters at which the state (and sensitivities) 
are to be calculated (using expensive, high-fidelity computations) in order to generate the snapshot 
set? Clearly, some a priori knowledge about the types of states to be simulated or optimized using 
the reduced-order model is very useful in this regard. The large body of statistics literature on the 
design of experiments has not been used in a systematic manner. For time-dependent systems, many 
(ad hoc) measures have been invoked in the hope that they will lead to good snapshot sets. Time-
dependent parameters (e.g., in boundary conditions) are used to generate states that are “rich” in 
transients, even if the state of interest depends only on time-independent parameters. In order to 
generate even “richer” dynamics, impulsive forcing is commonly used, e.g., starting the evolution 
impulsively with different strength impulses and introducing impulses in the middle of a simulation. 
In the future, a great deal of effort needs to be directed towards developing and justifying 
methodologies for generating good snapshot sets14. After all, a POD or CVT basis is only as good as 
the snapshot set used to generate it. 

2.5 Proper Orthogonal Decomposition (POD) Spaces 

In order to create a reduced basis space onto which the governing equations are projected, one can 
find many techniques in literature such as the Proper Orthogonal Decomposition (POD), Proper 
Generalized Decomposition (PGD), as well as Reduced Basis (RB) method with a greedy approach.  
The POD approach is been selected here. The POD consists into the decomposition of the flow fields 
into temporal coefficients ai (t) and orthonormal spatial bases φi (x):  
 

      u(x , t) =∑ai(t) φi(x)

Ns

i=1

      

Eq. 2.5.1 
 

14 John Burkardt, Qiang Du, Max Gunzburger & Hyung-Chun Lee, “Reduced order modeling of complex systems”, 
NA03 Dundee 2003. 
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where φi(x) are orthonormal spatial bases that minimizes the average of the error between the 
snapshots, and their orthogonal projection onto the bases and Ns is the number of considered 
snapshots. The POD space VPOD = span(φ1, φ2, , , , φNs) is then constructed solving the following 
minimization problem: 
     

      VPOD = arg  Min
1

NS
∑‖ un(x) −∑(un(x),φi(x))L2(Ω)φi(x) 

NS

n=1

‖

Ns

n=1
L2(Ω)      

2

  

       where               (φi(x), φj(x)) = δij         

Eq. 2.5.2 
where un is a general snapshot of the velocity field at time t = tn. The snapshot can be numerical 
solutions of the NSEs (typical from LES and DNS simulations or even by the RANS equations) or they 
are obtained from experimental results. The POD basis minimizes the difference between the 
snapshots and the projection of the snapshots on the spatial modes in the X-norm, given the 
orthonormality of the modes. If the L2-norm is chosen, the POD basis is optimal considering the 
energy contained in the snapshots. Following development in15. It can be shown that this problem 
can be solved computing a singular value decomposition of the so called snapshots matrix. 
The snapshot based method enables us to perform the decomposition in a computationally 
tractable manner when the dimension of an individual snapshot is much larger than the total 
number of snapshots. In performing the POD here, we first subtract the mean from all snapshots, 
so that we can focus on modal structures associated with fluctuations. The extracted spatial POD 
modes φi (x) of  Eq. 2.5.1 capture regions where fluctuations appear in the flow. Since this 
cylinder flow example is a periodic ow, these spatial modes appear in pairs. This also suggests 
that the modes are based on advective physics with oscillator-type dynamics16. 

2.5.1 Case Study 1 - 2D Laminar Separated Flow Over a Flat-Plate Wing 
To briefly illustrate these ideas, let us provide a preview of modal decomposition. In Figure 2.5.1, 
we present a modal decomposition analysis of 2D laminar separated flow over a flat-plate wing17-18. 
By inspecting the flow field, we clearly observe the formation of a von Kármán vortex street in the 
wake as the dominant unsteady feature. A modal decomposition method discussed, (see Sec. III of [ 
Taira et al.]19), can extract the important oscillatory modes of this flow. Moreover, two of these most 
dominant modes and the mean represent (reconstruct) the flow field very effectively, as shown in 
the bottom figure. Additional modes can be included to reconstruct the original flow more accurately, 
but their contributions are much smaller in comparison to the two unsteady modes shown in this 
example. What is also encouraging is that the modes seen here share a striking resemblance to the 

 
15 Giovanni Stabile, Saddam Hijazi, Andrea Mola, Stefano Lorenzi, Gianluigi Rozza, “Advances in Reduced order 
modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method”, Communications 
in Applied and Industrial Mathematics ISSN 2038-0909, 2017. 
16 Kunihiko Taira, Maziar S. Hemati, Steven L. Bruntonz, Yiyang Sun, Karthik Duraisamy, Scott T. M. Dawson, 
and Chi-An Yeh, “Modal Analysis of Fluid Flows: Applications and Outlook”, AIAA, 2019. 
17 Taira, K., and Colonius, T., “Three-Dimensional Flows Around Low-Aspect-Ratio Flat-Plate Wings at Low 
Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 623, 2009, pp. 187–207. 
18 Colonius, T., and Taira, K., “A Fast Immersed Boundary Method Using a Null space Approach and Multi-Domain 
Far-Field Boundary Conditions,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 25–
28, 2008, pp. 2131–2146. 
19 Kunihiko Taira, Steven L. Brunton, Scott T. M. Dawson and Clarence W. Rowley, Tim Colonius, Beverley J. 
McKeon, Oliver T. Schmidt, Stanislav Gordeyev, Vassilios Theofilis, Lawrence S. Ukeiley, “Modal Analysis of Fluid 
Flows: An Overview”, AIAA Journal, Vol. 55, No. 12, December 2017. 
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dominant modes for three-dimensional turbulent flow at a much higher Reynolds number of 23,000 
with a different airfoil and angle of attack (see Sec. III.B.1of [Taira et al.]20). 
We refer to modal decomposition as a mathematical technique to extract energetically and 
dynamically important features of fluid flows. The spatial features of the flow are called (spatial) 
modes, and they are accompanied by characteristic values, representing either the energy content 
levels or growth rates and frequencies. These modes can be determined from the flow field data or 
from the governing equations. We will refer to modal decomposition techniques that take flow field 
data as input to the analysis as data-based techniques.  
 

2.5.2 Case Study 2 - Cylinder Wakes 
The POD analysis reveals that the fluctuations in the flow field can be captured well with only a small 
number of mode pairs as illustrated in Figure 2.5.2. The first 2, 4, and 6 modes capture 94:84%, 
98:68%, and 99:85%, respectively, of the flow fluctuations in terms of the kinetic energy. With 8 
modes, this percentage reaches 99:97%, which is essentially 100%. This means that the high-
dimensional flow field can be accurately expressed with only 6 or 8 spatial modes, suggesting the 
possibility for significant compression of the flow field data. That is, we reduce the representation of 
the flow field from the number of grid points (times the number of flow variables) to merely the 

 
20 Kunihiko Taira, Steven L. Brunton, Scott T. M. Dawson and Clarence W. Rowley, Tim Colonius, Beverley J. 
McKeon, Oliver T. Schmidt, Stanislav Gordeyev, Vassilios Theofilis, Lawrence S. Ukeiley, “Modal Analysis of Fluid 
Flows: An Overview”, AIAA Journal, Vol. 55, No. 12, December 2017. 

 
Figure 2.5.1    Modal Decomposition of 2D Incompressible Flow Over a Flat-Plate Wing (Re =100 and α 
=30 deg). This example shows complex nonlinear separated flow being well represented by only two 

POD modes and the mean flow field. Visualized are the streamwise velocity profiles. 
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number of POD modes. The mode shapes associated with the dominant POD modes reveal the 
dominant energetic spatial structures in the ow. Interestingly, both POD modes 1 and 2 possess a 
top-down asymmetry, indicating 
that the dominant energetic 
structures are associated with the 
asymmetry of the Karman wake. 
As it will be discussed in a latter 
section, these POD modes can 
serve as a basis to construct a 
reduced-order model that 
describes the dynamics of the 
flow. One of the important 
properties of the POD modes is 
the orthogonality of the modes 
(i.e., < φi , φj > = δij , which is 
attractive for developing sparse 
reduced-order representation of 
the flow dynamics. 
The above 8 POD modes can 
capture the flow field very well for 
the given data. However, if the 
flow is perturbed and deviates 
away from the original ow, 
additional modes may be needed 
to represent the perturbed flow. 
To better capture the perturbed 
flow, POD analysis may be 
repeated with the perturbed flow 
field data or alternative 
techniques such as the Balanced 
POD analysis21 may be utilized 
(although an adjoint simulation is 
needed for the latter case). We 
should keep in mind that the 
modes extracted from the input 
flow field data are optimally 
determined for the provided data 
and may not be so for the perturbed flows. The modes may deform when the ow is under the influence 
of perturbation or actuation. This is an important point to remember if modal analysis is to be 
extended or mode-based models are applied to perform flow control. 

2.6 Galerkin Projection into POD Space 

In this section the Galerkin projection of the governing equations onto the POD space is highlighted 
and discussed. The idea here is to consider both the momentum conservation and continuity 
equation. In order to be consistent with the full order solver, the same set of equations are 
considered, namely the momentum conservation and the Poisson equation for pressure. 

 
21 Rowley, C. W., \Model reduction for fluids using balanced proper orthogonal decomposition," Int. J. 
Bifurcation Chaos, Vol. 15, No. 3, 2005, pp. 997-1013. 

 
Figure 2.5.2     POD Analysis of Cylinder Flow. (a) Original Flow 

Field (vorticity shown). (b) First 8 dominant POD modes 
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2.6.1 Case Study - Vortex Shedding Around a Circular Cylinder using a POD-Galerkin Method 
Vortex shedding around circular cylinders is a well-known and studied phenomenon that appears in 
many engineering fields. In this work a Reduced Order Model (ROM) of the incompressible flow 
around a circular cylinder, built performing a Galerkin projection of the governing equations onto a 
lower dimensional space is presented. The reduced basis space is generated using a Proper 
Orthogonal Decomposition (POD) approach. In particular the focus is into:  
 

➢ The correct reproduction of the pressure field, that in case of the vortex shedding 
phenomenon, is of primary importance for the calculation of the drag and lift coefficients;  

➢ For this purpose the projection of the Governing equations (momentum equation and 
Poisson equation for pressure) is performed onto different reduced basis space for velocity 
and pressure, respectively;  

➢ All the relevant modifications necessary to adapt standard finite element POD-Galerkin 
methods to a finite volume framework are presented. The accuracy of the reduced order 
model is assessed against full order results.  

2.6.1.1 Governing Equations 
For the moment, we consider the incompressible Navier–Stokes equations without any turbulence 
treatment as 

     ∇. u = 0     ,     ut + (u. ∇)u-νΔu + ∇p = 0      
Eq. 2.6.1 
where u is the velocity, p is a normalized pressure and υ is the kinematic viscosity. The equations are 
given in a domain Ω with proper boundary and initial conditions. The Finite Volume method is a 
discretization method based on a “balance” approach, well suited for the solution of equations based 
on conservation laws. A local balance, obtained from the discretization of the integral form of the 
governing equations, is written on each discretization cell. As for details, readers should consult 22-
23.  This approach can be interpreted as if the state vector of the variables of interest was expanded 
as linear combination of state vector spatial modes: 
 

       (

u(x,t)
F(x,t)
p(x,t)

) ≈ (

ur(x,t)
Fr(x,t)
pr(x,t)

) = ∑ ai(t)(

ϕ
i
(x)

ψ
i
(x)

χi(x)

)Nr
i=1        

Eq. 2.6.2 
Replacing the velocity u with ur and p with pr in Eq. 2.6.2, employing the approximated face flux Fr 
in the convective term, and applying the Galerkin projection. The reduced order model of the 
momentum equation is obtained performing an L2 orthogonal projection onto the reduced bases 
space VPOD spanned by the POD velocity modes with a procedure similar to what presented in  
 

     (ϕ
i
 , ut + (u. ∇)u-νΔu + ∇p)L2(Ω) = 0       

Eq. 2.6.3 
With respect to what presented in Error! Reference source not found. here also the gradient of p
ressure is considered inside the momentum equation. It is assumed that velocity and pressure modes 
share the same temporal coefficients. Substituting the POD approximations of u, F and p into Eq. 

 
22 Stefano Lorenzi, Antonio Cammi, Lelio Luzzi, Gianluigi Rozza, “POD-Galerkin method for finite volume 
approximation of Navier–Stokes and RANS equations”, Comput. Methods Appl. Mech. Engr. 311 (2016) 151–179. 
23 Giovanni Stabile, Saddam Hijazi, Andrea Mola, Stefano Lorenzi, Gianluigi Rozza, ”Advances in Reduced order 
modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method”, Communication  
Appl. Ind. Math. 9 (1), 2017, 1–21. 
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2.6.3 and exploiting the orthogonality of the POD modes, one obtains the following dynamical system 
of Ordinary Differential Equations (ODEs). The following POD-Galerkin ROM for Finite Volume 
discretization (POD-FV-ROM) is obtained as: 
 

             
daj(t)

dt
= ν∑Bjiai(t) −∑∑Cjkiak(t)ai(t) −∑Ajiai(t)

Nr

i=1

Nr

i=1

Nr

k=1

Nr

i=1

             

      Bji = (ϕj
,Δϕ

i
)L2     ,      Cjki = (ϕj

, ∇. (ψ
k
,ϕ

i
))L2    ,    Aji = (ϕj

, ∇χi)L2      

Eq. 2.6.4 

2.6.1.2 Details of the Full Order Simulation 
The convective term is discretized in space making use of the Gauss's theorem). The face center 
values of the variables are obtained from the center cell ones, which are the numerical problem 
unknowns, with an interpolation scheme consisting into a combination of a linear and upwind 
scheme. The diffusive term is discretized in a similar fashion. In this case though, a central 
differencing interpolation scheme with non-orthogonality correction is preferred. Also the pressure 
gradient is discretized making use of Gauss's theorem. Here, the face center pressure values are 
obtained from the cell center ones by means of a linear interpolation scheme, in which a limiting 
operation on the gradient is performed so as to preserve the monotonicity condition and ensure that 
the extrapolated face value is bounded by the neighboring cell values. As for the time discretization, 
a backward Euler scheme is used. The overall time extent of the simulation is equal to T = 3645s, 
which is sufficiently long to reach a perfectly periodic response of the lift and drag forces. The 
simulation is run in parallel on 4 Intel R CoreTM processors, taking TCPU-HF = 1483s ≈ 25min to be 
completed. 

2.6.1.3 Details of the ROM Simulation 
The ROM is constructed using the methodologies described in x 3. For the generation of the POD 
spaces, we considered 120 snapshots of the velocity, mass flux and pressure fields. The snapshots 
are collected in a time window covering approximately 1.5 periods of the vortex shedding 
phenomenon. More precisely, the last 73s of the HF simulation are used. The first two modes for 
velocity and pressure field respectively are presented in Figure 2.6.1. The ROM simulations are 
carried out using different values of the POD velocity space dimension Nu = 3, 5, 7, 10. The dimension 
of the POD pressure and mass ux space is set equal to the dimension of the velocity POD space Nu = 
Np. The ROM simulation is run in serial, on the same processor used for the HF simulation. In this 
case, the time advancing of the ROM problem is carried out using the Matlab ODE suite. Reproducing 
the full 3645s extent of the high fidelity (HF) simulation requires, using the ROM model with the 
highest dimension of the POD space, approximately TCPU-ROM = 9.10s. This corresponds to a speedup 
SU ≈ 650. 

