# 10.5 Triangles without right angles

Trigonometry can be used in all triangles regardless of whether they contain a right angle. There are two methods and each requires a formula. THESE FORMULAE MUST BE KNOWN.

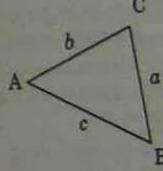
## 10.5.1 The Sine Rule (Rule of opposites)

Use the Sine Rule when you know two angles and one side, or when you know two sides and an angle.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

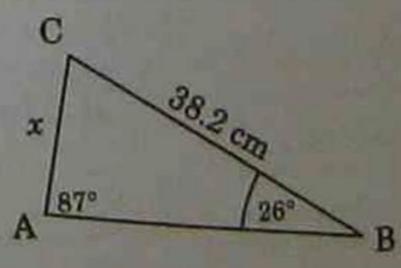
Note the opposites in the formula:

$$\frac{\text{side}}{\text{sin [opposite angle]}} = \frac{\text{side}}{\text{sin [opposite angle]}}$$



## Examples

(a) Find x, correct to three significant figures.



### SOLUTION

$$\frac{a^{\sqrt{3}}}{\sin A^{\sqrt{3}}} = \frac{b^{\sqrt{3}}}{\sin B^{\sqrt{3}}} = \frac{c}{\sin C}$$

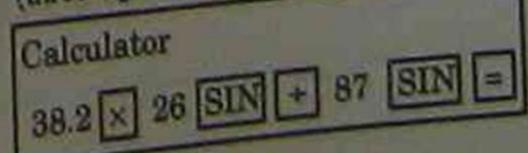


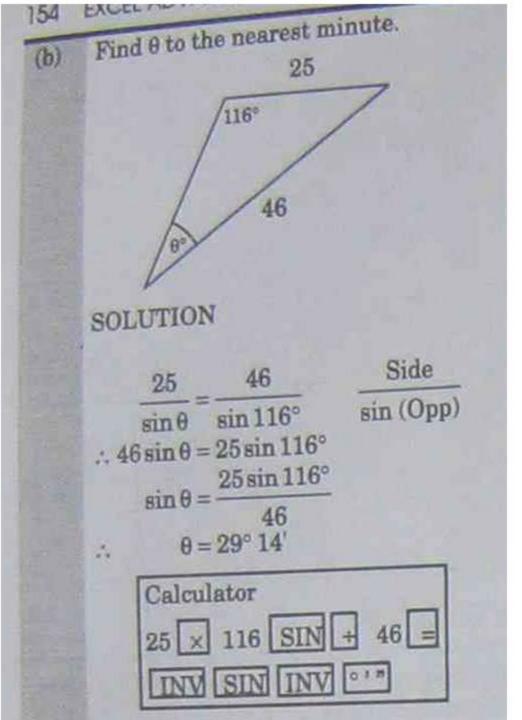
We have  $\hat{A} = 87^{\circ}$ ,  $\hat{B} = 26^{\circ}$  and a = 38.2. We want b.

$$\frac{38.2}{\sin 87^{\circ}} = \frac{x}{\sin 26^{\circ}}$$

Therefore 
$$x = \frac{38.2 \sin 26^{\circ}}{\sin 87^{\circ}}$$
  
= 16.768 759  
= 16.8

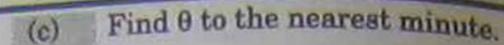
(three significant figures)

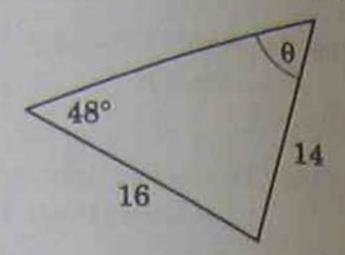




# The ambiguous case

Note: The required angle could also be (180° - 29° 14'), that is, 150° 46', but this would mean the angle sum of the triangle is greater than 180°. As both acute and obtuse angles have sine positive, an obtuse answer is always possible. When a decision cannot be made between the acute result and the obtuse result it is known as the ambiguous case.