2.6.1.4 Analysis of the Results 
Using the settings described in the previous paragraph, four different ROM simulations are run, each 
featuring a different value of the POD space dimension. The results are compared with those of the  
High Fidelity (HF) simulation in terms of history of the lift and drag coefficients. The time window 
used for the comparison is the same window used for the collection of the snapshots. The lift 
coefficient comparison is reported in24, while the drag coefficient time histories is presented in  

 
24 Giovanni Stabile, Saddam Hijazi, Andrea Mola, Stefano Lorenzi, Gianluigi Rozza, ”Advances in Reduced order 
modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method”, Communication  
Appl. Ind. Math. 9 (1), 2017, 1–21. 
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Figure 2.6.2     Comparison of the Drag Coefficient Obtained with the High Fidelity (HF) and ROM 

Simulations 

 

 
Figure 2.6.1     Comparison between velocity and pressure High Fidelity (HF)-ROM 
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Figure 2.6.2.  Figure 2.6.1 the comparison is shown directly on the velocity and the pressure fields. 
In this case, the time step considered is the last one of the simulations corresponding to T = 3645s. 
The left plot in Figure 2.6.1 refer to the velocity (top) and pressure (bottom) fields computed with 
the high fidelity simulations. The right plots refer to the velocity (top) and pressure (bottom) fields 
computed with the ROM, in which the POD space dimension has be set to Nu = 10.  The plots show 
that, at a glance the HF and ROM solutions cannot be distinguished. 

2.7 Addressing Challenges in Reduced-Order Modeling 

One of applied mathematics’ great contributions is the foundation it provides for simulating physical 
phenomena. From the derivation of consistent, stable, and convergent discretization schemes to the 
development of efficient parallel solvers, mathematical advances have enabled the ubiquitous nature 
of modeling and simulation in applications ranging from protein-structure prediction to aircraft 
design. Today, the predictive capability of validated computational models allows simulation to 
replace physical experimentation in many scenarios, which facilitates the realization of deeper 
analyses and better designs at lower costs. However, there is a catch: the resolution required to 
achieve such high fidelity leads to large-scale models whose simulations can consume weeks on a 
supercomputer. This creates a massive gap between the simulation times of high-fidelity models and 
the rapid time-to-solution demands of time-critical (e.g., real-time analysis) and many-query (e.g., 
uncertainty quantification) applications in engineering and science25. 
To bridge this gap, researchers have pursued reduced-order modeling which integrates techniques 
from data science, modeling, and simulation as a strategy for reducing the computational cost of such 
models while preserving high levels of fidelity. First, these methods execute analyses (e.g., simulating 
the model, solving Lyapunov equations) during an off line ‘training’ stage; these analyses generate 
data that  can be mined to extract important physical features, such as low-dimensional solution 
manifolds and interpolation points for approximating nonlinear functions. Next, these techniques 
reduce the dimensionality and computational complexity of the high-fidelity model by projecting the 
governing equations onto the low-dimensional manifold and introducing other approximations 
where necessary. The resulting reduced-order model (ROM) can then be rapidly simulated during an 
online ‘deployed’ stage. While significant advances have been made in reduced-order modeling over 
the past fifteen years, many outstanding challenges face the community, especially with respect to 
applying model reduction to parameterized nonlinear dynamical systems.  
To address this, One workshop theme focused on applying ROMs to truly large-scale nonlinear 
problems in engineering and science. To motivate this, an invited speaker provided a number of 
compelling examples in which the  computational cost incurred by such models poses a major 
bottleneck to design engineers across the naval, aerospace, and automotive industries. A number of 
challenges arise in this case. First, ROM techniques must be tightly integrated with the original high 
fidelity simulation code because most nonlinear ROM methods realize computational savings by 
performing computations with the high-fidelity model on a small subset of the computational 
domain. Second, ensuring accurate ROM solutions can be challenging due to the complex dynamics 
(e.g., stiffness) exhibited by many large-scale dynamical systems. Finally, when the model is very 
large scale, the computational costs of both the offline training and online deployment can remain 
prohibitive; devising ways to reduce them is often essential. 
A second major workshop theme focused on applying ROMs to design optimization. These many-
query problems which are often formulated as mathematical optimization problems constrained by 
partial differential equations can require hundreds of simulations (and sensitivity analyses) of the 
computational model. Thus, rapid model evaluations are necessary when faced with time or resource 

 
25 Kevin Carlberg, ”Addressing Challenges in Reduced-Order Modeling”, SIAM News March 2016. 
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constraints. [Louis Durlofsky]26 proposed a related method based on the Trajectory Piece Wise 
Linear (TPWL) ROM, and showed promising results on oil-production optimization under water 
injection. Despite the many challenges, model reduction remains an exciting research area that is 
making rapid progress toward bridging the gap between high-fidelity models and time-critical 
applications in engineering and science. 

2.8 Reduced Order CFD Simulation 

The unsteady Euler and Navier-Stokes solutions have thousands of degrees of freedom. This means 
that the costs of unsteady flow studies are prohibitive. Schemes that retain the accuracy of the full 
non-linear methods, but at a reduced cost will make such studies feasible. This is the rationale for 
Reduced Order Models (ROM) which is based on statically non-linear flow solutions, but with a 
dynamically time linear approach have been developed. Thus unsteady flows that are a small 
perturbation about a steady flow with shocks and separations are modelled. This makes ROMs ideal 
for applications such as flutter clearance and aero-servo-elasticity. To generate a ROM about a 
particular non-linear mean solution, the dynamically time linear response must be extracted from 
the CFD code.  A system identification and reduction scheme is then used to construct the ROM, a 
state space system, from the pulse responses. This system is of much lower order than the original 
non-linear CFD scheme, but is able to reproduce its behavior. The ROMs are in state space form and 
so can easily be coupled to a structural model for aero elastic and aero servo elastic calculations. One 
advantage of the current approach is that the aerodynamic model is constructed independently of 
the structural model and thus a redesigned structure does not require a new ROM. It could be shown 
that the flutter boundary of a 2D airfoil can be reproduced by ROM of order 18, where the original 
CFD is of order 27,000. The use of ROMs enabled each flutter point to be calculated in less than 
1/100th  of the computing time compared to the full CFD. 
Over the years, 1D, 2D, 3D CFD software’s solutions have been used successfully for modeling 
thermo-fluid systems in automotive, aerospace, oil, gas, power and energy industries. 1D CFD

 systems allows analyses of a wide range of complex engineering problems.  For example, engineers 

 
26 He, J., & Durlofsky, L.J. “Reduced-order modeling for compositional simulation by use of trajectory piecewise 
linearization”. SPE Journal, 201 

 
Figure 2.8.1     1D vs 3D Analysis 
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can rapidly and accurately analyze piping network of almost any size or complexity to establish 
design integrity. 2D CFD cross-section simulation is mostly used in airfoil design for aircraft or blade 
in pumps or compressors, turbines of turbo-machinery. However, the 3D CFD phenomena associated 
with these designs cannot be resolved in 2D simulations. In real world, all fluid flow problems are 3D 
in nature and very with time, however, with thoughtful care, the simulation of many components and 
systems can be run in fewer dimensions. If done properly, the results from a simplified solution can 
give just as meaningful insight, but with a fraction of computational effort. While the 1D CFD is best 
used for system level analysis to understand how different parts of a of system will interact, the 3D 
CFD is used for component level analysis to understand design tradeoffs of detailed parts design, as 
shown Figure 2.8.1. In summary, while 1D CFD are typically mush faster than 3D CFD calculations 
where it may take only minutes to perform and provide a relatively quick system overview, the 3D 
CFD is mainly used for design of individual components allowing engineers to understand how detail 
flow interacts with all manner complex geometry27. 

The question arises when to used 1D CFD vs. 3D CFD? While there is not a definitive answer, the 
strength and weakness of each approach lend themselves to two fairly defined arguments. When 
designing a single components or small subset of components, every inch of length or degree of

  curvature can make a difference. In these cases, when small changes to a single part of a system are 

crucial, or there are significant flow variations in multiple dimensions, 3D CFD is the obvious choice 

because of its ability to analyze complex geometry with extreme accuracy.  However, these benefits 

come with drawbacks, which become more evident as the scale of design increases. When the design 

reaches beyond the component level, the computation requirement becomes too high and the 

simulations take too long to fit within development schedule.  This is when 1D CFD is a good choice. 

Because the 1D approach simplifies the 3D geometry to the component level, usually characterized 

by some sort of performance data.  This is uses much less computing power and usually faster than a 

comparable 3D model. 

2.8.1 Case Study 1 - Designing Parameters of Test Stage Axial Turbine 
At the present, turbo-machine element design using integrated software is developing intensively. 
Using 3D simulation in turbine flow path remains very labor intensive and sufficiently hampers its 
usage. Therefore, unidirectional (1D) and axisymmetric (2D) analyses are still widely used. Gas  
turbine engine qualitative characters are determined by the concepts taken into account on early 
phases of engine component design. The turbine multidisciplinary optimization problems are topic 
of different research. After 1D mean line calculation, a stage-by-stage 2D (axisymmetric) calculation 
was performed to determine the twist

 
laws of blades which provide the highest efficiency. The first 

 
27 Mentor Graphics Corporation®.  
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design stage (P1),  was a 
prototype of Intermediate 
Pressure turbine (IP) last stage of 
the large steam turbine with 
reaction at mean radius such that 
provide axial flow exit from the 
stage and had a twist by the law of 
free-vortex design . The second 
design of stage (P2) was purposed 
for testing the possibility of 
increase a load, preserving axial 
flow exit.  The main parameters of 
the stage put on trial are 
presented in Table 2.8.1. In 
addition to the stage integral 
characteristics, axisymmetric 
computations provide the flow 
parameters distribution in axial 
gap along radius. At this method 
of loss components estimation 
along the radius is a subject of 
importance. The secondary losses 
were connected at the blade tip by 
a special algorithm. The 
secondary losses were calculated 
for each station along the blade height fitting a local profile loss magnitude.  In summary, the process 
can be envisioned through Figure 2.8.2. 

2.8.1.1 Blade Reverse Engineering as applied to Geometry Definition  
The airfoil planner shape can be derived by six control points using NURBS ((Non-Uniform 
Rotational B-Splines), defined as preliminary design. 
The airfoil geometry is generated on a planner design 
sections with sections arranged along the blade height 
following a selected rule28.  A turbine designer may 
choose an approach for profiling, when the sections are 
profiled along the direction of streamlines.  Then, airfoil 
centroids are placed upon a redial line where a skeleton 
generated from the section is covered with a surface that 
is a NURBS. In a process of planner sections 
constructions, a technique of profile shape optimization 
on the geometry and aerodynamics was applied. The 
blades that were used in the test turbine stage are the 
subject of particular interest from several points of view. 
First of all, the nozzle vane cascades are assembled from 
the profiles supplied with the trailing edge extensions. 
This is characterized by heightened strength properties 
at reasonably high efficiency and low sensitivity to inlet 

 
28 Moroz, L., Govorusсhenko, Y., Pagur, P., “Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea 
and Air “, June 6-9, 2005, Reno-Tahoe, Nevada, USA. 
 

                          Stage Design        P1      P2 

Inlet Pressure, Pa 117000 130000 

Inlet Temperature, K 373 373 

Outlet Pressure, Pa 100000 100000 

Rotation frequency, 1/s 7311 8212 

Nozzle vane mean diameter, m 0.2978 0.2978 

Nozzle vane length, m 0.0822 0.0822 

Blade mean diameter, m 0.2986 0.2986 

Blade length, m 0.0854 0.0854 

Nozzle vane outlet gauge 20 17.2 

Nozzle vane at mean radius 24 17.5 

Nozzle vane at peripheral radius 28 17.8 

Blade outlet gauging angle near hub 32 41 

Blade at mean radius 29.7 26 

Blade at peripheral radius 26 19 

 
Table 2.8.1     Main Parameters of the Test Stages (P1) and (P2) 

 

 

 
Figure 2.8.3     Profile of Blades 
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flow angle variation. Then, the specialty profiled cascades with divergent channels in hub zone 
capable of to provide hub reacting at moderate loss were used that permits increase loading. (see 
Figure 2.8.3). 

2.8.1.2 3D Aerodynamic Computation  
Experience proves that any problem solved in 3D formulation which obviating 1D and 2D analyses is 
fought with a danger of missing in flow rate and efficiency determination, particularly when the 
shape defined with low accuracy.  At the same time, unidirectional and axisymmetric components 
feature high reliability, high speed of operation and accuracy sufficient for conventional turbine 
design. 3D analysis is a laborious and sophisticated tool and modeling time invested is several orders 
of magnitude larger than 1D and 2D model. In addition, the designer needs to process and maintain 
specialize skilled for mesh generation, turbulence model selection, boundary application, etc. Indeed, 
all forthcoming of 3D analyses is compensated by its capabilities to quantitatively count the flow 
nuances such as secondary effect in the cascade and flow separation, which cannot be precisely 
detected in the low fidelity models. 

2.8.2 Case Study 2 - Cooling Air Flow Rate  
The flow rate of cooling air through the heat exchangers is obviously a key parameter defining the 
performance of the system. It comes from two sources – the fans and the ram effect generated by the 
movement of the vehicle through the atmosphere. As far as the ram air is concerned there is a trade-
off between a desired high flow rate for good heat exchanger performance and a low flow rate for 
minimization of overall vehicle drag. The flow of air through the front end of the vehicle adds a typical 
5% to the vehicle drag. There are three basic approaches to the establishment of front end air flow 
rate under particular operating conditions. At the most sophisticated level complete CFD analyses 
can be performed which model the detail of the air flow around the outside of the complete vehicle 
and through the vehicle front end and engine  compartment including the various heat exchangers 
and even through the rotating 
fans.  Figure 2.8.4  shows the 
CFD analysis of flow through 
vehicle front-end with 
streamlines and pressure 
contours. This method delivers a 
great deal of information about 
the system but is demanding in 
terms of computing effort29. At 
the intermediate level of 
complexity commercial 
software exists that allows 
networks of 1D components to 
be set up and the air flow 
distribution through them to be 
calculated. This can be valuable 
when problems arise such as air 
recirculation or significant temperature and/or flow rate distribution.   

2.9 Reduced Order Model Using Empirical Relationship 

Despite the sophistication of these development tools there exists a much simpler tool for the 
prediction of front end air flow that proves to be capable of delivering considerable insight into the 

 
29 Mentor Graphics Corporation 2012.  

 
Figure 2.8.4     Typical Cooling System Network for Airflow Rate 
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way the system is behaving. It is based in a 1D model that characterizes the face air flow velocity 
through the heat exchangers, vR, in terms of a few non-dimensional constants: 
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Where: 
F      measure of the effectiveness of the front end shape in delivering  
V0    vehicle velocity  
ψo    maximum non-dimensional pressure coefficient of the fan  
u0    fan tip speed 
ζR     pressure drop coefficient of the heat exchangers 
ζSys   pressure drop coefficient of the remainder of the system (grill, engine compartment, etc.). 
ζF     pressure drop coefficient for the fan itself. 
 
The appropriate values for the unknown system and fan constants (F, ψo, ζSys, ζF) are determined from 
wind tunnel measurements of air flow rates through the heat exchangers for ranges of different 
vehicle speeds and fan speeds. The pressure drop coefficients of the heat exchangers as functions of 
air flow rate are already known. The values of the system constants are extracted from the ex-
perimental dataset using non-linear optimization techniques. Knowledge of the values of these 
parameters for a system allows the air flow rate through the heat exchangers to be explored for any 
vehicle speed or fan speed and even allows the effects of different heat exchangers to be evaluated30. 
 
 
 
 

 

 

 

 

 

 

 
 

  

 
  

 
30  See previous. 
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3 Mesh Free Methods for CFD 

While algorithms have seen great advances in CFD, mesh generation methods has lagged behind, 
creating a computational bottleneck. For industry and government looking to impact current and 
future products with simulation technology, mesh generation imposes great challenges. Many 
generation procedures lack automation, requiring many man-hours, which are becoming far more 
expensive than computer hardware. More automated methods are less reliable for complex geometry 
with sharp corners, concavity, or otherwise complex features. Most mesh generation methods to date 
require a great deal of use expertise to achieve proper stretching, resolution, and structure31.  The 
motivation behind meshless methods lies in releasing the burden of mesh generation. Since the 
application of computational methods to real world problems appears to be paced by mesh 
generation, alleviating this bottleneck potentially impacts an enormous field of problems. It is not 
clear at this point how effective meshless methods will be at alleviating meshing problems. While a 
rigid mesh is not required, sufficiently dense point distributions are still required. Moreover, points 
must be grouped locally to form clouds. Obtaining optimal clouds for different methods is also a non-
trivial problem. However, recent progress in the area of point distribution and cloud generation by 
L¨ohner and others 32-33 has shown great promise is this area. Several of the most notable meshless 
methods are:  

• Smooth Particle Hydrodynamics (SPH) 
• Mesh free Local Petrov-Galerkin (MLPG) 
• Methods based on Radial Basis Functions (RBF) 
• Finite Point Methods (FPM) 
• Mesh free Boundary schemes  
• Reproducing Kernel Particle Method (RKPM) 

 
These methods are also summarized in works by Liu34 and Liu and Gu35. 

3.1 Smooth Particle Hydrodynamics (SPH) 

The method of SPH, introduced by Monaghan36, makes use of an integral representation of a function 
at a point given a set of surrounding points, called a kernel approximation. It uses no mesh, and points 
are free to move past one another consistent with a Lagrangian approach. While SPH was first 
developed to handle astrophysical phenomena in open space, the method was later applied to 
structures, fracture simulation, fluid flow, and other fields. Monaghan 37 showed that the SPH method 
with artificial viscosity could accurately capture shock waves in one-dimensional shock tube 
problems. Methods based on an SPH formulation are well-suited for problems of infinite domain in 
which the problem size is not know in advance. 

 
31 Aaron Jon Katz, “Meshless Methods for Computational Fluid Dynamics”, A dissertation submitted to the 
department of aeronautics and astronautics and the committee on graduate studies of Stanford university in 
partial fulfillment of the requirements for the degree of doctor of philosophy, January 2009. 
32 R. L¨ohner and E. O˜nate. An advancing front point generation technique. Communications in Numerical 
Methods in Engineering, 14:1097–1108, 1998. 
33 R. L¨ohner, C. Sacco, and E. O˜nate. A general advancing front technique for filling space with arbitrary objects. 
Int. J. Numerical Meth. Engineering. 61:1977–1991, 2004. 
34 G. R. Liu. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, 2003. 
35 G. R. Liu and Y. T. Gu. An Introduction to Mesh free Methods and Their Programming. Springer, 2005. 
36 J. J. Monaghan and R. A. Gingold.”Shock simulation by the particle method SPH”, Journal of Computational 
Physics, 52:374–389, 1983. 
37  See previous. 
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While SPH has become popular for intensely dynamic problems in which a static or even dynamic 
mesh may not properly resolve relevant physics, certain implementation difficulties are inherent in 
the method. These difficulties include the selection of a proper domain of influence with weighting 
functions, efficient nearest neighbor particle searching, and the determination of a smoothing length 
for force computations at each particle. The Reproducing Kernel Particle Method (RKPM), introduced 
by Liu, Jun and Zhang38, is very similar to the SPH method in that it uses a finite integral 
representation to discretize the governing PDEs. However, RKPM adds a correction function to the 
base kernel approximation, improving the accuracy especially near boundaries39. The RKPM method 
has been applied to fluids, structures, and acoustics. Lesoine and Kaila40 used RKPM to compute aero 
elastic effects of aircraft with large control surface deflections. Zhang, Wagner, and Liu41 showed that 
RKPM was well suited for domain decomposition for large-scale parallel computing. 

3.1.1 Mesh free Local Petrov-Galerkin 
The MLPG method has arisen from the finite element community and is based on the weak form of a 
given PDE. While the use of the weak form of PDEs relaxes consistency requirements of field variable 
approximation, many algorithms in CFD bypass the rigorous use of weak forms. Weak forms require 
the use of numerical integration since they satisfy global integral forms of the governing equations. 
Numerical integration, along with other rigorous aspects of weak forms makes them computationally 
inefficient compared with simple FDM or FVM approaches. Jameson42 showed the equivalency of one 
FVM scheme with a Galerkin method, most development in CFD has been based on strong forms of 
the governing equations, which lead to simple and efficient conservative schemes. Nonetheless, an 
immense mathematical foundation has been developed based on weak forms used for a variety of 
FEM applications. 
Developed by Atluri and others 43-44, the MLPG method is based on a Petrov-Galerkin formulation in 
which weight and trial functions used in the weak form of the equations need not be the same. This 
gives the method a “local” nature in which the integral in the weak form is satisfied over a local 
domain. The MLPG method thus requires a local “background grid” to perform the integral as 
demanded by the weak form. However, the integral is performed locally, relieving the need for a 
global background integration as is used in related methods. The local background grid may be 
simple shapes, such as circles or squares. By all practical measures, MLPG is essentially meshless. 
Approximation of the field variables for the MLPG method is constructed using a moving least 
squares approach. Least squares representations of a function do not pass through the discrete 
sampling points of the function. Instead, they construct a smooth representation which minimizes 
the error of approximation. This fact has posed some difficulties in obtaining accurate and stable 
boundary conditions for the MLPG approach. The MLPG scheme is very general and has been applied 
to various problems. Specific to fluid mechanics, it have used MLPG to solve the incompressible 

 
38 W. K. Liu, S. Jun, and Y. F. Zhang. ”Reproducing kernel particle methods”, International Journal for Numerical 
Methods in Fluids, 20:1081–1106, 1995. 
39 F. C. Gunther and W. K. Liu. “Implementation of boundary conditions for meshless methods”, Computer, 
Methods Appl. Mech. Engineering, 163:205–230, 1998. 
40 M. Lesoinne and V. Kaila. “Meshless aero-elastic simulations of aircraft with large control surface deflections”, 
AIAA paper 2005-1089, AIAA 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2005. 
41 L. T. Zhang, G. J. Wagner, and W. K. Liu. “A parallelized mesh free method with boundary enrichment for large-
scale cfd”, Journal of Computational Physics, 176:483–506, 2002. 
42 A. Jameson, T. J. Baker, and N. P. Weatherill. “Calculation of inviscid transonic flow over a complete aircraft”, 
AIAA paper 1986-0103, AIAA 24th Aerospace Sciences Meeting, Reno, NV, January 1986. 
43 S. N. Atluri and T. Zhu. “A new meshless local petrov-galerkin (mlpg) approach in computational mechanics”, 
Computational Mechanics, 22:117–127, 1998. 
44 S. N. Atluri, H. G. Kim, and J. Y. Cho. “A critical assessment of the truly meshless local petrov-galerkin (mlpg) and 
local boundary integral equation (lbie) methods”, Computational Mechanics, 24:348–372, 1999. 
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Navier-Stokes equations used an up winding scheme for stabilization of the convection operator in 
the stream wise direction. 

3.1.2 Mesh free Methods Based on Radial Basis Functions 
Radial basis functions are functions which have no preferred direction, but only depend on norms in 
space. Most often, the Euclidean distance is used as the norm. Common RBFs include Gaussians, thin 
plate splines, and multi-quadrics. In general, RBFs are smooth and continuously differentiable. When 
used for interpolation purposes, RBF approximations are constructed such that they pass through 
data points exactly. It is difficult to prove any order of accuracy of such approximations since RBFs 
are not based on Taylor series or polynomial expansions. While RBFs have been widely used in 
scattered data interpolation, their application to the solution of PDEs is relatively new. The 
symmetric and un-symmetric forms were compared independently by  and compared an RBF method 
to the finite element method in terms of accuracy and efficiency, showing improved accuracy of the 
RBF method over FEM. Sharan has used the popular multi-quadric RBFs to solve elliptic PDEs. In a 
similar work, [Sarler] formulated a solution method for diffusion problems based on RBFs. In a more 
general work, integrated the theory of Galerkin methods with radial basis functions. More recently, 
[Divo and Kassab] have used RBFs to model convective viscous flows and heat transfer problems. 
[Chinchapatnam] has used a localized RBF method to compute incompressible viscous flows. Radial 
basis methods for compressible flows are much less common, however Shu has recently proposed 
such a method based on an upwind approach. 

3.1.3 Finite Point Methods 
By far, the most prevalent meshless schemes for CFD have been the so-called finite point methods. 
Finite point methods are usually based on the strong form of the governing PDEs and have given rise 
to several variants. In general, FPMs are based on least squares fitting of functions to discrete points. 
These approximate functions form the basis of discretization methods for PDEs. Least squares 
techniques have been widely used in traditional CFD methods as a means of reconstructing high 
order solutions, as discussed by [Mavriplis]45. However, the use of least squares as the primary 
mechanism for PDE discretization in the meshless sense is relatively new. Finite point methods were 
originally derived as generalizations of FDM for irregular point distributions by [Chung]46. 
Finite point methods may be categorized into two main classes: methods derived from Taylor series, 
and methods based on polynomial basis functions. Actually the Taylor series approach is a specific 
case of a polynomial method in which the approximated function is constrained to pass through the 
local cloud center. The Taylor approach is intuitive and has formed the basis for many schemes, 
including the Least Squares Kinetic Upwind Method (LSKUM). Other approaches based on Taylor 
series expansions includes the order of accuracy of the Taylor method for an upwind scheme. The 
methods based on polynomial basis functions are equally numerous as the Taylor based methods. 
[Batina] was one of the first to use a polynomial basis in conjunction with least squares to compute 
derivatives for the Euler and Navier Stokes equations. He used an unweighted least squares 
approach. A similar method was proposed a few years later by [Liu and Su]. Others developed a more 
rigorous method based on polynomial basis functions. Their method incorporated different least 
squares weighting methods to improve the accuracy of derivatives and formulations for higher order 
methods. They applied their method to subsonic compressible inviscid and viscous flows. [L¨ohner 
and others] extended the method of O˜nate to compressible aerodynamic applications with shocks in 
three dimensions. They implemented their scheme with the van Leer approximate Riemann solver , 
gradient reconstruction for high resolution, and limiters to capture shocks. 

 
45 D. J. Mavriplis. “Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes”, 
AIAA paper 2003-3986, AIAA 16th Computational Fluid Dynamics Conference, Orlando, FL, June 2003. 
46 K. C. Chung. “A generalized finite-difference method for heat transfer problems of irregular geometries”, 
Numerical Heat Transfer, 4:345–357, 1981. 
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3.1.4 Meshless Boundary Schemes 
Many of the methods discussed above have been used to enforce boundary conditions for embedded 
boundary systems. Embedded boundaries arise with the use of nobody-conforming grids, such as 
Cartesian grids. Meshless methods have been used in place of cut cells and other related methods. 
One of methods used is polynomial least squares method to compute inviscid slip boundary 
conditions using embedded Cartesian meshes.  They presented encouraging results for two and three 
dimensional inviscid test cases. It has been implemented meshless embedded boundary conditions 
for high Reynolds number viscous flows using the concept of a sub-grid to resolve boundary layers. 
The sub-grid adds additional resolution near the surface, providing points on which to perform 
meshless computations. All these methods appear to provide attractive alternatives to Cartesian cut 
cells or other methods of embedded boundary conditions47. 

3.2 Solution Procedure for Mesh free Methods 48 

The procedure of mesh free methods consists of four basic steps: 

• Domain representation 
• Function approximation 
• Formation of system equations 
• Solving the global equations 

3.2.1 Domain representation 
First, the domain and its boundary is modeled 
(not discretized) using sets of arbitrarily 
distributed nodes (see Figure 3.2.1) in the 
domain and its boundary. The nodal distribution 
is usually not uniform. The density of nodes 
depends on the accuracy requirement of the 
analysis. Because the nodes carry the values of a 
field variable (e.g. density, velocity, etc.), they are 
often called field nodes. Further in the text, a field 
variable will be referred to as a field function. 

3.2.2 Function Approximation 
The field function u at any point at x = (x, y) within the domain is approximated using the values at 
its nodes within the “small” local domain of the point x, i.e. 
                                                                

    u(x) =∑ϕ
i

n

i=1

(x)ui    

Eq. 3.2.1 
Where n is the number of nodes included in a local domain of the point at x, ui is the nodal field  
function at the i th node in the local domain, and ϕi (x) is the shape function of the i th node. The 
“small” local domain of x will be called the support domain of x and denoted Ωx. The size of support 
domain defines the number of field nodes approximating x. Some possible shapes of support domains 
are shown in Figure 3.2.2 where spherical is the most common one. 

 
47 For excellent survy of literature in “Meshless methods”, see 77. 
48 P. Niedoba, L. Cˇerma, and M. J´ıcha, Meshfree methods for computational fluid dynamics, EPJ Web of 
Conferences 45 01068 (2013), DOI: 10.1051, epjconf/201345 01068. 

 
Figure 3.2.1     Domain Representation 
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3.2.3 Formation of System Equations 
System equations can be formulated using 
the shape functions and strong or weak 
formulation49. These equations are 
assembled into the global system matrices 
for the entire problem domain. For static 
problems, the global system equations are a 
set of algebraic equations. For general 
dynamics problems, it is a set of differential 
equations. 

3.2.4 Solving the Global Equations 
The last step depends on the type of 
equations (algebraic, differential, etc.). Note 
that the global equations for computational 
fluid dynamics problems are basically 
nonlinear. 

3.3 Method of Smooth Particle 
Hydrodynamics (SPH) 

The smoothed particle hydrodynamics method belongs to basic mesh free methods. It is used for 
solving partial differential equations. The SPH is basically an interpolation method. The interpolation 
is based on the theory of integral interpolants using kernels that approximate a delta function.  The 
fluid mass is lumped into smoothed blobs 
that are moved using Newton’s second 
law directly, without an underlying 
mesh. In SPH the fluid is modeled as a 
collection of smooth “blobs” or particles 
as depicted in Figure 3.3.1. A system of 
ordinary differential equations is 
produced after approximation of 
unknown functions (field function) and 
their spatial derivatives. This system is 
most often solved by explicit numerical 
methods.  

3.3.1 Formulation 
Function approximation of the field function u(x) is based on an integral representation of the 
function and is given by the equation 
 

                                                h)dξξ,)W(xf(f(x)   

xΩ

 −=   

Eq. 3.3.1 
Where W(x-ξj , h) is the weight function (i.e., smoothing function, kernel function), h being the 
smoothing length, which defines the size of the support domain Ωx, i.e. the smoothing length 
determines the number of particles approximating the function at x.  Eq. 3.3.1 is usually referred to 
as kernel approximation, or SPH approximation of function f(x). For practical calculation, Eq. 3.3.1 
must be discretized as follows 

 
49 See 94. 

 
Figure 3.2.2     Different type of Support domains  

 
Figure 3.3.1     1-D SPH Characterization 
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Where mj and ρj are mass and density of the jth particle in Ωx (i.e., VJ = mj/ρj is the volume of j- particle).           
Eq. 3.3.2 is called a particle approximation of field function f(x). Note that the approximation (          

Eq. 3.3.2) corresponds to the approximation introduced for a general mesh free method. The shape 
function in this case has the form of 
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Approximation of the spatial derivatives of the field function can be obtained by replacing the 
function f(x) in Eq. 3.3.1 with its spatial derivative ∇f(x). Using the per-parts, the Green theorem and 
a discretization we obtain a particle approximation of the spatial derivative of the field function in 
the form of 
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Where ∇xW(x −ξ j , h) is the spatial derivative of the weight function with respect to the variable x. We 
can observe that an approximation of the spatial derivative of a field function is determined using 
only field function values and derivatives of the weight function. In the same fashion we obtain the 
Laplacian as: 
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3.3.2 Smoothing Kernels 
The use of different kernels in SPH is analogue to using different difference schemes in finite 
difference methods, thus the choice of smoothing kernel for a specific problem is significant. The 
derivatives of the smoothing kernels have an important impact for different SPH estimations, but we 
will now focus on the kernels and their required properties. It is required that a suitable kernel must 
have the following two properties,  
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Eq. 3.3.6 
Eq. 3.3.6 states that the kernel must be normalized, and that the unit integral ensures that maxima 
and minima are not enhanced. The kernel must also be positive to ensure that it is an averaging 
function. If the kernel is even, then rotational symmetry is enforced, which is useful to ensure 
invariance under rotations of the coordinate system.  
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           h)ξ,-W(xh)ξ,-   W(xand    0 h)ξ,-   W(x −=           Eq. 3.3.7 

 
If these conditions are met, the interpolation is of second order accuracy50 that is the error of 
approximating is 2nd order or better. It is also suggested that a suitable kernel should have a limited 
or compact support radius, in order to ensure zero kernel interactions outside the computational  

 
range of the radius. We use the kernel width h as the compact support radius for all smoothing 
kernels, which implies W(x - ξ, h) = 0, r > h. The first golden rule of SPH states that if a new 
interpretation of an SPH equation is to be found, it is always best to assume the kernel is a Gaussian51. 
The isotropic Gaussian kernel in n dimensions is given by 
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          Eq. 3.3.8 

 
Which is depicted in Figure 3.3.2 - left. Even 
though a Gaussian kernel has very nice 
mathematically properties, it is not always the 
best kernel to use, e.g. it does not have a compact 
support for our  purpose, and it requires the 
evaluation of the expensive exponential function. 
There are other choices of kernels such as W1 = 
piece wise cubic spline, W2 = quadratic spline, 
and W3 = exponential function which also shown 
in Figure 3.3.2 - right, where d = (ξ - ξj)/h. 