#### SOLUTION

$$\frac{16}{\sin \theta} = \frac{14}{\sin 48^{\circ}}$$

$$14 \sin \theta = 16 \sin 48^{\circ}$$

$$\sin \theta = \frac{16 \sin 48^{\circ}}{14}$$

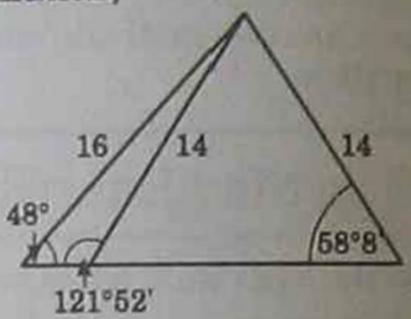
$$\theta = 58^{\circ} 8'$$

But also,  $\theta = (180^{\circ} - 58^{\circ} 8')$ 

= 121° 52'



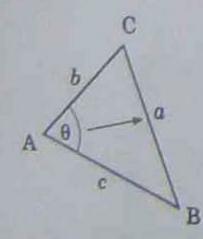
Either answer is possible. From this information,



This may happen when using the Sine Rule to find an angle. Check with the original information — the obtuse value may not be possible. Remember that the angle sum of the triangle is 180°.

#### 10.5.2 The Cosine Rule

#### Finding a side



The Cosine Rule is used when the question involves two sides and the included angle.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

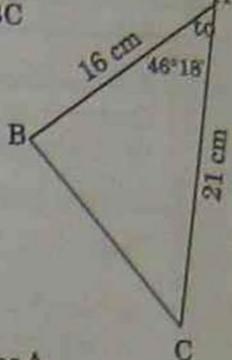
Sides around Angle opposite the side being found

Similar formulae can be written for  $b^2$  and  $c^2$ .





(a) Find the length of BC the nearest cm.



#### SOLUTION

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$= 21^{2} + 16^{2} - 2 \times 21 \times 16 \times \cos 46^{\circ} 18^{\circ}$$

$$= 232.72702 \qquad \leftarrow \boxed{\text{Keen this}}$$

$$a = \sqrt{232.72702}$$

=15.255393

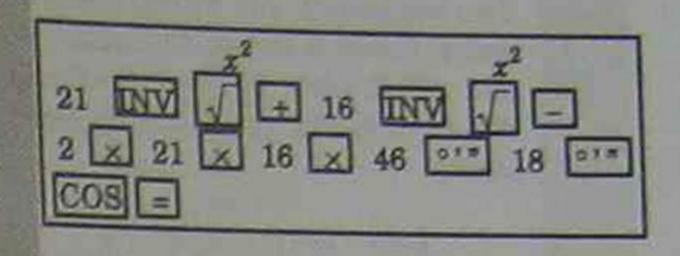
= 15

Keep this on your screen.

1,3

BC is 15 cm.

The complete working can be done on your calculator.

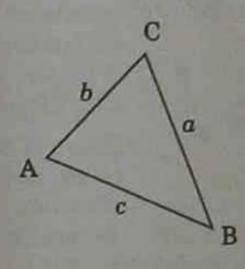


If your calculator has a separate x2 button, ignore the two INV.

This calculation gives a2, so we need to push .



#### To find an angle



The question must contain values for all three sides to be able to use the angle form of the Cosine Rule.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Similar forms can be written for cos B and cos C. Note that the side subtracted is the one opposite the required angle.



#### Example

(b) In the ΔABC, a = 12 cm, b = 17 cm and c = 9 cm. Find the size of the largest angle.

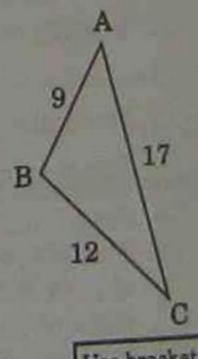
#### SOLUTION

The largest angle is always opposite the longest side. Therefore the angle required is B.

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

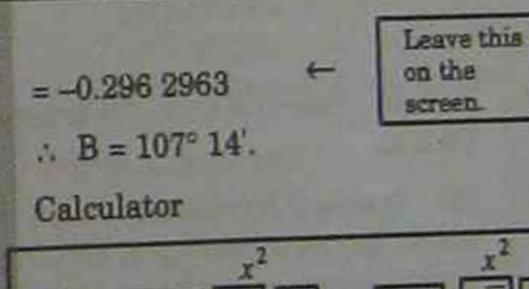
$$= \frac{12^2 + 9^2 - 17^2}{2 \times 12 \times 9}$$

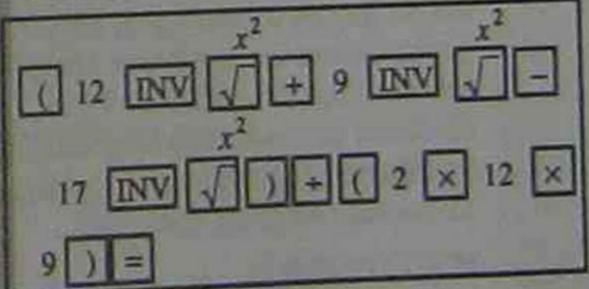
$$= \frac{\left(12^2 + 9^2 - 17^2\right)}{\left(2 \times 12 \times 9\right)}$$



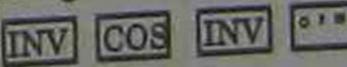
Use brackets around top and bottom.







This gives cos B, then use





# 10.5.3 Miscellaneous worked examples

Two cannons X and Y, 100 metres (8) apart, fire at a target Z. If ∠ZXY = 38° and ZZYX = 64° 19', find the distance of X from the target Z (one decimal place). 64°19 100 m

#### SOLUTION

The question asks us to find the length of XZ. We have two angles and a side — use the Sine Rule. But, the Sine Rule needs the angles opposite the sides. We must calculate the size of  $\hat{Z}$ .



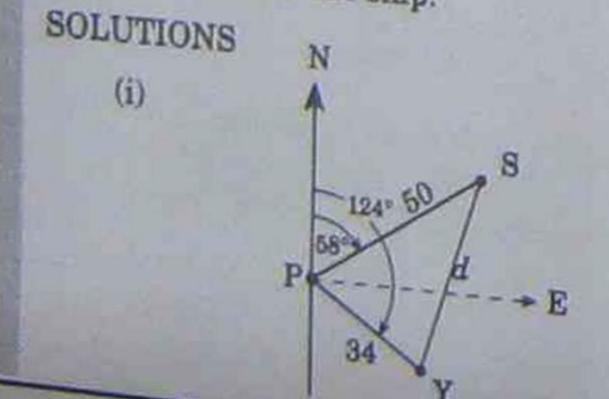
$$\hat{Z} = 180^{\circ} - (64^{\circ} 19' + 38^{\circ})$$
 angle sum of a  $\Delta$ 

Then

 $\frac{\text{side}}{\sin 64^{\circ} 19'} = \frac{100}{\sin 77^{\circ} 41'}$ 
 $XZ = \frac{100 \sin 64^{\circ} 19'}{\sin 77^{\circ} 41'}$ 
 $XZ = \frac{100 \sin 64^{\circ} 19'}{\sin 77^{\circ} 41'}$ 
 $= 92.243 428$ 
 $= 92.2.$ 

The distance of X from the target is 92.2 m.

(b) A ship S leaves port P and travels 50 km on a bearing of 58°, while a yacht Y also leaves P and travels 34 km on a bearing of 124°. Find: (i) the distance between the ship and the yacht; and (ii) the bearing of the yacht as measured from the ship.



Let the distance SY be d km. (Use the Cosine Rule, as we know two sides and the included angle.)

$$\angle SPY = 124^{\circ} - 58^{\circ} = 66^{\circ}$$

Then

$$d^{2} = 50^{2} + 34^{2} - 2(50)(34)\cos 66^{\circ}$$

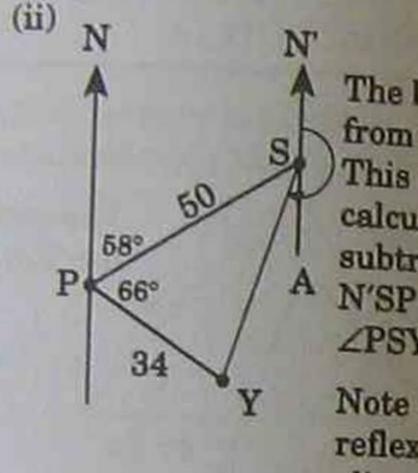
$$= 2273.0954 \leftarrow Leave on screen$$

$$\therefore d = \sqrt{2273.0954}$$

= 47.676 99 = 47.7 (one decimal place)

The distance between the boats is 47.7 km.