3.3.3 Updating of Smoothing Length h 
To update h, we can use either the constant or as 
a variable.  

 
50 J. J. Monaghan. “Smoothed Particle Hydrodynamics”. Annual Review of Astronomy and Astrophysics, 30, pp. 
543-574, 1992. 
51 See above. 

 
                                Figure 3.3.2     The choice of Different Smooth Kernel in 1D (h=1) 

Gaussian 
Kernel 
 

 
Figure 3.3.3     Ghost Particles, Velocities are 

formed Symmetrically (slip wall) 



33 
 

3.3.3.1 Constant 

➢ h too small, n too small, results no accurate 
➢ h too big, local information smoothed out  

3.3.3.2 Variable 

➢ known at the beginning: hi
0 

➢ updated solving: 
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        Eq. 3.3.9 

 
Where N is number of dimensions. It is ok for slow 
varying density, more complicated procedure or 
fast expansion/contraction (e.g. in gases)52. 

3.3.4 Boundary Treatment 
The issue of boundary conditions is generally very 
difficult in the SPH method. We answer the 
question of properly defining the boundary 
condition that prevented particles from escaping 
out of the domain. Furthermore, we discuss 
consistency near the boundary of the domain (near 
boundary area) 

3.3.5 Virtual Particles 
The first approach is the use of virtual particles. These particles are situated on the boundary and by 
repulsive force acting on the particles in the near boundary area (near boundary particles). Hence, 
virtual particles prevent an unphysical 
penetration through the boundary. (see 
Figure 3.3.4). Unfortunately, this 
approach violates the condition for C1 
consistency of the SPH approximation in 
the near boundary area. This fact is due to 
the undesirable “cutting off” of the weight 
function support, see Figure 3.3.5. Thus, 
the appropriate weight function is not an 
even function53. 

3.3.6 Ghost Particles 
A much better way is to use ghost particles as a boundary condition. In contrast to virtual particles, 
this approach creates a dynamic wall that is constructed at each time step. Ghost particles are formed 
symmetrically (according to the boundary) to the near boundary particles as “twin” particles, see 
Figure 3.3.3. Using ghost particles ensures C1 consistency of the SPH approximation, because the 
shape functions of the near boundary particles can be even functions. 

 
52 Remo Minero, “Mesh Free Methods for Fluid Dynamics Problems”, 17 Dec, 2003. 
53 P. Niedoba, L. Cˇerma, and M. J´ıcha, Meshfree methods for computational fluid dynamics, EPJ Web of 
Conferences 45 01068 (2013), DOI: 10.1051, epjconf/201345 01068. 

 
Figure 3.3.4     Virtual Particles 

 
Figure 3.3.5     Example of a 1D task, particle j is Situated 

in the Near Boundary Area 
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3.3.7 Summery and Recap54 

• Smoothed particle hydrodynamics is an interpolation method that can approximate 
continuously field quantities and their derivatives by using discrete sample points, called 
smoothed particles. 

• Particles carry mass, m, position, x, and velocity, u, but can also hold SPH estimated quantities, 
e.g. mass-density, ρ, pressure, p, etc. 

• The following relation between volume, mass, and mass-density applies, and can be used to 
determine the volume occupied by a particle, V=m/ρ. 

• The following 
properties must hold 
for a smoothing 
kernel: being 
normalized, positive 
and even.  

• We only use 
smoothing kernels 
with a compact 
support radius h. The 
basis formulation of 
SPH to approximate 
any quantity field and 
their derivatives. SPH 
is originally designed 
for compressible flow 
problems.  

Readers are encourage to 
consult [Liu & Liu]55 for 
detailed information and recent trends in SPH methodology. 

3.3.8 Case Study 1 - Lid Driven Cavity Problem 
To validate, the bench mark case of the lid driven cavity is considered and the results are compared 
with FDM on the same number of particles for Re =10 and 41 x 41 particles (See Figure 3.3.6).  

3.3.9 Case Study 2 - Two-dimensional Convection–Diffusion Problem 
A meshless Local Method of Approximated Particular Solutions (LMAPS) is used to analyze problem 
described by the convection diffusion equation by [Mužík & Holičková]56. The method solves the 
steady convection-diffusion equation with reaction term. The discretized system of equations is 
derived via interpolation procedure and radial basis functions (RBF). The solution of the equation is 
performed over simple geometry with non-uniform velocity field and results are presented in the 
article. The LMAPS method is capable to produce stable solutions with results comparable to the 
analytical solutions. 

 
54 Micky Kelager, “Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics”, January 9, 2006. 
55 M.B. Liu · G.R. Liu, “Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments”, Arch 
Comput Methods Eng (2010) 17: 25–76, DOI 10.1007/s11831-010-9040-7. 
56 Juraj Mužík, and Martina Holičková, “Two-dimensional convection–diffusion problem solved using method of 
localized particular solutions”, MATEC Web of Conferences · January 2017. 

 
Figure 3.3.6     Comparison with FDM with SPH for Lid Driven Cavity 

y=0.8

Comparison SPH and FDM - Horizontally
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The local method of approximated 
particular solution (LMAPS) was 
proposed by [Cheng et al.]57 and 
was applied to elliptic problems 
and non-linear problems58. In 
LMAPS the domain is covered by 
cloud of scattered nodes. In the 
work on LMAPS reported so far, 
the support of the any 
computational node is taken to be 
a simple subdomain in a shape of a 
circle though in theory the domain 
can be of any shape, with the 
computational node in the center 
of the circle. The most often used 
interpolation for field variables 
were the moving least-squares, 
though some researchers used 
different schemes for 
interpolation of the field variable 
and gradients over the circular 
boundaries.  The area of interest Ω 
with the boundary ∂Ω is covered 
by points within the area and also on the global boundary (see Figure 3.3.7). Consider a local 
circular (or any simple shape e.g. rectangle) sub-domain ΩS centered at every point s. This sub-
domain is called support domain and using the points in a particular support domain any function 
can be expressed using just nodal values59.  

3.4 RKPM Method 

The reproducing kernel particle method belongs to the category of finite integral methods, and is a 
modification of the SPH method. This method adds the so-called correction function to the SPH 
formulation to ensure certain order of consistency. The particle approximation of the function f(x) is 
defined  

 factor     correction is )C(x,  where          
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          Eq. 3.4.1 

 

3.5 Lagrangian Description of Fluid Dynamics Using SPH 

Interactive fluid dynamics is of essential interest in real-time applications, such as computer games 
or virtual surgery simulators. Using the smoothed particle hydrodynamics (SPH) method, a stable 
particle-based approach to solve the motion of interactive fluids using Lagrangian description. With 
focus on the simulation part we provide a thorough insight of the mathematical theory of particle-

 
57 C.S. Chen, C.M. Fan,P.H. Wen, “Numerical Methods for Partial Differential Equations”, 28, 506–522, (2012). 
58 C.S. Chen, M.A. Golberg, M. Ganesh, “A.H.-D. Computers and Mathematics with Application”, 359–378, (2002) 
59 See 105. 

 
Figure 3.3.7     The diagram of global domain Ω, local support 

domain Ωs of point xs, global points x and local point xi 
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based fluids. The basic Eulerian formulation of an incompressible, isothermal fluid for 2-D flow with 
constant properties express as  
 

    fu) ( .μp u u.
 t

 ρ     ,    0.u     ++−=
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=           Eq. 3.5.1 

 
Where μ is the viscosity of the fluid, and f is the sum of 
external force-densities acting on the fluid, e.g. gravity. 
Using particles instead of a grid simplifies the equations 
significantly. We assume that the amount of particles is 
constant during the simulation, and by keeping the mass 
fixed for each particle, it implies that mass conservation is 
guaranteed, and that conservation of mass can be omitted. 
Figure 3.5.1 depicts a basic layout of a particle-based 
fluid, which has been reduced to two-dimensions for 
reasons of clarity. The particles are represented by the 
dots. The circles represent the volume of each particle. In 
the Lagrangian formulation of a fluid the particles 
completely define the fluid, which implies that the 
particles move with the fluid. Compared to the Eulerian 
view this means that any field quantity now depends on 
time, t, only. The particles carry mass, position, and 
velocity, and will hold smoothed quantity approximations 
obtained from SPH. The acceleration for a Lagrangian fluid particle becomes the ordinary time 
derivative of its velocity. This is why the total derivative term (D/Dt) is reduced to a simple d/dt in 
the Lagrangian view. The basic Lagrangian formulation of the Navier Stokes equations for an 
incompressible, isothermal fluid is given by 
 

  ρ
du

dt
= −∇p + μ∇2u⏟        

finternal

+ f⏟
fexternal

,    F = finternal + fexternal    ,   ai =
dui
dt
=
Fi
ρi
   

Eq. 3.5.2 
Where ai is the particle acceleration, finternal denotes to pressure and viscous forces, and fexternal 
assigned to gravity.  

3.5.1 Default Kernel  
We learned about the first golden rule of SPH, and we also concluded that the isotropic Gaussian 
kernel was not fit to be used for our purpose. We need a default smoothing kernel with compact 
support for the inter-particle-based SPH computations required to solve. Several suggestion 
discussed in 60 for SPH kernels.  Among them are the B-Spline and Q-Spline kernels, where the Q-
Spline is concluded to be the best kernel in terms of computational accuracy. However, the Q-Spline 
kernel requires the evaluation of the square root, which can be expensive if the kernel is often used. 
Instead we will use the 6th degree polynomial kernel suggested by61 as default kernel, which is given 
by 

 
60 J. Hongbin and D. Xin. "On criterions for smoothed particle hydrodynamics kernels in stable field". Journal of 
Computational Physics, 202, pp. 699–709, 2005. 
61 M. Müller, D. Charypar, and M. Gross. “Particle-Based Fluid Simulation for Interactive Applications”. 
Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation, pp. 154-159, 2003. 

 
Figure 3.5.1     Lagrange particle-based 

fluid structure in 2D  
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The default kernel and its derivatives in one dimension can be depicted as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The default kernel and its derivatives are used for all smoothed quantity field approximations, except 
for the internal fluid force fields. For further information regarding various smoothing kernel and its 
application, please consult62. 

3.5.2 Numerical Time Integration  
To simulate the fluid flow, each particle is advanced through time using a global fixed time step Δt, 
Eq. 3.5.4  is employed to compute the particle acceleration, and the new particle position is obtained 
from integrating the acceleration numerically. In this section three different integration schemes will 
be introduced.  

3.5.2.1 The Implicit Euler Scheme  
The Implicit Euler scheme is actually a semi-implicit method, as it is only the position update that is 
implicit. Semi-implicit Euler is based on the explicit Euler scheme, which probably is the most 
common integration method. In explicit Euler the position and velocity are updated in parallel. The 
semi-implicit Euler is no longer independent of the position and velocity updates as 

 
62 Micky Kelager, “Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics”, January 9, 2006. 
 

 
Figure 3.5.2     The default kernel and its derivatives in one dimension for h=1 
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       Δt x   ΔtttΔtt ++ += ux  

Eq. 3.5.4 

3.5.2.2 The Verlet Scheme  
The velocity update is the same, but the position update uses the result from the velocity update to 
predict the new position, 
 

       Δt2   t

2

tΔtt uxxx +−=+ Δt-t           Eq. 3.5.5 

 
The Verlet scheme is one of the computationally fastest integrators and it is usually very stable, as 
the velocity is given implicitly and will not get out of sync with the position. However, collision 
responses are not trivial to handle, as it includes modifying positions rather than velocities. 

3.5.2.3 The Leap-Frog Scheme  
The leap-frog integration has got its name from the fact that the velocities leap over the positions, 
and vice versa, as illustrated in Figure 3.5.3 where the horizontal line represents time t, and the 
subscripts on the positions and velocities u indicate the specific time. The integration structure is 
implicit Euler and yields to: 
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          Eq. 3.5.6 

In theory, a time integration scheme will follow Newton’s 1st law, but numerical dissipation can 
reluctantly damp the linear motion of the particles. Typically, this is not a problem in physics-based 
animation, because the damping can be explained as a small scale air resistance or friction. Especially 
the Verlet scheme is easily influenced by numerical damping. We have chosen not to introduce any 
explicit damping in the time integrators, due to the different ways integrators handle damping. We 
rely on the viscosity force to provide the necessary numerical damping63. 

3.5.3 Collision Handling  
The small-scale working domain of interactive Lagrangian fluids is limited. A practical way of meeting 
a convincing environment of the fluid is to constraint the particle system within well-defined 
boundaries. Boundary containers, such as boxes, spheres, and capsules, are commonly used to 

 
63 Micky Kelager, “Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics”, January 9, 2006. 

 
Figure 3.5.3     The leap-frog mechanism 
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constraint a fluid. When particles collide with a container they must stay inside its boundaries. 
Likewise, if particles collide with an obstacle, they may not penetrate or gain access to the interior of 
the object. Collision handling can be divided into two sub parts; collision detection and collision 
response.  Further discussion is avoided here and interested readers are encourage to read64. 

3.5.4 Case Study 1 – Comparison of Weakly Compressible and Incompressible SPH 
The  comparative study for the Weakly Compressible (WCSPH) and Incompressible (ISPH) Smoothed 
Particle Hydrodynamics methods over an airfoil is investigated by [Shadloo, et. al,]65. WCSPH and 
ISPH simulation results are compared and validated with those of a finite element method (FEM). 
The quantitative comparisons of WCSPH, ISPH and FEM results in terms of Strouhal number, and 
velocity gradients on the airfoil boundaries as well as the lift and drag values for the airfoil geometry 
indicate that the WCSPH method with the suggested implementation produces numerical results as 
accurate and reliable as those of the ISPH and FEM methods. 

3.5.4.1 Formulation of Problem 
The SPH method relies on the idea of smoothing field properties over a bounded domain through the 
devised as in Eq. 3.5.7  which is referred to as the kernel approximation to an arbitrary function f 
(ri). In fact, this arbitrary function can be any hydrodynamic transport property such as temperature, 
enthalpy, density, viscosity and so forth. Here, W(rijj, h) is a kernel function, the angle bracket hi 
denotes the kernel approximation < >,  is the position vector defining the center point of the kernel 
function, rij is the magnitude of the distance vector between the particle of interest i and its 
neighboring particles j, d3(rj) is a differential volume element within the total bounded volume of the 
domain _, and the length h defines the support domain of the particle of interest. The SPH technique 
in Equation (8.18) assumes that the fields of a given particle are affected only by that of other 
particles within a cutoff distance of the particle of interest with a smoothing radius kh where k is a 
coefficient associated with   the particular kernel function. A smoothing kernel function is a piece-
wise spline that should satisfy several conditions: the normalization, the Dirac-delta function, 
compactness, spherical symmetry, and positive and even function properties. A thorough discussion 
on the details of these attributes of the kernel function can be found in66 and the references therein. 
In SPH literature, it is possible to find different forms of piecewise smoothing kernel functions 
possessing the above-listed properties such as Gaussian, cubic or quantic kernel functions. 
Throughout the present simulations, the compactly supported two dimensional quantic spline 
kernel. 
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64 See above. 
65 Mostafa Safdari Shadloo, Amir Zainali, Mehmet Yildiz,  and Afzal Suleman, “A robust weakly compressible SPH 
method and its comparison with an incompressible SPH”, Int. J. Numer. Meth. Engng,(2011). 
66 Liu MB, Liu GR. Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Archives of 
Computational Methods in Engineering 2010. 
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Eq. 3.5.7 

3.5.4.2 Results 
Figure 3.5.4 compare the velocity 
contours of ISPH (upper), FEM 
(middle) and WCSPH (lower) for 
the angles of attack of 5 and 15 
degrees (contours show the 
velocity magnitude, m/s) for the 
Re = 570. Similar to the previous 
benchmark problem, both WCSPH 
and ISPH results are in good 
agreement with those of the mesh 
dependent FEM technique. In all 
simulations, the results of WCSPH 
are as accurate as the ISPH ones. 
The figures further illustrate that 
the proposed algorithm is also 
very successful in simulating the 
flow around the airfoil geometry 
with different angles of attack 
across the flow field67.  

3.5.5 Case Study 2 - Dam Break 
Water Flow using 
Lagrangian Description 

The analysis of fluid flow is more 
an area of interest for physicists 
than computer scientists. 
However, in order to be convinced that the Lagrangian fluid method can produce realistic fluid 
motion we will examine the fluid flow. We will study the velocity flows produced by the dam-break 
problem for the water. In a classic dam-break problem the fluid is constrained inside a dam, and when 

 
67 Mostafa Safdari Shadloo, Amir Zainali, Mehmet Yildiz,  and Afzal Suleman, “A robust weakly compressible SPH 
method and its comparison with an incompressible SPH”, Int. J. Numer. Meth. Engng,(2011). 
 

 
Figure 3.5.5     Dam-Break Flow of water  

 
Figure 3.5.4     Comparison of ISPH (upper), FEM (middle) and 
WCSPH (lower) velocity contours for the angle of attack of 15 

degrees at Re = 570 (Courtesy of  Shadloo105) 
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the fluid is at rest the dam is broken, or the barricade that constrains the fluid is removed. The fluid 
now flows freely and often collides with a vertical wall. Frames from the dam-break of water 
simulated by particles are depicted on Figure 3.5.5 where the flow of water simulation time interval 
is 0.1s between  each frame, from left to right, top to bottom. This is just a survey of how the visible 
water particles flow in the dam-break problem. Frames from the dam-break of water simulated by 
2250 particles. 

3.5.6 Case Study 3 - Dam Break using MLPG-RBF and Shallow Water Equations 
The application of the meshless local Petrov-Galerkin (MLPG) method to solve the shallow water 
equations (SWE) is investigated by [Mužík1 and Holičková]68. The shallow water equations (which 
also called the de Saint-Venant equations) are used to describe flow behaviors in bodies of water 
where the horizontal length scales are much greater than the flow depth, therefore, the 3D problem  
can be assumed as 2D. This localized approach is based on the meshless weak formulation with the 
use of radial-basis functions (RBF) as the trial functions. In this work, the numerical model is applied 
to simulate a dam-break problem as one of most descriptive benchmark problems for SWE. As a 
result, the adopted meshless method not only shows its algorithm applicability for class of problems 
described by SWE, but also brings more efficiency than several conventional mesh-based methods. 
The problem models a partial dam-break for a rapid opening of a sluice gate with a non-symmetric 
breach and its ability to simulate discontinuous flows. The computational domain is a 200 m by 200 
m region. A dam is located in the middle of the domain with 10 m thickness. The initial water depth 
is 10 m on one side and 5 m on the other side of the dividing wall. At time t = 0, the dam fails, and the 
water is released through the 75 m wide non-symmetric breach, as shown in Figure 3.5.6 - (left). 
When the downstream water depth is 5 m, the flow is subcritical everywhere. The boundary 
conditions at x=0 and x=200 m are assumed to be transmissivity and all other boundaries are 
considered as reflective. At the instant of the dam break, water is released through the breach, 
forming a positive wave propagating downstream and a negative wave spreading upstream. We 
compare our results by at t = 7.2s (Figure 3.5.6 - right), when the waves have not yet reached all 
the boundaries, with least-squares finite-element method (LSFEM). The left moving positive wave 
and right moving negative wave are both well resolved. The results were confirmed more stable to 

 
68 Juraj Mužík1, Martina Holičková, ”Meshless simulation of dam break using MLPG-RBF and shallow water 
equations”, MATEC Web of Conferences 117, 00127 (2017). 

  
Figure 3.5.6     Geometry and Water surface profile of the 2D dam-break problem at t =7.2 s. 
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capture the fine details of the flow. The behavior of the numerical scheme is in satisfactory agreement 
with computed results of these researches. 

3.5.7 Case Study 4 - SPH Method for Evaporating Multiphase Flows 
Because evaporation is encountered in many engineering applications, such as fuel droplets in  
engines, liquid sprays, and material processing, a numerical method to accurately predict liquid 
evaporation is of great importance. Common engineering models for predicting droplet evaporation 
assume that the liquid droplet is a point source with homogeneous properties . The primary concern 
of these models is the mass transfer rate without consideration of the gradient in the droplet or the 
liquid-gas interface. While such models are useful in engineering applications, advanced numerical 
methods are needed to reveal the details of the evaporation process. The dynamics of evaporating 
flows involves phase change and energy transfer at the liquid-gas interface, diffusion of vapor species 
in the gas phase, and multiphase flows with sharp interfaces. Because of the complexity of the 
evaporation problem, it is challenging to make a detailed numerical simulation. The main numerical 
challenges in simulating evaporating flows include the treatment of phase change and the sharp 
discontinuity of fluid properties at the liquid-gas interface. Phase change due to evaporation causes 
mass transfer from one phase to another phase. The discontinuity at the liquid-gas interface, of 
variables such as density ratio, also leads to numerical difficulties. 
The intent of [Xiufeng Yang & Song-Charng Kong]69 this work is to provide a numerical method, based 
on smoothed particle hydrodynamics (SPH), to simulate multiphase flows with evaporation. The SPH 
method is a Lagrangian mesh-free particle method. In SPH, a continuous fluid is discretized using 
SPH particles, which carry physical properties, such as mass, density, pressure, viscosity, and 
velocity. Since SPH is a mesh-free method, a smoothing kernel is introduced to connect the 
neighboring particles. The variables and their spatial derivatives are discretized in summations over 
particles. In the SPH method developed for this study, the SPH particles near the interface are allowed 
to change their mass to model the process of evaporation at the interface. The rate of mass change of 
SPH particles due to evaporation depends on the vapor mass fraction in the gas phase and the 
saturated vapor mass fraction at the interface. The saturated vapor mass fraction can be predicted 
by the (Clausius-Clapeyron) correlation. During the process of evaporation, the mass of a liquid SPH 
particle at the interface increases, while the mass of a gas SPH particle decreases. To constrain the 
mass of individual SPH particles, a particle will split into smaller particles if its mass is large enough 
or merge into a neighbor particle if its mass is small enough. 

3.5.7.1 Basic Formulations of the SPH Method 
In SPH, the value of a function f (r) at point ra can be approximated using the following integration: 
 

                                                  dV h)r,f(r)W(r)f(r    aa  −           Eq. 3.5.8 

 
where W is a kernel function and dV is a differential volume element. The parameter h is referred to 
as a smoothing length, which determines the size of the integral domain. In this paper, the following 
hyperbolic-shaped kernel function in two-dimensional space is used: 
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69 Xiufeng Yang And Song-Charng Kong, “Smoothed Particle Hydrodynamics Method for Evaporating Multiphase 
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In the SPH method, a continuous fluid is discretized into properties, such as mass m, density ρ, 
velocity u, and viscosity μ. Then the integration of Eq. (5.17) is discretized in particle summation as 
follows 
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b b

b
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Eq. 3.5.10 

3.5.7.2 Evaporation of a Static Drop 
The evaporation of a static drop was simulated 
using the proposed SPH method. The initial 
radius of the drop is R0 = 0.15 mm. The initial 
temperature of the drop is 353 K. The drop was 
located at the center of a square computational 
domain, which was filled with gas. The length of 
the square was 1.2 mm. The initial temperature 
of the gas was 373 K. The temperature of the 
boundary was also 373 K, and did not change 
during the simulation. These temperatures were 
chosen in order to be consistent with and to 
allow comparisons with the conditions in the 
literature. The initial vapor mass fraction in the 
gas phase was zero. The vapor mass fraction of the boundary remained zero. The initial particle 
spacing was 0.02 mm. Figure 3.5.7 shows that the size of the drop decreased slightly. The decrease 
in the drop size, as compared with the result from a two-dimensional (2D) axisymmetric level-set 
method. It should be noted that the 2D circle used in this study corresponded to the cross section of 
a three-dimensional (3D) cylinder of infinite length, while the 2D axisymmetric circle used 
corresponded to a 3D sphere. 

3.5.7.3 Evaporation of a Dynamic Drop Impacting on a Hot Surface 
The proposed method was also used to simulate the evaporation of a drop impacting a hot surface. 
The initial radius of the drop was R = 0.25 mm and the initial velocity of the drop was U = 2m/s. The 
height and length of the computational domain were 1.5 and 5.0 mm, respectively. The drop was 
located at the center of the domain and was surrounded by gas. The initial temperature of the drop 
was 353 K. The initial temperature of the gas was 373 K. The temperature of the boundaries was also 
373 K, and did not change during the simulation. The initial vapor mass fraction in the gas phase was 
zero. The vapor mass fraction of the boundary remained zero. The initial particle spacing was 0.02 
mm. Figure 3.5.8 shows the evolution of drop impact on a hot surface. After the drop touched the 
surface, it spread and formed a film on the surface. At approximately 1.0 m/s, a tiny crown like 
structure was formed around the rim. Later, the crown merged with the film, and the film receded. 
Finally, the film reached an equilibrium size. 
Since the initial temperature of the drop was lower than the gas temperature, the heat transfer from 
the surrounding gas to the drop led to the decrease in the local gas temperature. However, the drop 
temperature also decreased slightly because evaporation consumed energy, as discussed earlier. 
When the drop spreads on the hot surface and forms a film, heat transfer from the hot surface to the 
film increased the temperature of the film. The intent of this paper was to present an SPH method to 
simulate evaporating multiphase flows. This method accurately models the process of evaporation 
at the liquid-gas interface and the diffusion of the vapor species in the gas phase. An evaporating 
mass rate was derived to calculate the mass transfer at the interface.  To model the process of phase 
change from the liquid phase to the gas phase, mass was allowed to transfer from a liquid SPH particle 

 
Figure 3.5.7     Snapshots of the Evaporating Drop 

at different times using SPH 
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to a gas SPH particle. Thus this proposed method, unlike the traditional SPH method, allows change 
in the mass of an SPH particle.  Additionally, particle splitting and merging techniques were 
developed to avoid the large difference in the SPH particle mass. 

3.5.7.4 Concluding Remarks 
In general, the results show that the method proposed in this paper successfully replicated the 
physical process of evaporating flows, such as heat and mass transfers and the diffusion of the vapor 
species. The example was to simulate the evaporation of a static drop–because of evaporation, the 
present SPH method predicts the decreases of both the temperature of the interface and the size of 
the drop. The last example was to simulate the evaporation of a drop impacting a hot surface. The 
temperature of the liquid-gas interface decreased at first because of evaporation, especially at the 
rim of the film. Then the temperature increased because of the heat transfer from the hot surface to 
the liquid. In summary, the results of this study indicate that the numerical method proposed in this 
paper can be successfully used to produce an evaporating flow simulation. Additional information 
can be attained from [Yang & Kong]70. 
 
  

 
70 Xiufeng Yang And Song-Charng Kong, “Smoothed Particle Hydrodynamics Method for Evaporating Multiphase 
Flows”, Physical Review E 96, 033309 (2017). 

 
Figure 3.5.8     Evolution of Dynamic Drop impact on a hot surface using SPH 
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4 CFD Applications in Other Areas 

Recently CFD finds very wide application in different areas of science and engineering; some 
examples are71: 

➢ Aerodynamics of Aircraft and Vehicles - Lift and Drag 
➢ Hydrodynamics of Ships 
➢ Power plant - Combustion in Internal Combustion Engines (ICE) and Gas Turbines 
➢ Turbo machinery - Flows inside rotating passages, Diffusers etc. 
➢ Electrical and Electronics Engineering - Cooling of Equipment Including Microcircuits. 
➢ Chemical Process Engineering - mixing and separation and polymer molding. 
➢ Marine Engineering -  loads on off-shore structure. 
➢ Environmental Engineering -  Distribution of Pollutant and Effluents. 
➢ Hydrology and Oceanography - flows in rivers, estuaries and oceans. 
➢ Meteorology - Weather Prediction. 
➢ Biomedical Engineering - blood flows through arteries and veins. 
➢ Food Processing 
➢ External and internal environment of buildings: wind loading, ventilation analysis and  

heating/cooling load calculations. 

4.1 Food Processing 

CFD applications in food industry may assist in a better understanding of the complex physical 
mechanisms. [Schott]72, [Quarini]73 have reviewed the general application of CFD to the food 
processing industry. Moreover, other literatures are also available on specific CFD application areas 
such as: Clean-room design, Refrigerated transport, Static mixers, and Pipe flow. Since CFD technique 
can be of great benefit to the food processing industry, fast development has taken place in the past 
few years. CFD, as a tool of research for enhancing the design process and understanding of the basic 
physical nature of fluid dynamics can provide benefits to the food processing industry in many areas, 
such as Drying, Sterilization, Mixing, Refrigeration, Crystallization, Pasteurization and other 
application areas74. 

4.1.1 Drying 
Drying is a common food manufacturing process. The drying rate is a strong function of air flow or 
air velocity. Therefore, it is of great importance to know the air flow and velocity in the drying 
chamber, thus leading to know the areas of adequate air velocities for proper drying. However, air 
flow and air velocity are difficult to measure during operation because several sensors are needed to 
be placed at various directions of air flow and locations. Since there are some difficulties in modelling 
the complex phenomena, especially the gas turbulence, CFD is a powerful tool to aid the prediction 
of drying process. CFD has been used to predict the air flow and velocity during drying. Drying tests 
of several fruits were performed and the result showed that the degree of fruit dryness depended on 
its position within the drier. Determination of pressure profiles and air velocities by CFD showed that 
the main cause of the variations in drying rates and moisture contents was the lack of spatial 

 
71 Versteeg, H., “An Introduction to Computational Fluid Dynamics”, Pearson Publications. ISBN 978-81-317-
2048-6, (2009). 
72 Scott GM (1977), “Simulation of the flow of non-Newtonian foods using computational fluid dynamics”, 
Campden & Chorleywood Food Research Association R & D Report No. 34, UK. 
73 Quarini J (1995), “Applications of Computational fluid dynamics in food and beverage production”. Food Sci 
Technol Today 9: 234-237. 
74 Bin Xia, Da-Wen Sun, “Applications of computational fluid dynamics (CFD) in the food industry: a review”, 
Computers and Electronics in Agriculture 34 (2002) 5–24. 
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homogeneity of air velocities within the drier. With the aid of CFD, researchers  studied velocity fields 
in a modern sausage drier in order to provide information on air circulation inside the drier, which 
showed that CFD was able to predict the effects of filling level on air-flow patterns and also to identify 
measurement errors in areas where the main air flow direction was horizontal75. 
However, the quantitative comparison between the simulated and measured air velocities showed 
wide discrepancy with means of absolute differences of about 0.6 m/s. Although, the flow pattern 
and air velocity in the drier can be predicted using CFD modelling, further study on how to control 
the drying process and to reduce the energy cost is still a research topic for CFD modelling. 
Meanwhile, more attention should be paid on the assumptions such as spatial homogeneity because 
of such assumptions could lead to inaccuracy in prediction. CFD has also been used to investigate the 
performance and the design of spray dryers in the food industry. Spray dryers are used to produce 
products such as milk and coffee powder, as well as detergents. However, the design of spray dryers 
for the food industry is difficult because the performance of spray dryers is heavily influenced by the 
complexity of air and spray flow patterns inside the dryers. 
Therefore, there is considerable scope for the application of CFD simulation including optimum 
design of spray dryers and solutions for operational problems, such as wall deposition. In the past 
several years, researches, such as modelling and measuring the air flow pattern in a co-current pilot 
plant spray dryer (Kieviet et al., 1997) and analyzing the effects of air inlet geometry and spray cone 
angle on the wall deposition rate in spray dryers have been performed. All these studies show that 
there appears to be a large scope for using CFD for other purposes. For example, CFD can be used to 
simulate the air flow in a spray dryer in two dimensions and calculate the trajectories and the course 
of the drying process of the atomized particles. Straatsma76 developed a drying model utilizing 
turbulence model to calculate the gas flow field and showed that the drying model was an effective 
tool in giving indications of how to adapt the modelling in industrial dryers to obtain a better product 
quality or to optimize the drying performance of the unit. However, as the applications and 
specifications of dryers become more and more complex, so does the need for improved test work in 
pilot plants, and CFD simulations become more important in providing quick and valuable 
information. 