The bearing of Y from S is \( \times N'SY. \)
This can be calculated by subtracting \( \times N'SP \) and \( \times PSY \) from 360°.

Note ∠N'SY is reflex; clockwise direction.

Now ∠N'SP = 180° - 58° = 122° (co-interior angles, NP IIN'A).

Use the Cosine Rule to calculate ZPSY as we have three sides of the triangle



$$\cos \angle PSY = \frac{\left(50^2 + 47.7^2 - 34^2\right)}{\left(2 \times 50 \times 47.7\right)}$$

$$\angle PSY = 40^{\circ} 39'$$
Bearing of Y = 360° - (122° + 40° 39')
= 197° 21'

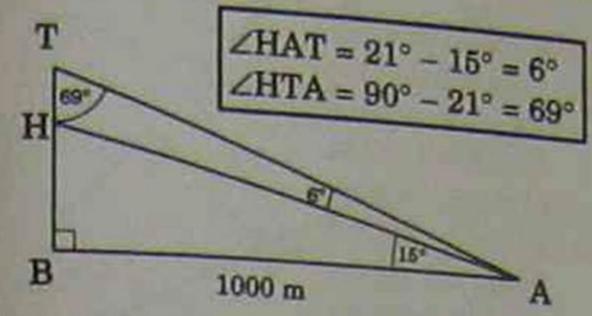
The bearing of Y is 197° 21'.



# c) A two-triangle problem

From a point, A, level with the base of a hill, the angle of elevation of the top of the hill, H, is measured as 15°. The angle of elevation from A to the top of the tower, T, built on the hill is 21°. If A is 1000 m in a direct line from the base (B) of the hill, calculate the length AH and use this information to calculate the height of the tower (TH) correct to one decimal place.

## SOLUTION



In AABH,

$$\frac{AB}{AH} = \cos 15^{\circ}$$

$$\therefore AH = \frac{1000}{\cos 15^{\circ}} = 1035.2762$$



This length is then used as a link to AAHT.

In AAHT,

$$\frac{TH}{\sin 6^{\circ}} = \frac{AH}{\sin 6^{\circ}}$$

$$TH = \frac{AH \sin 6^{\circ}}{\sin 69^{\circ}}$$

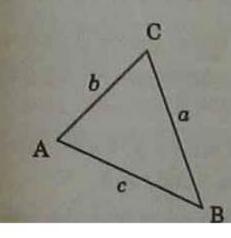
$$= \frac{1035.2762 \times \sin 6^{\circ}}{\sin 69^{\circ}}$$

$$= 115.914.84$$

$$\approx 115.9$$

The height of the tower is 115.9 metres.

## 10.5.4 The area of a triangle



Area =  $\frac{1}{2}ab\sin C$ 

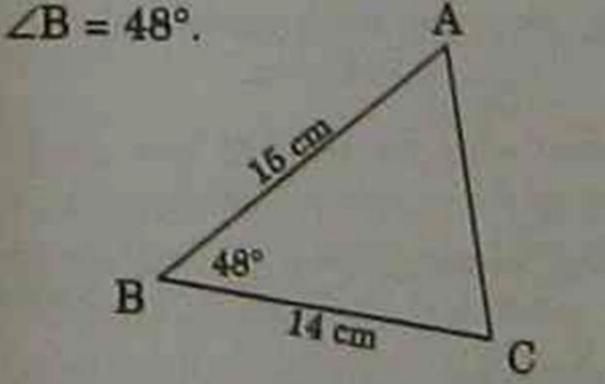
Two sides and included angle

A similar formula can be written for any combination of two sides and the angle between them.



# Example

Find the area of the triangle ABC where a = 14 cm, c = 15 cm and





Area =  $\frac{1}{2}$  ac sin B  $=\frac{1}{3} \times 14 \times 15 \times \sin 48^{\circ}$  formula using = 78.030 207

Equivalent

= 78 (nearest whole number)

The area is 78 cm2.