4.1.2 Sterilization 
It is known that consumer demands for food products focus on safety, product quality and cost77. 
Therefore, it is of great necessity to enhance quality and assure safety of the food supply. Sterilization 
is an important technique for food storage and preservation. CFD can be used to study both 
temperature distribution and flow pattern of food in the process of sterilization so as to optimize the 
quality of food products. Thermal processing remains the most significant technique of sterilization 
which results in microbial inactivation, but in the meantime, quality loss and flavor development. 
Excessive heating will affect food quality and its nutritive properties. With the application of CFD, 
there has been a number of studies to optimize the thermal sterilization of foods. These studies had 
led to substantial improvement on the optimal control of the process and the retention of the 
nutritional and sensory quality of the food.  Another researches carried out a series of research work 
in canned food sterilization with CFD simulation. The work varied from those simulating the changes 
of bacteria diffusion and their transient spatial distribution during sterilization process to those 
simulating natural convection heating within a can of liquid food during sterilization. It is only in 
recent years that the food pouches have been introduced to the market and, therefore, little or no 

 
75 See above. 
76 Straatsma, J., Houwelingen, V.G., Steenbergen, A.E., Jong, P.D.,“Spray drying of food products:Simulation 
model”, Journal of Food Engineering 42 (2), 67–72. 
77 Bin Xia, Da-Wen Sun, “Applications of computational fluid dynamics (CFD) in the food industry: a review”, 
Computers and Electronics in Agriculture 34 (2002) 5–24. 
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study has been executed on sterilization of food in pouches. CFD code was used for the purpose to 
simulate the transient temperature, velocity profiles and the shape of the slowest heating zone in 
sterilization of carrot soup in pouches. The modelling of a continuous sterilization process to 
optimize the quality of safe food has also been developed and the results showed that CFD modelling 
could be of significant help to the liquid food sterilization.  
However, all of these investigations about CFD application in sterilization are on the thermal 
sterilization in the limited area of liquid foods. There are still remains many challenges in the area of 
sterilization with the application of CFD. For instance, Ultra-violet, visible and infra-red light surface 
sterilization, plasma/corona sterilization, electrons and X rays sterilization, nascent oxygen/ozone 
sterilization of fruits and vegetables, pressure sterilization of fresh fruit juices and cooked ham. The 
application of CFD in these sterilization fields of food is still to be developed in the future. Moreover, 
assumptions are normally made to simplify CFD modelling. For example, specific heat, thermal 
conductivity and volume expansion coefficient were assumed to be constants in the study by Abdul 
Ghania et al. (1999a) although, all the parameters are temperature dependent. More studies should 
be carried out to minimize these assumptions and thus to improve the accuracy of CFD prediction. 
Another area for the application of CFD is the real time control of the sterilization. Effective real-time 
monitoring of sterilization will improve the quality and safety of foods. Above all, the ultimate 
objective is to optimize the sterilization process of the food and to obtain food with excellent quality 
and safety. With the aid of CFD application, the sterilization process can be improved. 

4.1.3 Mixing 
In the food processing industry, mixing is one of the most common operations. Mixing applications 
involve the substances of gas, liquid and solid. And the mixing of fluids is one of the most important 
unit operations for the food processing industry. However, mixing is a complicated process as 
regards to the multiphase turbulence during mixing and the design of a mixer. CFD is a powerful tool 
for the modelling of mixing processes. It provides a natural method to link food process and fluid flow 
information. During mixing, a common method of enhancing the process is to use some kind of stirrer 
or paddle. CFD codes have been applied in optimizing the mixing process to minimize energy input 
and to shorten the processing time. Therefore, research has been carried out on the distribution of 
energy in mixing vessel and on the effects of mixing quality when the stirrer is in different position. 
Such prediction of the mixing process within these units was impossible in the past. Recently, CFD 
modelling of mixing in stirred tanks has been carried out by [Sahu]78,  with several important points 
about impeller-vessel geometry, energy balance and the linkage between the flow field and the design 
objective being addressed. Although no experiments were carried out in the study, the predicted 
values of mixing time were compared with published experimental data and the agreement was 
within 5–10%. This study will benefit the design of the stirred tanks, and some technical problems 
about the impeller types, mixing time and equipment size can be avoided. 
The design of mixing devices is an important topic in analyzing the mixing process. Therefore, some 
research work focusing on the application of CFD on the design of mixing devices, for instance, 
shallow bubble columns, has been investigated. The results of these studies will provide benefits 
including easy measurement of the drop size distribution, the velocities of the phases and the degree 
of mixing, and accurate description of the turbulence, swirling and vortices generated in the mixer. 
Thus, all the development of CFD application on the mixing in the food processing industry will lead 
to more accurate monitoring, control and optimizing of mixing process. In the meantime, it will form 
a good basis for mixing process improvement. 

 
78 Sahu, A.K., Kumar, P., Patwardhan, A.W., Joshi, J.B., “CFD modelling and mixing in stirred tanks”, Chemical 
Engineering Science 54 (13–14), 2285–2293, 1999. 
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4.1.4 Refrigeration 
The consumption of frozen foods has increased continually in the past years because frozen foods 
have demonstrated good food quality and safety record. Refrigeration can slow down bacterial 
growth and preserve food. Therefore, researchers have recently applied CFD in the modelling of heat 
and mass transfer in foods during refrigeration (chilling and freezing). They have developed the 
modelling of air blast and vacuum cooling, chilling, cold chain, cold store, refrigerated room and 
refrigerated display cabinets. CFD simulation of heat and moisture transfer for predicting cooling 
rate and weight loss of cooked ham during air blast chilling process has been investigated. Both 
experimental and predicted results showed that the core temperature of the cooked ham was cooled 
down from 74.4 to 4°C within approximate 530 min. The experimental accumulative weight loss was 
4.25%, while the simulated results were 4.07 and 4.22%, respectively, obtained from standard k–ε 
model and LRN k–ε model. At the same time the effect of fluctuation in inlet airflow temperature was 
studied, indicating that setting the boundary condition of airflow temperature is an important factor 
affecting the predicting accuracy. If a constant temperature was assumed for the inlet air, the weight 
loss (4.37%) was over predicted. Furthermore, the effects of different k–ε models and thermocouple 
positions on the prediction accuracy of CFD modelling of air-blast chilling process were also analyzed. 
Some developed a two-dimensional simulation model for the airflow in two industrial meat chillers. 
Recently, it was investigated the temperature increase in frozen food packaged in pallets in the 
distribution chain by means of CFD modelling. Good agreement was found between the experimental 
and modelling results with the differences normally within 10%. The study showed that the 
controlled temperature throughout the cold chain was necessary to ensure a high food quality with 
long storage duration. Although the modelling of air flow and temperature distribution has been well 
developed, models for phase transition, such as condensation and evaporation are not yet available. 

4.1.5 Crystallization 
It is one of the oldest unit operation in the chemical and food industry but the design and operation 
of crystallization processes still pose many problems. However, until recently, there have been few 
tools capable of providing the required capabilities. This is because modelling of crystallization 
processes poses a number of challenges. The key challenge is representing the inherent physical and 
chemical complexity of crystallization phenomena mathematically and validating the resulting 
mathematical model against experimental data. CFD helps in modelling of crystallization process and 
design of crystallizer79. 

4.1.6 Pasteurization 
Pasteurization is a vital unit operation which is used to inactivate the spoilage organisms and 
enzymes present in the milk. Similarly, CFD analysis for thermal pasteurization of intact eggs. 
Calculated temperature profiles were found to be in good agreement with experimentally observed 
data for eggs of different sizes. A generally accepted kinetic inactivation model for Salmonella 
enteritis’s was incorporated in the CFD analysis and provided a basis for process assessment. 
Minimum process times and temperatures to provide equivalent pasteurization effectiveness at 5 log 
reductions of the target microorganism were obtained on a theoretical basis. Combining a CFD 
analysis with inactivation kinetics proved to be a very useful approach for establishing process 
conditions leading to consumer safe eggs. Also, conducted in-package pasteurization for beer 
microbiological stabilization. A heating process was simulated at 60°C up to 15 PUs (a conventional 
beer process, in which 1 Pasteurization Unit (PU) is equivalent to 1minute at 60°C). The temperature 
profile and convection current velocity along the process and the variation of the PUs were evaluated 
in relation to time considering the cans in the conventional, inverted, and horizontal positions. The 
package position did not result in process improvement. 

 
79 Kaushal and Sharma, “Concept of Computational Fluid Dynamics (CFD) and its Applications in Food Processing 
Equipment Design”, J Food Process Technical 2012, 3:1.  
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4.2 CFD in Semiconductor Industry 

As with most of the technologies, one can know its applications only when it is invented80. Today CFD 
is being used to help in designing in every area where Fluid is involved. CFD has found its application 
with semiconductor industry as well. CFD solution can help immensely in reducing the number of 
experiments required to design various chip manufacturing equipment’s. After validation with 
experiments, one can find finer details more easily from CFD than with experiment e.g. temperature 
distribution over the surface, deposition rate, rate of desorption. Various semiconductor industries 
have started using CFD calculation to help their design engineers. But it still has a long way to go and 
gain confidence from everybody to its results.  CFD (Computational Fluid Dynamics) could be used 
to model the thermal system at a board level as well as within a semiconductor chip, so that efficient 
heat-dissipation mechanisms and sufficient cooling systems could be designed around these systems. 
CFD could hold interesting possibilities given that we are now looking at three-dimensional (3D) 
transistor dies as well as multi-die two-dimensional (2D) packages. Heat dissipation is critical for the 
long-term reliability of semiconductor devices 

4.2.1 Brief Description of Semiconductor Devices 
Semiconductor devices are electronic components that exploit the electronic properties of 
semiconductor materials, principally silicon, germanium, and gallium arsenide, as well as organic 
semiconductors. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most 
applications. They use electronic conduction in the solid state as opposed to the gaseous state or 
thermionic emission in a high vacuum.  In layman terms, semiconductor is the category of conductors 
which besides being a conductor of current is also an insulator. As evident from the diagram (see 
Figure 4.2.1), the energy band gap between valence band and conduction band is: 

• large in case of Insulator 
• overlap in case of Metal 
• moderate in case of Semiconductor 

 
What are they you ask? 

1. Valence Band - Band in which electrons reside. 
2. Conduction Band - Band to which electrons jump and conduct electricity. 

 
80 CFD online.  

 
Figure 4.2.1     Illustrates the various classes of conductors 
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3. Energy Band - Band which does 
nothing! 
 

Similarly for an electron to jump to 
conduction band, it requires energy. Such an 
amount of energy is almost impossible to 
provide to insulators but easily achievable 
in case of metals. In case of  semiconductors 
energy can be tuned so as to make it work 
like metal or an insulator. The energy 
provided must be greater than the energy of 
band gap (>1eV). This feature enables 
semiconductors to be used as Switch. For 
switching ON the circuit you just need to 
provide energy greater than 1eV to the 
semiconductor device.  Figure 4.2.2 demonstrates a semiconductor electronics.  

4.2.2 Thermal Management in Semiconductors 
There are at least ten good reasons to include thermal 
measurements as a routine step in any electronic 
component or system design process81. Amid all the 
promotion of solid-state superlatives ranging from data 
rate to feature size to LED light output, one 
characteristic is never touted: Junction Temperature. 
That's because Junction Temperature (JT) is an 
undesired but unavoidable side-effect of high currents 
and/or switching speeds. A p-n junction, whether it is 
one of millions on a CPU chip or the only one within a 
power LED, generates heat. In the past two decades the 
industry has seen heat dissipation increase by orders of 
magnitude. Faster is better, but faster is also hotter. This 
trend is not without consequences. A 10° increase in JT 
can cause a 50% reduction in a semiconductor  device's life expectancy. In LEDs, both brightness and 
color can suffer as JT increases. And of course the twin issues of safety and cooling can impact the 
design of an entire system, not just the semiconductor device producing the heat. All these facts point 
toward the need for a thorough grasp of thermal behaviors at the chip level, and beyond. True 
understanding comes with physical measurements performed on actual devices. This is especially 
true in the world of semiconductors. You see heat dissipation in semiconductor packages is one of 
the limiting factors in miniaturization. One of the biggest concerns of circuit designers is reducing 
power that is continuously increasing due to bandwidths. As a result, the chip temperature increases. 
This change first modifies and then later destroys the operation of the circuit if the heat is not 
correctly led out of the device. Being able to understand the true thermal characteristics of a chip that 
will go inside an enclosure which is jam packed with other heat generating equipment can be very 
helpful. While most manufacturers publish thermal metrics for their chips, unfortunately not every 
manufacturer knows how to conduct an appropriate thermal characterization of their devices. So you 
can’t always rely on published metrics82. (see Figure 4.2.3). 

4.2.3 Can You Really Fry an Egg on a CPU? 

 
81 From Mentor CFD Blogs. 
82 From Mentor CFD Blogs. 

 
Figure 4.2.2     Modern Semiconductor 

 
Figure 4.2.3     Thermal Management of 

Semiconductor (courtesy of Mentor CFD) 
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An interesting questions arises whether 
you can really fry an egg in CPUs. Believe 
or not, somebody already try that83. 
Solving complex thermal models with 
computational fluid dynamics (CFD) 
requires a lot of processing power, and a 
central processing unit (CPU) under full 
load generates a fair amount of heat. But 
can you cook an egg on it? This article 
describes the model, simulations, and the 
ultimate conclusion. Solving complex 
thermal models with CFD requires a lot of 
processing power and a CPU under full 
load generates a fair amount of heat. But 
can you cook an egg on it? Before you 
throw away your conventional heatsink 
and fan in favor of a multifunctional 
omelet, we’ll investigate what CFD to 
predict about the fate of your PC if you do 
so. (see Figure 4.2.4).  Unfortunately, the 
CPU junction temperature exceeds 90°C 
within 6 seconds, at which point the CPU 
clock would throttle down to reduce the 
thermal power and prevent damage to the 
system; less than ideal for a cooling 
solution. The egg would also burn and 
catch fire. The central location of the CPU 
on the board and the large obstacles to air flow in the neighboring memory DIMMS and I/O ports 
mean limited cold air can passively flow over the hot egg by natural convection. The passive cooling 
of the egg cannot match the forced convection of the stock cooler. An egg-based cooling solution 
would only keep the CPU below the maximum 90°C if the CPU performance were throttled down so 
there are only possible applications in lower power environments with plenty of ventilation. With 
the requirement of frequently swapping out the egg, it can’t this catching on. If the aim is to cook eggs 
though, CPUs certainly produce enough heat to do so; with thermal throttling, the processor acts as 
a thermostatically controlled surface at around 90°C, sufficient to cook on. If you value your 
computer, maybe consider buy a frying pan instead. 
 
4.3 Magneto-Hydro-Dynamics (MHD) 

Magneto-Hydro-Dynamics (MHD), also magneto-fluid dynamics or hydro-magnetics, is the study of 
the magnetic properties of electrically conducting fluids. Examples of such magneto-fluids include 
plasmas, liquid metals, salt water and electrolytes. The word "magneto-hydro-dynamics" is derived 
from magneto meaning magnetic field, hydro- meaning water, and dynamics meaning movement84. 
In a nutshell, MHD is the study of electrically conducting fluids, combining both principles of fluid 
dynamics and electromagnetism. According to [Battista]85, the subject of MHD is traditionally studied 
as a continuum theory, that is to say, attempts at studying discrete particles in the flows are not at a 
level such that computation in these regards is realistic. To run “realistic simulations” would require 

 
83 James Forsyth, System-Level Design, Semiconductor engineering.  
84 From Wikipedia, the free encyclopedia. 
85 Nicholas A. Battista, “An Introduction to Magnetohydrodynamics”, Stony Brook University, December, 2010. 

 
Figure 4.2.4     An Example of an Egg Frying on a CPU  
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computations of flows with many more particles than current computers are able to handle. Thus, 
the only way to study MHD seems to be in its continuum form- leading us to its description using the 
Navier-Stokes fluids equations86. 

4.3.1 MHD Equations 
The ideal MHD equations consist of the continuity equation, the Cauchy momentum equation, 
Ampere's Law neglecting displacement current, and a temperature evolution equation. As with any 
fluid description to a kinetic system, a closure approximation must be applied to highest moment of 
the particle distribution equation. This is often accomplished with approximations to the heat flux 
through a condition of adiabaticity or isothermally. The main quantities which characterize the 
electrically conducting fluid are the bulk plasma velocity field v, the current density J, the mass 
density ρ, and the plasma pressure p. The flowing electric charge in the plasma is the source of a 
magnetic field B and electric field E. All quantities generally vary with time t as described by Error! R
eference source not found..  

I. The two continuity equations for charge conservation where ρc = 0 because we are assuming 
the absence of an external charge distribution.   

II. The Cauchy momentum equation where the Lorentz force term J×B can be expanded using 
Ampere's law and the vector calculus identity  where the first term on the right hand side is 
the magnetic tension force and the second term is the magnetic pressure force.   

III. The ideal Ohm's law for a plasma. 
IV. Faraday's law. 
V. The low-frequency Ampere's law neglects displacement current.  

VI. The magnetic divergence constraint. 
VII. Energy equation where γ = 5/3 is the ratio of specific heats for an adiabatic equation of state. 

This energy equation is, of course, only applicable in the absence of shocks or heat conduction 
as it assumes that the entropy of a fluid element does not change. 

VIII. Hartmann number (Ha) is the ratio of electromagnetic force to the viscous force first 
introduced by Hartmann where B is the magnetic field, L is the characteristic length scale,  
σ is the electrical conductivity, μ0 is the dynamic viscosity.  
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Eq. 4.3.1 
The fundamental concept behind MHD is that magnetic fields can induce currents in a moving 
conductive fluid, which in turn polarizes the fluid and reciprocally changes the magnetic field itself. 
The set of equations that describe MHD are a combination of the Navier-Stokes equations of fluid 

 
86 See Previous. 
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dynamics and Maxwell's equations 
of electromagnetism (see Eq. 
4.3.1). These differential equations 
must be solved simultaneously, 
either analytically or numerically.  
Figure 4.3.1 shows a RHR for 
forces in MHD. 

4.3.2 Case Study - Dynamics of a 
Q2D Wake Behind a 
Cylinder in Presence of 
MHD Environment 

A confined laminar viscous flow 
past a two-dimensional bluff body 
in the presence of a strong uniform 
magnetic field is investigated by 
[Hamid, et al.]87.  The effects of 
Reynolds number (Re) and 
Hartmann number (Ha) on the 
dynamics of the wake are examined, with a focus on the shedding frequency and the distribution of 
the wake vortices. These two parameters are of primary interest as they play an important role in 
determining the mixing and heat transfer properties of the downstream flow. The results indicates 
that the imposed magnetic field significantly alters the dynamic behavior of the wake behind a 
cylinder. It is well-known that beyond a critical Re, the flow around a circular cylinder generates a 
regular pattern of vortices known as the Karman vortex street. Analysis of such bluff body wakes are 
typically divided into three main focus areas: the correlation between drag coefficient, base pressure 
and shedding frequency; the vortex dynamics, where the formation and re-arrangement process are 
addressed; and the stability of the mean velocity profile in the wake. When a strong magnetic fluid is 
imposed to a conducting fluid, the resulting wake possesses a distinct features as compared to the 
normal hydrodynamic flows. Typical example of such flows is in fusion power-reactor breeding 
blankets, where an electrically conducting fluid flows in channels within the blankets under a strong 
plasma-confining magnetic field. This class of flows are known as Magneto-Hydro-Dynamic (MHD). 
The interaction between induced electric currents and the applied magnetic field results in an 
electromagnetic Lorentz force, which in turn gives a damping effect to the flow and subsequently 
alters the formation of vortex street. 

4.3.2.1 Numerical Method and Geometry 
In the current investigation a flow of electrically conducting fluid passing over a circular cylinder 
placed on the centerline of a duct is considered. Figure 4.3.2 depicts the numerical domain and the 
corresponding macro-element mesh. The ratio of cylinder diameter to the duct width (i.e. blockage 
ratio, b = d =2L) is fixed at 0.1 throughout this study. Also shown in the figure is a typical Hartmann 
velocity profile, characterized by a flat profile in the core with velocity U0 and high gradients in the 
vicinity of the lateral walls. The length scale is normalized by the half channel width, L. However, for 
the sake of discussions, the Re and the geometrical length in the succeeding discussions are presented 
in cylinder diameter scale, d. The use of two different length scales in an MHD cylinder wake flows is 
inevitable: the two-dimensional linear braking term is govern by Ha and L, whereas the Re and thus 

 
87 A. H. A. Hamid, W. K. Hussam and G. J. Sheard, “Dynamics of a Quasi-Two-Dimensional Wake Behind a Cylinder 
in an MHD Duct Flow with a Strong Axial Magnetic Field”, 19th  Australasian Fluid Mechanics Conference, 
Melbourne, Australia, 8-11 December 2014. 

 
Figure 4.3.1     Right Hand Rule for MHD 
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the structure of the cylinder wake is govern by d88. A quasi-two-dimensional (Q2D) model for MHD 
duct flow is employed89.  Under this model, the non-dimensional magneto-hydro-dynamic equations 
of continuity and momentum reduce to 
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where u and p are the velocity and pressure fields, respectively. The governing equations are 
discretized using a high-order, in-house solver based on the spectral-element method. 

4.3.2.2 Result and Discussion 
In all simulations, two basic regions of wake 
vortices are apparent; a formation region in 
which the vorticity evolved from cylinder 
boundary-layers organizes into a vortex 
street, and a stable region in which the shed 
vortices convect downstream in a periodic 
laminar manner. This section presents the 
results of shedding frequency analysis and 
vortex distributions. In the current 
investigation, the effect of axial magnetic 
field on shedding frequency is of interest. It is 
to be noted that H = 0 correspond to 
hydrodynamic flows. The dimensionless 
frequency is represented by the Strouhal 
number, St = f d = U0, where f is shedding 
frequency, calculated from the fluctuating lift 
force imparted on the cylinder due to the 
nearwake flow unsteadiness. 

 
88 Frank, M., Barleon, L. and M¨uller, U., 2001, “Visual analysis of two-dimensional magnetohydrodynamics”, 
Physics of Fluids, 13, 2287. 
89 Sommeria, J. and Moreau, R., 1982, “Why, how, and when, MHD turbulence becomes two-dimensional”, Journal 
of Fluid Mechanics, 118, 507–518. 

 
Figure 4.3.2     Schematic Diagram of Numerical Domain 

 
Figure 4.3.3     Contour plots of vorticity snapshot at 

Red = 160 and at Hartmann number as indicated 
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The Strouhal number is dependent on both Ha and Re. In the range of the Ha and Re considered here, 
St increases with increasing Ha at a given Re. This observation can be attributed to the fact that the 
imposed magnetic field tends to stretch the shear layer at the near wake, and hence mass 
conservation requires that the wake advection velocity, Uw is increased. It can be seen in Figure 
4.3.3 that stronger magnetic field intensity produces a narrower wake, thus extending the formation 
region behind the cylinder before the shear layer roll up into a vortex street. For detailed discussion, 
please see [[Hamid, et al.]90. In conclusion, The present study has investigated the characteristics of 
wakes behind a circular cylinders in a rectangular duct under a strong axial magnetic field using a 
spectral-element method. It is found that the formation of vortex shedding and the direction of the 
imposed magnetic field play significant roles in determining the shedding frequency. The present 
investigation reveals that an axial magnetic field tends to appreciably increase the St, regardless of 
flow Re. Furthermore, the advection speed of wake vortices is also a strong function of both Ha and 
Re, whereas Uw is only weakly dependent on Re for hydrodynamic flows. 
 

4.4 Maxwell’s Equations - Electromagnetic Waves 
4.4.1 Historical Perspective 
In 1845, Faraday demonstrated that a magnetic field produces a measurable effect on a beam of light. 
This prompted him to speculate that light involves oscillation of electric and magnetic field lines, but 
his limited mathematical ability prevent him from pursuing this idea. Maxwell, a young admirer of 
Faraday, believed that the closeness of these two numbers, speed of light and the inverse square root 
of ε0 and μ0, was more than just coincidence and decide to develop Faraday’s hypothesis. In 1865, 
he predicted the existence of electromagnetic waves that propagate at the speed of light. 

4.4.2 The Finite-Difference Time-Domain Method (FDTD) 
The Finite-Difference Time-Domain method (FDTD) is today’s one of the most popular technique for 
the solution of electromagnetic problems91. It has been successfully applied to an extremely wide 
variety of problems, such as scattering from metal objects and dielectrics, antennas, micro strip 
circuits, and electromagnetic absorption in the human body exposed to radiation. The main reason 
of the success of the FDTD method resides in the fact that the method itself is extremely simple, even 
for programming a three-dimensional code. The technique was first proposed by [K. Yee]92, and then 
improved by others in the early 70s. The theory on the basis of the FDTD method is simple. To solve 
an electromagnetic problem, the idea is to simply discretize, both in time and space, the Maxwell’s 
equations with central difference approximations. The originality of the idea of Yee resides in the 
allocation in space of the electric and magnetic field components, and the marching in time for the 
evolution of the procedure. To better understand the theory of the method, we will start considering 
a simple one-dimensional problem. Assume, at this stage, “free space” as propagation medium. In this 
case, Maxwell’s equations can be written as 
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Eq. 4.4.1 

4.4.3 Strengths of FDTD Modeling 
Every modeling technique has strengths and weaknesses, and the FDTD method is no different93. 

 
90 See 125. 
91 Lecture Series, Utah ECE. 
92 Kane Yee (1966). "Numerical solution of initial boundary value problems involving Maxwell's equations in 
isotropic media". IEEE Transactions on Antennas and Propagation. 14 (3): 302–307.  
93 Wikipedia. 
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• FDTD is a versatile modeling technique used to solve Maxwell's equations. It is intuitive, so 
users can easily understand how to use it and know what to expect from a given model. 

• FDTD is a time-domain technique, and when a broadband pulse (such as a Gaussian pulse) is 
used as the source, then the response of the system over a wide range of frequencies can be 
obtained with a single simulation. This is useful in applications where resonant frequencies 
are not exactly known, or anytime that a broadband result is desired. 

• Since FDTD calculates the E and H fields everywhere in the computational domain as they 
evolve in time, it lends itself to providing animated displays of the electromagnetic field 
movement through the model. This type of display is useful in understanding what is going 
on in the model, and to help ensure that the model is working correctly. 

• The FDTD technique allows the user to specify the material at all points within the 
computational domain. A wide variety of linear and nonlinear dielectric and magnetic 
materials can be naturally and easily modeled. 

• FDTD allows the effects of apertures to be determined directly. Shielding effects can be found, 
and the fields both inside and outside a structure can be found directly or indirectly. 

• FDTD uses the E and H fields directly. Since most EMI/EMC modeling applications are 
interested in the E and H fields, it is convenient that no conversions must be made after the 
simulation has run to get these values. 

4.4.4 Weaknesses of FDTD Modeling 

• Since FDTD requires that the entire computational domain be gridded, and the grid spatial 
discretization must be sufficiently fine to resolve both the smallest electromagnetic 
wavelength and the smallest geometrical feature in the model, very large computational 
domains can be developed, which results in very long solution times. Models with long, thin 
features, (like wires) are difficult to model in FDTD because of the excessively large 
computational domain required. Methods such as Eigen mode Expansion can offer a more 
efficient alternative as they do not require a fine grid along the z-direction. 

• There is no way to determine unique values for permittivity and permeability at a material 
interface. 

• Space and time steps must satisfy the CFL condition, or the leapfrog integration used to solve 
the partial differential equation is likely to become unstable. 

• FDTD finds the E/H fields directly everywhere in the computational domain. If the field values 
at some distance are desired, it is likely that this distance will force the computational domain 
to be excessively large. Far-field extensions are available for FDTD, but require some amount 
of post processing. 

• Since FDTD simulations calculate the E and H fields at all points within the computational 
domain, the computational domain must be finite to permit its residence in the computer 
memory. In many cases this is achieved by inserting artificial boundaries into the simulation 
space. Care must be taken to minimize errors introduced by such boundaries. There are a 
number of available highly effective absorbing boundary conditions (ABCs) to simulate an 
infinite unbounded computational domain. Most modern FDTD implementations instead use 
a special absorbing "material", called a perfectly matched layer (PML) to implement 
absorbing boundaries. 
 

Because FDTD is solved by propagating the fields forward in the time domain, the electromagnetic 
time response of the medium must be modeled explicitly. For an arbitrary response, this involves a 
computationally expensive time density, although in most cases the time response of the medium 
(or Dispersion (optics)) can be adequately and simply modeled using either the recursive 
convolution (RC) technique, the Auxiliary Differential Equation (ADE) technique, or the Z-transform 
technique. An alternative way of solving Maxwell's equations that can treat arbitrary dispersion 

https://en.wikipedia.org/wiki/Eigenmode_Expansion
https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
https://en.wikipedia.org/wiki/Leapfrog_integration
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https://en.wikipedia.org/wiki/Dispersion_(optics)
https://en.wikipedia.org/wiki/Maxwell%27s_equations
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easily is the Pseudo Spectral Spatial-Domain method (PSSD), which instead propagates the fields 
forward in space94. 

4.4.5 Case Study - 1D Maxwell Equation 
In the one-dimensional case, we can use only Ex and Hy, and Eq. 4.4.1 can be rewritten as 
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Eq. 4.4.2 
that represents a plane wave traveling in the z direction. Yee’s scheme consists in considering Ex and 
Hy shifted in space by half a cell and in time by half a time step when considering a central difference 
approximation of the derivatives. In such a case, equations can be written as 
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Eq. 4.4.4 
Eq. 4.4.3 & Eq. 4.4.4 show the usefulness of Yee’s scheme in order to have a central difference 
approximation for the derivatives. In particular, the left term in Eq. 4.4.3 says that the derivative of 
the E field at time nΔt can be expressed as a central difference using E field values at times (n+1/2)Δt 
and (n-1/2)Δt. The right term in Eq. 4.4.3 approximates instead the derivative of the H field at point 
kΔx as a central difference using H field values at points (k+1/2)Δx and (k-1/2)Δx. This scheme is 
known as “leap-frog” algorithm. Practically, it means that to approximate Maxwell’s equations in 
space and time using this algorithm, 
one should calculate first all H field 
values, then all E field values, 
remembering always that E and H 
are shifted also in space by half of the 
discretization Δx.  Figure 4.4.1 
shows schematically the algorithm. 

4.4.5.1 Boundary Conditions 
From the previous discussion, it is 
not clear what happens at the mesh 
termination. Of course, we cannot 
simulate the propagation of the 
signal indefinitely, and we need to 
terminate somehow the FDTD grid. The problem does not exist in the case of a spatially limited 
structure, like a waveguide, a resonator, etc., where we need to model a region that “trap” the field 
inside. In most of the problems, however, we need to simulate open space regions. In these cases, 
since our simulation region MUST be limited, we need to find a way to “simulate” the open space. 
These boundary conditions are called Radiation Boundary Conditions (RBCs) or Absorbing Boundary 
Conditions (ABCs). The absorbing boundary condition for the 1D case can be therefore expressed by 

 
94 Wikipedia. 

 
Figure 4.4.1     Illustration of a Standard Cartesian Yee cell used 

for FDTD for Electric and Magnetic Field  
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Eq. 4.4.5 
for the right side of the mesh, and KE represents the size of the arrays E and H.  With these conditions, 
in the 1D simulation described in the previous section the wave will be completely “absorbed” by the 
termination. Of course, “completely” means actually “relatively”, since for numerical errors some 
small reflections from the boundary (noise) will be observed. 
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5      Appendix A 

5.1   Routine for Inverse Distance Weighted Interpolation (Shepard’s Method) 

#include <stdio.h> 
#include <stdbool.h> 
#include <string.h> 
#include <math.h> 
#include "cse.h" 
 
#define Large  1.0e+30  
#define Small -1.0e+30 
 
    void RHS (double dx[],double dy[],double dz[],int num,double dum_x, 
                                    double dum_y,double dum_z,double omega[]) { 
 
             int i ; 
             double dx_new , dy_new , dz_new , DX , DY , DZ; 
             dum_x = dum_y = dum_z = 0.0 ; 
             for ( i = 0 ; i < num ; i++ ){ 
                 dx_new = dx[i] ; 
                 dz_new = dz[i] ; 
                 if (dz_new <= 0.0 ) { 
                   dy_new = dy[i] ; 
                 } 
                 else { 
                   dy_new = dy[i]+dz_new*0.25 ; 
                 } 
                  DX = dx_new - dx[i] ; 
                  DY = dy_new - dy[i] ; 
                  DZ = dz_new - dz[i] ; 
 
                  dum_x += omega[i]*DX ; 
                  dum_y += omega[i]*DY ; 
                  dum_z += omega[i]*DZ ; 
             } 
    } 
 
    void get_weight (double h[], double omega[] , int num) { 
 
             int i ; 
             double F2 ,F[num] ,hmax; 
             F2 = 0.0 ; 
 
             hmax = Small ; 
             for ( i = 0 ; i < num ; i++ ){ 
                 hmax = (h[i] > hmax ) ? h[i]: hmax ; 
                 omega[i] = 1.0 ; 
             } 
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             for ( i = 0 ; i < num ; i++ ){ 
                 F[i] = ((hmax -h[i])/hmax*h[i]) * ((hmax -h[i])/hmax*h[i]) ;  
                 F2 += F[i] ; 
             } 
 
             for ( i = 0 ; i < num ; i++ ){ 
                omega[i] =  F[i]/F2 ; 
                if (h[i] == 0.0 ) omega[i] = 1.0 ; 
                if (omega[i] < 0.0 || omega[i] > 1.0 ) { 
                     fprintf(stderr, " omega[i] = %.3lf \n", omega[i]); 
                     fprintf(stderr, " Error - The weight function should be between 0 and 1\n"); 
                     exit(1) ; 
                } 
             } 
    } 
 
    double Get_R (double x[],double y[],double z[],int num ) 
    { 
           double xmax,ymax,zmax,xmin,ymin,zmin,R; 
           xmax = ymax = zmax = Small ; 
           xmin = ymin = zmin = Large ; 
           for ( int i = 0 ; i < num ; i++ ){ 
               xmax = (x[i]> xmax ) ? x[i]: xmax ; 
               ymax = (y[i]> ymax ) ? y[i]: ymax ; 
               zmax = (z[i]> zmax ) ? z[i]: zmax ; 
               xmin = (x[i]< xmin ) ? x[i]: xmin ; 
               ymin = (y[i]< ymin ) ? y[i]: ymin ; 
               zmin = (z[i]< zmin ) ? z[i]: zmin ; 
          } 
               return R = sqrt ((xmax-xmin)*(xmax-xmin) + 
                                (ymax-ymin)*(ymax-ymin) + 
                                (zmax-zmin)*(zmax-zmin)) ; 
 
    } 
 
    void EIDW (int num_interface_nodes1, int num_nodes1, int num_outer_nodes1)  
 
/* current global search is insufficient and CPU intensive and should be modified to  
   a more localized search method 
*/ 
{ 
 
      double dum_x,dum_y,dum_z, omega[num_interface_nodes1],h[num_interface_nodes1], 
              xx[2],yy[2],zz[2],xmin,xmax,ymin,ymax,zmin,zmax,R_solid,R_fluid,hmin, 
              d1,d2,d3,box; 
      int num_nodes,num_interface_nodes,line,i_bar,i,j,ii,n_solid; 
      bool skip ; 
      double dx[num_interface_nodes1],dy[num_interface_nodes1],dz[num_interface_nodes1]; 
      double x[num_nodes1],y[num_nodes1],z[num_nodes1]; 
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// Read the data (test - VTK format / CSE )  
           int index = 0 ; 
           FILE* file_ptr ; 
           file_ptr = fopen("dum0", "r") ; 
           if (file_ptr == NULL) { 
              printf (" ** Error opening dum0 file.\n") ; 
              exit (1) ; 
           } 
           int n0 ; 
    
           fscanf (file_ptr, "%d\n", & n0); 
           for (line = 0 ; line < n0/2 ; line++) { 
              fscanf (file_ptr,"%lf %lf %lf %lf %lf %lf",&xx[0],&yy[0],&zz[0],&xx[1],&yy[1],&zz[1]) 

; 
              for (i_bar = 0 ; i_bar < 2 ; i_bar++ ) { 
                 i =  i_bar ; 
                 if (line > 0 ) i = line * 2 + i_bar ; 
                   dx[i+index] = xx[i_bar] ; 
                   dy[i+index] = yy[i_bar] ; 
                   dz[i+index] = zz[i_bar] ; 
              } 
           } 
 
           index = n0 ; 
           printf(" Finish reading the dum0 file. \n"); 
           fclose (file_ptr) ; 
 
           file_ptr = fopen("dum1", "r") ; 
           if (file_ptr == NULL) { 
              printf (" ** Error opening dum1 file.\n") ; 
              exit (1) ; 
           } 
           int n1 ; 
           fscanf (file_ptr, "%d\n", &n1); 
           for (line = 0 ; line < n1/2 ; line++) { 
              fscanf (file_ptr,"%lf %lf %lf %lf %lf %lf",&xx[0],&yy[0],&zz[0],&xx[1],&yy[1],&zz[1]) 

; 
              for (i_bar = 0 ; i_bar < 2 ; i_bar++ ) { 
                 i =  i_bar ; 
                 if (line > 0 ) i = line * 2 + i_bar ; 
                    dx[i+index] = xx[i_bar] ; 
                    dy[i+index] = yy[i_bar] ; 
                    dz[i+index] = zz[i_bar] ; 
              } 
           } 
           index = n0+n1; 
           dx[index-1]= -4.6567497253 ;  
           dy[index-1]= -0.0067161722109 ;  
           dz[index-1]= -0.55055594444 ; 
           printf(" Finish reading the dum1 file. \n"); 
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           fclose (file_ptr) ; 
 
 
           //FILE* file_ptr ; 
           file_ptr = fopen("dum2", "r") ; 
           if (file_ptr == NULL) { 
              printf (" ** Error opening dum2 file.\n") ; 
              exit (1) ; 
           } 
           int n2 ; 
           fscanf (file_ptr, "%d\n", &n2); 
           for (line = 0 ; line < n2/2 ; line++) { 
            fscanf (file_ptr,"%lf %lf %lf %lf %lf %lf",&xx[0],&yy[0],&zz[0],&xx[1],&yy[1],&zz[1]) ; 
              for (i_bar = 0 ; i_bar < 2 ; i_bar++ ) { 
                i =  i_bar ; 
                int index = n0+n1 ; 
                if (line > 0 ) i = line * 2 + i_bar ; 
                  dx[i+index] = xx[i_bar] ; 
                  dy[i+index] = yy[i_bar] ; 
                  dz[i+index] = zz[i_bar] ; 
              } 
           } 
           index = n0+n1+ n2; 
           printf(" Finish reading the dum2 file. \n"); 
           fclose (file_ptr) ; 
 
           //FILE* file_ptr ; 
           file_ptr = fopen("dum3", "r") ; 
           if (file_ptr == NULL) { 
              printf (" ** Error opening dum3 file.\n") ; 
              exit (1) ; 
           } 
           int n3 ; 
           fscanf (file_ptr, "%d\n", &n3); 
           for (line = 0 ; line < n3/2 ; line++) { 
              fscanf (file_ptr,"%lf %lf %lf %lf %lf %lf",&xx[0],&yy[0],&zz[0],&xx[1],&yy[1],&zz[1]) 

; 
           for (i_bar = 0 ; i_bar < 2 ; i_bar++ ) { 
              i =  i_bar ; 
              int index = n0+n1+n2 ; 
              if (line > 0 ) i = line * 2 + i_bar ; 
                 dx[i+index] = xx[i_bar] ; 
                 dy[i+index] = yy[i_bar] ; 
                 dz[i+index] = zz[i_bar] ; 
              } 
           } 
           index = n0+n1+ n2+n3; 
           num_interface_nodes = index ; 
 
           printf(" Finish reading the dum3 file. \n"); 
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           fclose (file_ptr) ; 
           printf(" n0 n1 n2 n3 = %d,%d,%d,%d \n", n0,n1,n2,n3); 
           printf(" num_interface_nodes = %d \n", num_interface_nodes); 
 
 
           file_ptr = fopen("internal", "r") ; 
           if (file_ptr == NULL) { 
                printf (" ** Error opening internal file\n.") ; 
                exit (1) ; 
           } 
           fscanf (file_ptr, "%d\n",  & num_nodes); 
 
           // check for memory 
           int *cfdpointer ; 
           cfdpointer = (int*) malloc (sizeof(num_nodes)); 
           if (cfdpointer == NULL) {  
              printf (" num_nodes = %d \n", num_nodes); 
              printf (" **Error - could not allocate memory for cfd data.\n"); 
              exit (1); 
           } 
 
           for (line = 0 ; line < num_nodes/2 ; line++) { 
               fscanf (file_ptr," %lf %lf %lf %lf %lf  

%lf",&xx[0],&yy[0],&zz[0],&xx[1],&yy[1],&zz[1]) ; 
               for (i_bar = 0 ; i_bar < 2 ; i_bar++ ) { 
                   i =  i_bar ; 
                   if (line > 0 )  i = line * 2 + i_bar ; 
                      x[i] = xx[i_bar] ; 
                      y[i] = yy[i_bar] ; 
                      z[i] = zz[i_bar] ; 
               } 
           } 
           fclose (file_ptr) ; 
           printf(" Finished reading the internal file. \n"); 
           printf(" num_nodes = %d \n", num_nodes); 
 
            
// get max /min 
           xmax = ymax = zmax = Small ; 
           xmin = ymin = zmin = Large ; 
           for ( i = 0 ; i < num_interface_nodes ; i++ ){ 
               xmax = (dx[i]> xmax ) ? dx[i]: xmax ; 
               ymax = (dy[i]> ymax ) ? dy[i]: ymax ; 
               zmax = (dz[i]> zmax ) ? dz[i]: zmax ; 
               xmin = (dx[i]< xmin ) ? dx[i]: xmin ; 
               ymin = (dy[i]< ymin ) ? dy[i]: ymin ; 
               zmin = (dz[i]< zmin ) ? dz[i]: zmin ; 
          } 
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           R_solid = Get_R (dx,dy,dz,num_interface_nodes) ; 
           R_fluid = Get_R (x,y,z,num_nodes) ; 
 
// loop for each cfd field ( EIDW - Shepard's Method)   
 
        n_solid = 0 ; 
        box = R_fluid; 
        for (j = 0 ; j < num_nodes ; j++) { 
             skip = false ; 
             double xf = x[j] ; 
             double yf = y[j] ; 
             double zf = z[j] ; 
// get Euclidian distances and normalized weights 
             hmin = Large ; 
             for ( i = 0 ; i < num_interface_nodes ; i++ ){ 
               d1 = xf - dx[i] ; 
               d2 = yf - dy[i] ; 
               d3 = zf - dz[i] ; 
               h[i] = sqrt(d1*d1 + d2*d2 + d3*d3) ; 
               hmin = (h[i] < hmin ) ? h[i]: hmin ; 
             } 
 
             printf (" pass 1  j = %d \n",j) ; 
 
// get weight function values 
             get_weight (h , omega , num_interface_nodes) ; 
             RHS (dx,dy,dz,num_interface_nodes,dum_x,dum_y,dum_z,omega) ; 
// update new field positions for cfd 
             if (skip) { 
               x[j] = xf ; 
               y[j] = yf ; 
               z[j] = zf ; 
             } 
             else { 
               x[j] = dum_x + x[j] ; 
               y[j] = dum_y + y[j] ; 
               z[j] = dum_z + z[j] ; 
             } 
        } 
           printf (" end of big loop .....\n"); 
 
// output (test - VTK format / CSE )  
 
            file_ptr = fopen("fluid_mesh_new", "w") ; 
            if (file_ptr == NULL) { 
                printf (" ** Error opening cfd_mesh_new file to write.") ; 
                exit (1) ; 
            } 
                 printf (" trying to write \n") ; 

                 printf (" cfd.num_nodes =   %d \n", num_nodes) ; 
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            for (line = 0 ; line < num_nodes/2 ; line++) { 
                 for (i_bar = 0 ; i_bar < 2 ; i_bar++ ) { 
                    ii =  i_bar ; 
                    if (line > 0 ) ii = line * 2 + i_bar ; 
                       xx[i_bar] = x[ii]; 
                       yy[i_bar] = y[ii]; 
                       zz[i_bar] = z[ii]; 
                 } 
                 fprintf (file_ptr,"          %.11f %.11f %.11f %.11f %.11f %.11f\n", 
                               xx[0],yy[0],zz[0],xx[1],yy[1],zz[1]) ; 
           } 
           fclose (file_ptr) ; 
           printf(" Done...\n"); 
 
 
} 
 
int main() 
{ 
#define num_interface_nodes1 30000 
#define num_nodes1 400000 
#define num_outer_nodes1 50000 
 
// check memory requirements  
 
      int * Workarray = NULL; 
      Workarray = (int*) malloc (sizeof(num_interface_nodes1)); 
      if (NULL == Workarray) { 
          printf (" num_interface_nodes1 = %d \n", num_interface_nodes1); 
          printf (" **Error - could not allocate memory for cfd data.\n"); 
          exit (1); 
      } 
      Workarray = (int*) malloc (sizeof(num_nodes1)); 
      if (Workarray == NULL) { 
          printf (" num_nodes1 = %d \n", num_nodes1); 
          printf (" **Error - could not allocate memory for cfd data.\n"); 
          exit (1); 
      } 
      Workarray = (int*) malloc (sizeof(num_outer_nodes1)); 
      if (Workarray == NULL) { 
          printf (" num_outer_nodes1 = %d \n", num_outer_nodes1); 
          printf (" **Error - could not allocate memory for cfd data.\n"); 
          exit (1); 
      } 
 
      EIDW (num_interface_nodes1,num_nodes1,num_outer_nodes1) ; 
      return 0 ; 
} 
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